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Abstract: At present, the main raw material for producing graphene is graphite ore. However,
researchers actively seek alternative resources due to their high cost and environmental problems.
Biomass waste has attracted much attention due to its carbon-rich structure and renewability, emerg-
ing as a potential raw material for graphene production to be used in sports equipment. However,
further progress is required on the quality of graphene produced from waste biomass. This paper,
therefore, summarizes the properties, structures, and production processes of graphene and its
derivatives, as well as the inherent advantages of biomass waste-derived graphene. Finally, this
paper reviews graphene’s importance and application prospects in sports since this wonder material
has made sports equipment available with high-strength and lightweight quality. Moreover, its out-
standing thermal and electrical conductivity is exploited to prepare wearable sensors to collect more
accurate sports data, thus helping to improve athletes’ training levels and competitive performance.
Although the large-scale production of biomass waste-derived graphene has yet to be realized, it is
expected that its application will expand to various other fields due to the associated low cost and
environmental friendliness of the preparation technique.
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1. Introduction

In recent years, with the continuous advancement of a new round of global scien-
tific and technological revolution and industrial upgradation, the requirements for new
materials in various fields have become more stringent and diversified. The traditional
crystals are too unstable to exist as two-dimensional (2D) structures at non-zero absolute
temperatures, which has long plagued researchers. However, the discovery of graphene
has successfully filled this gap and completed the graphitic materials system. Graphene—a
nanomaterial—consists of a single layer of sp2-hybridized carbon atoms arranged in two
dimensions with a hexagonal honeycomb crystal structure. So far, graphene is the thinnest
nanomaterial known and is considered the “magic material of the 21st century”. It pos-
sesses many excellent properties, such as a large surface area, high conductivity, good
chemical stability, and excellent mechanical strength [1–4], which are vital for applications
spanning electronics, aerospace, renewable energy systems, sports equipment, and other
technologies. In addition, the emergence of this material has spawned a series of new
research fields targeted at future needs.

Presently, the proportion of downstream application enterprises of graphene is gradu-
ally increasing, and its market is slowly unfolding. Figure 1 shows a new wave of upsurge
in the graphene market, which is expected to reach USD 147.9 billion by 2025 [5]. Cur-
rently, the primary precursor materials for graphene are mainly metal-based, coal-based,
or petroleum coke-based [6–10]. However, these materials are associated with many prob-
lems, such as soil and water pollution, releasing harmful gases and particulate matter, and
atmospheric pollution, significantly limiting their application [11].
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phene production. This report reviews the latest progress in the research and develop-
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tion. Although many relevant studies on graphene have already been conducted, a de-
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The biomass waste generated in the world is increasing year by year, most of which is
buried and incinerated [12,13]. This type of treatment not only causes the waste of resources
but also leads to environmental pollution. To overcome the challenges associated with the
traditional methods of graphene production, such as environmental problems, resource
scarcity, and high costs, the research on graphene production from biomass materials
has attracted much attention in recent years. Scholars actively seek greener, cleaner, and
more efficient materials, including different biomass materials, such as biomass waste
resources (composed of plants and animal waste) [14] in agriculture, forestry, and municipal
solid waste (MSW), to reduce the economic cost and environmental impact of graphene
