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Abstract: The qualitative impact of pollutants on water quality is mainly related to their nature and
their concentration, but in any case, they determine a strong impact on the involved ecosystems.
In particular, refractory organic compounds represent a critical challenge, and several degradation
processes have been studied and developed for their removal. Among them, heterogeneous Fenton
treatment is a promising technology for wastewater and liquid waste remediation. Here, we have
developed mono- and bimetallic formulations based on Co, Cu, Fe, and Mn, which were investigated
for the degradation of three model organic dyes (methylene blue, rhodamine B, and malachite
green). The treated samples were then analyzed by means of UV-vis spectrophotometry techniques.
Bimetallic iron-based materials achieved almost complete degradation of all three model molecules
in very short time. The Mn-Fe catalyst resulted in the best formulation with an almost complete
degradation of methylene blue and malachite green at pH 5 in 5 min and of rhodamine B at pH 3 in
30 min. The results suggest that these formulations can be applied for the treatment of a broad range
of liquid wastes comprising complex and variable organic pollutants. The investigated catalysts are
extremely promising when compared to other systems reported in the literature.

Keywords: heterogeneous Fenton; AOP; dyes; catalyst; transition metals

1. Introduction

The accumulation of non-biodegradable organic compounds in the aquatic system
represents a serious threat to water and its biota [1–3]. These molecules are products,
by-products, or waste from industrial activities. The high stability of these molecules
requires targeted actions, aimed at both the mitigation and prevention of the problem, since
conventional processes are unable to remove them from polluted matrices [4–8]. Among
the most studied persistent organic compounds are dyes, personal care products, and
active ingredients of pharmacological origin [9–11]. Specifically, dyes are often used as a
reference in the development of innovative methods for liquid waste remediation. There
is a large variety of advanced oxidation processes (AOPs) for wastewater treatment with
proven efficacy [12–16]. Growing research interest has focused on developing alternatives
that improve their benefits and reduce their impacts, exploiting the promising potential
of these techniques. Each treatment depends on the controlling factors of the reactions,
including chemical reagent input, energy, and the overall cost of the process. The choice
of the technical specification is therefore based on process optimization and resource
management.

Advanced oxidation processes (AOPs) are a set of chemical treatments designed to
remove organic compounds from wastewater and liquid waste. They are based on the in
situ production of highly reactive radical species (hydroxyl radicals, •OH); once formed,
they non-selectively attack the contaminants according to the diffusion gradient in the

Molecules 2024, 29, 2074. https://doi.org/10.3390/molecules29092074 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules29092074
https://doi.org/10.3390/molecules29092074
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-0382-0525
https://orcid.org/0000-0002-2784-8760
https://orcid.org/0000-0002-2648-1848
https://orcid.org/0000-0001-7765-1715
https://doi.org/10.3390/molecules29092074
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules29092074?type=check_update&version=1


Molecules 2024, 29, 2074 2 of 16

solution [17–20]. AOPs refer mainly to processes that exploit particular reagents to cre-
ate radicals: ozonation, which uses the ozone molecule (O3) [21]; the peroxymonosulfate
(PMS) activation with the formation of PMS radicals (SO5

•−) [22,23]; the Fenton and het-
erogeneous Fenton reactions, which exploit hydrogen peroxide (H2O2) [24]; and reactions
employing physical fields, particularly ultraviolet radiation [25–28]. Other processes that
are not of primary importance for industrial-scale treatment are electrochemical [29], the
use of microwaves [30], ultrasound [31], and, finally, hybrid processes [32,33]. Hydroxyl
radicals are produced with the help of one or more primary oxidants (such as ozone, hy-
drogen peroxide, or oxygen) and/or energy sources (such as, for example, ultraviolet light)
or catalysts [18].

The heterogeneous Fenton process is the preferred alternative among the various
AOP techniques, as it allows for the application of advanced oxidation treatments on a
large scale in a sustainable way: the use of solid-phase catalysts reduces the problem
of the production of large quantities of contaminated sludge, while the careful choice
of the catalytic formulation offers the opportunity to operate at less extreme pH values,
optimizing the redox cycle [18,34–36].

Previously, we investigated copper-based catalysts, highlighting the promising perfor-
mance of these formulations [24,37–39]. In a recent work [40], we found a synergistic effect
of copper and iron in bimetallic catalysts. The developed material not only displays the
highest ibuprofen mineralization under optimal conditions but also exploits its activity over
a wider pH range (3–5) with extremely low metal leaching. In light of these results, here,
we have developed other bimetallic compositions based on Co, Cu, Fe, and Mn to extend
the range of effectiveness of the heterogeneous Fenton method in terms of pH and selec-
tivity (tuning catalysts able to degrade a wide range of compounds with high efficiency).
Therefore, in this study, two series of catalysts, monometallic and bimetallic, were prepared
to investigate their activity and to evaluate the interactions between the combined metals.
The experiments were carried out on three different matrices (Figure 1), three dyes widely
studied in the literature, due to their high resistance to degradation: methylene blue (MB),
rhodamine B (RB), and malachite green (MG) [41–47]. The three target molecules were
chosen due to them being compounds that are very difficult do degrade and need to be
treated by advanced oxidation processes to be effectively removed from liquid waste. The
different resistance to degradation of the three dyes depends on the intrinsic characteristics
of the molecules under consideration and their degree of refractoriness to oxidation in
Fenton reactions.
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Figure 1. Dyes used in this study.

The main purpose of this study is to screen the activity of different catalysts for the
degradation of dyes from liquid waste. This is a preliminary study mainly focused on the
degradation ability of different catalysts on the three target molecules. The investigation
carried out on the model molecules allows for a comparison of the obtained outcomes
with the extensive research that already exists for these compounds, and, thanks to the
comparison between the measurements carried out and pre-existing knowledge, to draw
significant conclusions about the object of this study.
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2. Results and Discussion
2.1. Textural and Structural Characterization

The structural and morphological characterization of the catalysts was carried out
by means of surface area measurement (BET) and X-ray powder diffraction (XRD). The
nominal composition and BET surface area of the investigated materials are given in Table 1.

Table 1. Composition and textural characterization of investigated samples.

Name Nominal Composition Surface Area
(m2/g)

H2 Consumption
(mmol/g)

ZrCo Co(2.5%)/ZrO2 53 0.44
ZrCu Cu(2.5%)/ZrO2 56 0.40
ZrFe Fe(2.5%)/ZrO2 55 0.43
ZrMn Mn(2.5%)/ZrO2 53 0.42

ZrCoCu Co(2.5%)- Cu(2.5%)/ZrO2 46 0.41
ZrCoFe Co(2.5%)- Fe(2.5%)/ZrO2 46 0.60
ZrMnCo Mn(2.5%)- Co(2.5%)/ZrO2 52 0.57
ZrMnCu Mn(2.5%)- Cu(2.5%)/ZrO2 54 0.40
ZrMnFe Mn(2.5%)- Fe(2.5%)/ZrO2 52 0.71

The surface area of bare ZrO2 is 64 m2/g. The addition of a single metal does not
significantly affect the surface area (53–56 vs. 64 m2/g). Even for bimetallic systems, the
influence on the surface area is minimal, with a larger decrease found for systems based on
Co, i.e., ZrCoCu and ZrCoFe, for which a value of 46 m2/g is observed. Figure 2 shows the
diffraction profiles of monometallic and bimetallic catalysts supported on zirconia.

The analysis of the diffraction profiles indicates the presence of two phases of ZrO2,
one monoclinic and the other tetragonal. No peaks due to the presence of metals supported
on zirconia are visible. This may be due, on the one hand, to the low content of metal
(2.5%) and, on the other hand, to the probable homogeneous dispersion of the metal on
the support. High dispersion is of fundamental importance for the catalytic activity of the
materials, since the larger the dispersion, the greater the number of metallic active sites on
the surface of the support. A low dispersion should lead to the presence of metal clusters,
which would be highlighted by the analysis of the diffraction profiles.
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The reducibility of mono- and bimetallic catalysts was also investigated by H2
temperature-programmed reduction (Figure 3). Zr support shows a flat signal, a TPR
feature of a typical “non reducible” material.
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ZrFe exhibits a very broad peak between 250 and 450 ◦C, which could be related to
free Fe2O3 on the zirconia surface. It is commonly known that iron oxide undergoes a
two-phase reduction of Fe2O3 to Fe0 by passing through Fe3O4 (magnetite) [48]. ZrCu has
three main reduction peaks at 130, 190, and 340 ◦C due to the reduction of copper species.
The three peaks could be related to different types of Cu phase over zirconia.

The peak at 340 ◦C can be assigned to the reduction of crystalline CuO. Lower temper-
ature peaks can be attributed to the reduction of highly dispersed Cu2+ species, indicating
a two-step reduction from Cu2+ to Cu+ (140 ◦C) and from Cu+ to Cu0 (190 ◦C) [49]. ZrMn
exhibits a broad peak centered at 200 ◦C and another signal at 337 ◦C. According to the
literature, the first reduction step can be associated with the reduction of Mn2O3 to Mn3O4,
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while the second stage can be due to reduction of Mn3O4 to MnO [50]. Two distinct peaks
centered at 350 and 465 ◦C were detected in the ZrCo profile, corresponding to the reduction
of Co3O4 to CoO and subsequently to Co [51]. The quantitative analysis of the TPR profile
(Table 1) indicates a partial reduction of iron species for ZrFe (0.43 mmol H2/gcat against
0.67 mmol H2/gcat required for the complete reduction of Fe2O3), while for ZrCo, ZrCu,
and ZrMn, the reduction is almost complete (0.43, 0.39 and 0.45 mmol H2/gcat required for
the complete reduction of Co, Cu, and Mn species, respectively).

The TPR profiles of bimetallic catalysts exhibit peaks due to the to individual metal
reduction steps. ZrMnCo shows a broader signal from 150 to 500 ◦C, including all the
peaks evidenced in the monometallic formulations, ZrMn and ZrCo (0.57 mmol/g vs.
087 mmol/g of the theoretical consumption). ZrCoFe displays a larger consumption of
hydrogen from 150 to 450 ◦C, including the peaks due to the reduction of iron and cobalt
species. ZrCoFe undergoes a partial reduction (55%) with a consumption of 0.60 mmol
H2/gcat, while the complete reduction required 1.09 mmol/g. Copper-based materials
(ZrCoCu and ZrMnCu) both show a signal at 345 ◦C. In addition, ZrMnCu exhibits a
large signal at 155 ◦C, while ZrCoCu displays a smaller peak at 155 ◦C and an additional
peak at 250 ◦C. The H2 consumption is similar for the two copper-based catalysts, 0.40 for
ZrMnCu and 0.46 mmol/g for ZrCoCu, and is lower than the theoretical amount (0.85 and
0.82 mmol/g). ZrMnFe exhibits a very broad peak starting at low temperatures (around
80 ◦C) up to 450 ◦C and is the catalyst with larger hydrogen consumption (0.71 mmol/g;
63% reduction to the theoretical amount).

2.2. Catalytic Activity

First of all, preliminary tests were carried out to evaluate the effect of the individual
reagents on the degradation of organic molecules in solution. Experiments were carried out
in the presence of the catalyst alone, without the addition of hydrogen peroxide, with the
aim of understanding whether surface adsorption by the catalysts significantly affected the
result; then, the experiment was replicated without the addition of catalysts to evaluate if
the oxidative capacity of H2O2 was relevant. In both cases, the results were not significant,
with degradation values of less than 10%. Thus, the catalytic activity is due to the combined
effect of Fenton-like reagents that include the oxidizing agent (H2O2) and the catalyst.

2.2.1. Monometallic Catalysts

Monometallic materials were investigated for the degradation of the three dyes at
different pH values. Indeed, pH is the most significant parameter affecting the activity
of metal catalysts in a Fenton process, since it determines the oxidation states and the
processes that can take place. The reaction was studied both at a highly acidic pH (pH 3),
for which an excellent response was expected, especially for the iron-containing catalysts,
and at a pH more shifted towards neutral values (pH 5). The latter was chosen to investigate
the change in catalytic activity at a more sustainable pH in view of a possible large-scale
application. The first compound investigated as a target molecule was methylene blue.

The degradation of the target molecule was investigated by spectrophotometric anal-
ysis (Figure S1). The maximum absorbance for methylene blue occurs around 665 nm;
the main peak is truncated when the absorbance exceeds the sensitivity of the instrument.
Peaks below 350 nm are not due to absorbance phenomena in the visible spectrum but
are due to absorptions in the ultraviolet (UV) region. Figure S1A shows a progressive
reduction in the main peak due to the Fenton treatment. While ZrMn and ZrCo show
only a moderate reduction in the absorbance of the characteristic methylene blue peak,
the reduction is significant for ZrCu and is almost complete for ZrFe. In addition, the UV
region also displays a significant modification of the peaks for ZrCu and ZrFe samples.
The comparison of the spectra at pH 3 (Figure S1A) and pH 5 (Figure S1B) shows a drastic
decrease in absorbance and, consequently, a significant increase in the activity for the
copper-based catalyst.
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Figure 4 shows the degradation of methylene blue after 30 min of Fenton treatment as
obtained by analyzing the absorbance at 665 λ in the UV–visible spectra. ZrFe and ZrCu
promoted high degradation, while ZrMn and ZrCo did not degrade the target molecule.
In particular, ZrFe achieved almost complete degradation both at pH 3 (99%) and at
pH 5 (98%), thus demonstrating that it was not significantly affected by the pH variation.
In contrast, copper showed a good response at pH 3 (71%), but achieved a notable increase
in activity at pH 5 (96%). This is consistent with the expected higher activity around pH 5–6
for this metal [18,39].
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catalysts.

The second target molecule investigated was rhodamine B. The maximum absorbance
for rhodamine B occurs around 580 nm. The heterogeneous Fenton reaction was tested in a
markedly (pH 3) and moderately (pH 5) acidic environment to evaluate the performance of
the catalysts both at the ideal pH and at milder and more sustainable conditions with a view
to large-scale application. ZrFe is the only catalyst able to efficiently degrade rhodamine B
at pH 3 (98%), but the activity is dramatically reduced at pH 5 (12%). The other samples
show a low percentage of abatement for both pH conditions, not more than 20%. However,
while ZrMn produced better results at pH 3 (15%, versus 3% at pH 5), both ZrCu and ZrCo
gave comparable results at different pHs (Figure 3). The copper-based formulation reduced
the target molecule by about 18%, while the cobalt-based material reduced it by 8%. The
activity of catalysts containing copper and cobalt was slightly affected by pH, while the
effect is significant for Mn- and Fe-based materials. Analysis of the UV–visible spectra
shows a significant decrease in absorbance only for ZrFe at pH 3 (Figure S1C,D).

The third molecule used in this study was malachite green. The maximum absorbance
for malachite green occurs at around 617 nm. The iron-containing catalyst is still the most
active, with a degradation percentage of 97% at pH 3. As already occurred in the case of
rhodamine B, the activity is strongly influenced by pH and decreases to about 80% when
the reaction is carried out at pH 5. The catalysts based on Cu and Co are not active and
show a degradation of less than 10%, while ZrMn seems to have moderate activity, 28% at
pH 3 and 19% at pH 5. The analysis of the UV–visible spectra exhibits an almost complete
reduction in absorbance for ZrFe at both pH levels and a moderate reduction for ZrMn at
pH 3 (Figure S1E,F).

ZrFe is the most active catalyst, considering all three dyes. At pH 3, ZrFe provided
almost total removal of the molecules from the model solution. At pH 5, it displayed an
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almost complete degradation for methylene blue and an efficient removal for malachite
green (80%) while for rhodamine B, it showed a dramatic collapse in efficiency (10%).
In conclusion, the activity of ZrFe on methylene blue was not affected by pH variation;
it was moderately affected on malachite green and it showed very high sensitivity on
rhodamine B. Methylene blue is the most easily degraded molecule by the investigated
catalysts, followed by malachite green and rhodamine B, respectively. Rhodamine B is the
most difficult molecule to degrade among the three dyes. The efficiency was generally low
with little difference due to pH variation, with the sole exception of ZrFe, which is very
active at pH 3. However, as previously reported, ZrFe was very strongly affected by the
increase in pH with a significant decrease to around 15%. ZrCu was the only monometallic
catalyst that showed a higher degradation at pH 5 compared to the activity at pH 3. This
trend is greater for methylene blue compared to the other two dyes. ZrCo was the least
active among the monometallic catalysts; it showed no activity with methylene blue and
malachite green, and very low degradation (<10%) with rhodamine B. The treatment with
ZrMn achieved a very moderate percentage of degradation (20–30%) with the malachite
green, while no significant effect was noted with the other two model molecules.

2.2.2. Bimetallic Catalysts

In order to obtain higher degradation activity, bimetallic catalysts were prepared
and tested on the three target molecules at pH 3 and 5 for 30 min. Figure 5 shows the
catalytic degradation of the target molecules after catalytic treatment with the investigated
formulations (ZrCoCu, ZrCoFe, ZrMnCo, ZrMnCu, ZrMnFe). The degradation efficiency
for methylene blue was almost complete for the iron-based catalysts, ZrCoFe and ZrMnFe,
at pH 3 and 5. This is consistent with the results obtained with monometallic catalysts,
where the catalytic activity of ZrFe was not affected by the pH variation. However, the
behavior of the copper-containing bimetallic catalysts is noteworthy: the catalytic activity at
pH 3 was high (about 50%), and in agreement with what happened with the monometallic
materials, the shift to higher pHs positively influenced the efficiency of the treatment.
In particular, ZrCoCu showed a catalytic efficiency of 72% and ZrMnCu of 70%. The
combination of manganese and cobalt (ZrMnCo) showed, overall, a low activity, just under
10% degradation at pH 3, with around 15% at pH 5. The analysis of the UV–visible spectra
exhibits an almost complete reduction in the absorbance for bimetallic ZrMnFe and ZrCoFe
at both pH and a higher reduction at pH 5 for copper-based formulations compared to
pH 3 (Figure S2A,B).
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For rhodamine B at pH 3, only iron-based materials (ZrCoFe and ZrMnFe) showed
very high efficiency, in agreement with the results obtained with the monometallic ZrFe
catalyst. All other catalysts did not show sufficient catalytic activity; in fact, ZrMnCu
degraded only 6%, while for ZrCoCu and ZrMnCo, the degradation was almost zero.
At pH 5, the yield dropped sharply: the degradation efficacies of ZrCoFe and ZrMnFe
declined from 100% to 20% (19% for the former, 17% for the latter). In addition, ZrMnCu
also decreased from 6% to 2%. ZrCoCu and ZrMnCu were once again confirmed as
ineffective. The analysis of the UV–visible spectra exhibits an almost complete reduction in
absorbance for the bimetallic ZrMnFe and ZrCoFe only at pH 3 (Figure S2C,D).

For malachite green, the two iron-based catalysts, ZrCoFe and ZrMnFe, achieved the
best performance. However, in contrast to what happened with both methylene blue and
rhodamine B, the efficiency of ZrCoFe was significantly lower than that of ZrMnFe. Indeed,
while ZrMnFe achieves 100% degradation of the target molecule, the efficiency of ZrCoFe
stands at around 53%. Paying attention to what happens with copper-containing catalysts,
one can appreciate a very different activity between them. ZrCoCu degrades only 5% of
the target molecule at pH 3, while ZrMnCu reaches a value almost five times higher (23%).
The same performance was recorded for ZrMnCo, which removed 22% of malachite green
from the solution. At pH 5, there is only a reduction in efficiency of the performance of
each catalyst. At pH 5, ZrMnFe showed a minimal loss of activity (97% of degradation),
while a moderate abatement was observed for ZrCoFe (35%). For ZrMnCu and ZrMnCo, it
becomes even less than half of what was recorded at a lower pH (10% for ZrMnCu and
9% for ZrMnCo), while the activity of ZrCoCu was negligible, i.e., 1%. The analysis of the
UV–visible spectra exhibits an almost complete reduction absorbance for ZrMnFe at both
pH, with a moderate reduction for ZrCoFe (Figure S2E,F).

In summary, methylene blue is confirmed as the easiest molecule to degrade: not
only did all the catalysts prove to be active but their activity was quite high, with the
sole exception of ZrMnCo. As observed for the ZrCu formulation, the degradation of the
target molecule is easier at pH 5 compared to pH 3. Rhodamine B, on the other hand, is
confirmed as the most difficult compound to degrade. Excellent results are obtained with
ZrMnFe and ZrCoFe at pH 3; however, all the other experiments, except for two mediocre
results well below the 20% threshold (ZrMnFe and ZrCoFe, at pH 5), show a significant
ineffectiveness, regardless of the catalyst used. The catalytic activity on malachite green
gave intermediate results between those obtained on the other two model solutions. The
trend for monometallic systems is also confirmed: the increase in pH induces a reduction
in efficiency.

ZrMnFe is the bimetallic catalyst that achieved the best results; with the sole exception
of rhodamine B at pH 5 (20% of degradation), it always reaches an activity higher than 95%.
The activity of ZrCoFe on methylene blue and rhodamine B was almost identical to that
of ZrMnFe; however, it shows lower activity on malachite green. These materials show
very high hydrogen consumption (Table 1) and this feature can be correlated to the higher
activity compared to the other formulations. Indeed, the higher reducibility may be related
to a more efficient redox cycle, thus enhancing the production of hydroxyl radicals capable
of degrading target molecules with high activity. In particular, ZrMnFe achieved better
activity for all three model molecules, which may be due to its higher reducibility at low
temperatures. Indeed, it shows a broad reduction signal in the range of 50-400 ◦C. The
copper-based catalysts, i.e., ZrMnCu and ZrCoCu, achieved interesting activity only with
methylene blue. It is worth noting that the activity increases significantly with increasing
pH. This is an important result for the sustainability of the process. ZrMnCo was the least
efficient bimetallic catalyst, reaching very low degradation values.

Comparing the results obtained from treatments with monometallic and bimetallic
catalysts, iron plays a very important role. Iron was certainly the most active metal;
however, the results on malachite green at pH 5 show an interesting synergistic effect with
Mn. The combination of iron with cobalt, on the contrary, induces a negative interference
for the abatement of malachite green with a decrease in the degradation from 100% to 50%
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at pH 3 and from 95% to 35% at pH 5. The increase in the efficiency with increasing pH,
observed in methylene blue for Cu-based formulations, can be ascribed to the behavior
of copper, which is more active at pH 5 (Figure 4). In the case of ZrMnCu and ZrCoCu,
when used to degrade methylene blue, the activity was almost exclusively due to copper.
Instead, in the experiments on malachite green, the roles were reversed for ZrMnCu:
when the contribution of copper disappeared (as observed in Figure 3), ZrMnCu reached
approximately 20% degradation thanks to the activity of manganese. However, since
the activity of the bimetallic sample is lower compared to bare Mn catalysts on the same
solution, it can be concluded that the copper caused a negative interference with the
manganese. The activity of ZrCoCu on malachite green was almost zero, since neither
of the two metals were proven effective on the target dye. Overall, in metal catalysts
supported on ZrO2, copper loses activity when coupled with another metal, while iron
maintains it, with the sole exception of the treatment of malachite green, for which different
behaviors emerge in the presence of manganese (synergistic effect) or cobalt (negative
interference), as previously described.

To investigate the activity as a function of time, experiments were carried out with
increasing time, from 5 to 30 min. Tests were performed on the two best formulations
(ZrCoFe and ZrMnFe) at pH 5 (the most favorable pH from the application perspective).
The results are displayed in Figure 6. For methylene blue, a complete degradation was
obtained after 5 min; for malachite green, ZrMnFe achieved an almost complete removal,
while ZrCoFe attained only 35% abatement. This test highlights that the selected catalysts
are significantly active and the degradation process is extremely fast.
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Figure 6. Degradation at different time intervals for the three model solutions (methylene blue (MB),
rhodamine B (RB), malachite green (MG)) with ZrMnFe and ZrCoFe at pH 5.

Since rhodamine B was much more difficult to attack and degrade than the other dyes,
the reaction was extended to 60 min. At 5 and 10 min, the two catalytic systems showed a
very similar degradation of about 10%. Between ten and thirty minutes, the two bimetallic
catalysts seemed to reach a plateau situation, where the increase in degradation was almost
negligible. In the next half hour, however, they managed to remove up to 63% (ZrMnFe)
and 48% (ZrCoFe) of the target molecule from the solution. ZrCoFe and ZrMnFe require
longer times to develop their degradation activity in the case of rhodamine B treatment
compared to the other dyes.

2.2.3. Comparison with the Literature Results

Methylene blue is a molecule widely used as a target dye in heterogeneous Fenton
experiments. Table 2 shows a comparison between the best catalysts obtained in this
research and those of the most recent studies. It can be noted that all the catalysts that
obtained the highest degradation rates have iron among their components. The bimetallic
catalysts developed in this study (ZrMnFe and ZrCoFe) gave remarkable results, since the
reaction conditions were advantageous from an application point of view in several key
factors. An example is the dose of catalyst used (200 mg/L), which was the lowest with the
exception of Fe0-Fe3O4-RGO [52] and CuFe2O4 [53]. While Fe0-Fe3O4-RGO exhibits high
activity, CuFe2O4 shows the lowest degradation efficiency among the catalysts compared.
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Since very different concentrations of the target molecule are used in the different studies,
it is possible to normalize the data using the ratio between the dose of the catalyst and
that of the target molecule. For formulations working in the pH interval of 5–7, this
parameter is lower for the catalysts investigated in this study, with the sole exception of
Cu-CuFe2O4/SiO2 [54], indicating that a smaller amount of catalyst is needed to degrade
the target molecule. Cu-CuFe2O4/SiO2 works with a [cat]/[pollutant] ratio three times
lower than our materials and at 25 ◦C, but required a longer treatment time (120 vs. 5 min)
and a higher amount of oxidant (197 vs. 15 mM).

Table 2. Comparison of results for methylene blue degradation in heterogeneous Fenton reaction.

Catalysts [Cat]
(mg/L)

[H2O2]
(mM)

[Pollutant]
(mg/L)

[Cat]/
[Pollutant]

T
(◦C) pH Time

(min)
Degr.
(%) Ref.

ZrMnFe 200 15 16.6 12 70 5 5 100 This work
FeNi/C-300 1000 100 30 33 45 7 60 98 [55]
Fe/Acid-MMT 750 0.85 50 15 50 3 30 98 [56]
Fe/Acid-MMT 1000 0.85 50 20 50 6 300 98 [56]
Cu-CuFe2O4/SiO2 200 197 50 4 25 7 120 98 [54]
Fe0-Fe3O4-RGO 100 0.8 50 2 25 3 60 98 [52]
Cu-CB 750 3 20 38 30 6.7 30 97 [57]
ZrCoFe 200 15 16.6 12 70 5 5 97 This work
FeII@MIL-100(Fe) 1000 40 500 2 25 3 300 90 [58]
CuFe2O4 100 0.5 50 2 25 3 25 74 [53]

Temperature plays a key role in the activity of homogeneous and heterogeneous Fen-
ton process. Homogeneous systems are generally used at room temperature, but increasing
the temperature can improve the oxidation rate and the degree of mineralization by re-
ducing the required amounts of H2O2 and Fe2+. Similarly, heterogeneous catalysts benefit
from higher temperatures to achieve higher catalytic activities; indeed, the rate of OH•
generation from the oxidant is greatly influenced by the reaction temperature and in turn
affects the overall efficacy of the heterogeneous Fenton process. Cu-CuFe2O4/SiO2 [54],
which achieved remarkable degradation working at 25 ◦C at neutral pH and with a low
[cat]/[pollutant] ratio, required very high concentration of oxidant compared to our formu-
lation. Cu-CB [48] exhibits 97% degradation at 30 ◦C but with a higher [cat]/[pollutant]
ratio compared to ZrMnFe. FeNi/C-300 [55] and Fe/Acid-MMT [56] work at 45 and
50 ◦C, respectively, but for longer times and at higher [cat]/[pollutant] ratios compared to
our system.

A similar comparison for the treatment of rhodamine B is reported in Table 3. The
greater difficulty in degrading this compound is again demonstrated by the reaction condi-
tions reported in the most recent studies: several of the factors controlling the heterogeneous
Fenton process are, indeed, more severe compared to what was previously observed in the
treatment of methylene blue. The reaction temperatures are higher, on average, as are the
doses of catalyst and the doses of H2O2 used.

The most interesting factor concerns the reaction time: the catalysts analyzed in
this study (ZrCoFe and ZrMnFe) were able to almost completely remove the molecule
in solution in only 30 min at small doses (200 mg/L) and with low amounts of H2O2
(15 mmol/L). The most critical parameter was pH, which was the most extreme among
those used in recent studies (pH 3 versus 5–7). Some formulations [59,61,62] are able to
achieve a higher degradation of rhodamine B at neutral pH but with high catalyst loading
(from 250 to 2200 mg/L). As a matter of fact, Fe/Cu-MMT [62] achieves high levels of
degradation at 25 ◦C. With the exception of this formulation, catalysts that perform well at
low temperatures require a higher [cat]/[pollutant] ratio and/or more oxidant. Considering
the ratio between the concentration of the catalyst and the target molecule, this parameter
is largely lower for the catalysts developed in this research, with the only exception of
Fe-Cu/γ-Al2O3 [61], which indicates a lower amount of catalyst necessary to degrade
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the model pollutant. Fe-Cu/γ-Al2O3 [61] works with a similar [cat]/[pollutant] ratio, but
requires a longer treatment time (210 vs. 30 min) and a higher amount of oxidant (309 vs.
15 mM). It can be concluded that ZrCoFe and ZrMnFe, compared to other formulations
in the literature, obtained excellent results in milder conditions in terms of catalyst and
oxidant doses and reaction times, but in more extreme pH conditions.

Table 3. Comparison of results for rhodamine B degradation in heterogeneous Fenton reaction.

Catalysts [Cat]
(mg/L)

[H2O2]
(mM)

[Pollutant]
(mg/L)

[Cat]/
[Pollutant]

T
(◦C) pH Time

(min)
Degr.
(%) Ref.

FeCu@BC600-2 200 1 10 20 30 3 60 100 [59]
FeCu@BC600-2 250 25 10 25 30 7 360 100 [59]
Cu/SiO2 500 29 10 50 60 n.a. 60 100 [60]
Fe-Cu/γ-Al2O3 2200 309 200 11 70 7 210 100 [61]
ZrMnFe 200 15 14.2 14 70 3 30 98 This work
Fe/Cu-MMT 1500 5 100 15 25 7 90 98 [62]
ZrCoFe 200 15 14 14 70 3 30 96 This work
FeCeOx 1500 80 100 15 35 3 150 91 [63]
FeCeOx 1500 80 100 15 35 5 150 88 [63]
Mn/Ti-HMS 1000 10 24 42 25 7 100 50 [64]

Table 4 shows a comparison between the catalysts used in heterogeneous Fenton
reactions on malachite green. The degradation results obtained for this molecule are very
high; the result obtained with ZrMnFe (97%) at pH 5 is an excellent outcome. It is the best
result obtained without the need to lower the pH to a very acidic condition (pH 3), with
the only exception of Cu-NaY [65], which achieved complete degradation at pH 6, but with
a high amount of oxidant (175 mmol/L). All the other catalysts were able to remove 100%
of the target molecule in solution only at pH 3. Furthermore, ZrMnFe managed to degrade
the target molecule in only 5 min, therefore being not only efficient but also very fast.

With the exception of the catalyst composed of zinc, hydroxyhepatite, and magnesium
ferrite (Zn/HAP/MgFe2O4) [66], which degraded 100% of the target molecule in two
minutes over a wide range of pH (3–7) at 30 ◦C, the other systems listed in the table required
longer times (30–70 min) to abate malachite green. However, Zn/HAP/MgFe2O4 works
with a very high [cat]/[pollutant] ratio (57) compared to that of ZrMnFe (15). In summary,
the good performance obtained for ZrMnFe in this study can be highlighted.

Table 4. Comparison of results for malachite green degradation in heterogeneous Fenton reaction.

Catalysts [cat]
(mg/L)

[H2O2]
(mM)

[Pollutant]
(mg/L)

[Cat]/
[Pollutant]

T
(◦C) pH Time

(min)
Degr.
(%) Ref.

ZrMnFe 200 15 13.2 15 70 3 5 100 This work
Cu–NaY 300 175 50 6 60 6 60 100 [65]
Cu-Cu2O 300 1 3.65 82 60 3 30 100 [67]
Zn/HAP/MgFe2O4 571 5 10 57 30 3–7 2 100 [66]
ZrMnFe 200 15 13.2 15 70 5 5 97 This work
Fe3O4/SiO2 15 mg * 50 µL * 25 n.a. 30 6.7 30 96 [68]
Diatomite/MnSiO3 400 30 500 0.8 30 n.a. 70 93 [69]

* No information about the volume of solution used is given in the text.

Therefore, it can be concluded that the catalysts developed in this work, particularly
ZrMnFe and ZrCoFe, are very promising formulations in heterogeneous Fenton-type treat-
ments since they are able to degrade target molecules with different chemical characteristics
with high efficiency. This ability is extremely important, as it indicates that their reaction
mechanism is not selective, but enables their use on a wide range of organic pollutants,
thus resulting in systems that can be used for liquid waste of different origins. In fact,
these systems are very active (degradation greater than 96%) on different target dyes, the



Molecules 2024, 29, 2074 12 of 16

oxidation is extremely fast (<30 min), and the conditions are rather mild compared to other
systems reported in the literature (especially the dose ratio of catalyst/target molecule and
pH). Compared to some promising formulations reported in the literature (Tables 2–4) that
are active at 25–30 ◦C, our catalysts work at 70 ◦C. In general, the higher temperature used
in our treatment is balanced by less stringent conditions in terms of the amount of oxidant
used, the [cat]/[pollutant] ratio, and the reaction time.

3. Materials and Methods
3.1. Materials

Two series of metal catalysts, monometallic and bimetallic, were prepared on a zirconia
(ZrO2) support. In the first series, the monometallic catalysts, the zirconia support was
modified by the addition of 2.5 wt% of a transition metal (Co, Cu, Fe or Mn), while the
bimetallic catalyst series was obtained by impregnation of two metals (Co/Cu, Co/Fe,
Co/Mn, Cu/Mn and Fe/Mn) at 2.5 wt% each. The ZrO2 support was prepared by calci-
nation of zirconium hydroxide at 500 ◦C for 3 h (Mel Chemicals, Manchester, UK). The
metal precursors (cobalt(II) nitrate hexahydrate Co(NO3)2•6H2O, copper (II) nitrate hemi
(pentahydrate) Cu(NO3)2•2,5H2O, iron (III) nitrate nanohydrate Fe(NO3)3•9H2O, man-
ganese (II) nitrate hydrate Mn(NO3)2•H2O; Sigma Aldrich, Saint Louis, MO, USA) were
dissolved in a volume of water previously determined by evaluating the wetting point of
the zirconia; this aqueous solution was then added to the support for incipient wetness
impregnation (IWI). Bimetallic materials were obtained by simultaneous impregnation
of two metals. After impregnation, the samples were dried at 100 ◦C overnight and then
calcined in a muffle at 500 ◦C for 3 h to remove the nitrates, leaving the metal species
bonded to the support. The procedure is summarized in Scheme 1.
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Scheme 1. Preparation of monometallic and bimetallic catalysts.

The surface areas of the samples were measured according to the BET method by ni-
trogen adsorption at −196 ◦C, using a Tristar 3000 gas adsorption analyzer (Micromeritics).
Structural features of the catalysts were characterized by X-ray diffraction (XRD). A Philips
X’Pert diffractometer was used to collect XRD profiles (40 kV and 40 mA using Ni-filtered
Cu-Kα radiation) in the range of 20◦–80◦ (step size of 0.02◦ and a counting time of 20 s per
angular abscissa). Phase identification was carried out using the Philips X’Pert HighScore
software v. 1.2. Redox behavior was investigated by means of temperature-programmed
reduction (TPR) experiments. Samples (40 mg) were pretreated at 500 ◦C for 1h in air
and then heated under a 4.5% H2/N2 mixture from room temperature to 600 ◦C in an
Autochem II 2920 Instrument (Micrometrics). H2 consumption was monitored during
the experiments.

3.2. Catalytic Activity Measurements

The present study was carried out using three model dyes (Figure 6): methylene blue
(Sigma Aldrich, Saint Louis, MO, USA), rhodamine B (Sigma Aldrich, Saint Louis, MO,
USA), and malachite green (Sigma Aldrich, Saint Louis, MO, USA). Aqueous solutions
were prepared by dissolving the appropriate amount of each dye in ultra-pure water to
obtain a concentration of 10 mg/L of organic C.
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The reference solution was acidified by progressive addition of H2SO4 (Sigma Aldrich,
Saint Louis, MO, USA), until the desired pH was reached; the catalytic activity was tested
at both pH 3 and pH 5.

The dye solution (50 mL) was loaded with the required amount of catalyst (200 mg/L)
and heated at 70 ◦C under reflux and continuous stirring conditions (500 rpm), using an
Omni multistage reaction station. Finally, 15 mmol/L of H2O2 (3% w/w) was added into
the reaction system and the Fenton-like reaction was carried out for 30 min. A hydrogen
peroxide solution (3% w/w) was prepared, starting from 30% w/w in H2O from Sigma
Aldrich. At the end of the reaction, samples were centrifuged in an Eppendorf Centrifuge
5804 R (5000 rpm) and filtered through 0.45 µm membrane filters. The oxidation process
was optimized by evaluating the effects of pH (3 and 5). The catalytic activity of the
investigated systems was determined through spectrophotometric analysis of the UV–
visible spectrum (dye degradation). All experiments were conducted in triplicate to verify
the reproducibility of our activity measurements, and the resulting errors were within 5%
for degradation by means of UV–visible spectroscopy.

4. Conclusions

The bimetallic catalysts developed in this study, in particular ZrMnFe and ZrCoFe,
show very promising activity for the degradation of dyes by the heterogeneous Fenton
process. They remove the target molecules with very high efficiency rates, in reaction
conditions that are more advantageous in several aspects than those found in the literature.
Specifically, an interesting parameter is the ratio between the dose of the catalyst and
the concentration of the pollutant used during the treatment: the value of this ratio was
generally always much lower in the experimental tests carried out in this research compared
to other studies in the literature. Another very important reaction parameter was the
reaction time. This was much lower, especially in the experiments on methylene blue
and malachite green, which is of vital importance if a potential large-scale application
in treatment plants is evaluated; the low reaction times are therefore a very interesting
feature, especially when inserted in the context of a continuous-flow system context,
where the time spent in the treatment tanks is relatively short (in the order of tens of
minutes). Finally, another aspect of considerable importance concerns the ability of the
developed catalysts to degrade different molecules with high activity; these results are
interesting for an application of the investigated systems for the abatement of substrates
with variable composition, both in terms of the structural complexity of the target organic
compounds and in terms of the number of contaminants and their relative concentration.
The proposed work is a preliminary investigation of zirconia-based bimetallic formulations
for the degradation of organic molecules by a heterogeneous Fenton process. The next step
of this work will be the optimization of the proposed catalytic formulations to improve
the catalytic performance and their application on more complex matrices, such as model
solutions obtained by mixing together more than one dye/organic compound or real
liquid wastes.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29092074/s1: Figure S1: Absorption spectra of model
solutions after Fenton treatment with monometallic catalysts. Degradation of methylene blue at (A)
pH 3 and (B) pH 5; of rhodamine B at (C) pH 3 and (D) pH 5; and of malachite green at (E) pH 3 and
(F) pH 5; Figure S2: Absorption spectra of model solutions after Fenton treatment with bimetallic
catalysts. Degradation of methylene blue at (A) pH 3 and (B) pH 5; of rhodamine B at (C) pH 3 and
(D) pH 5; and of malachite green at (E) pH 3 and (F) pH 5.
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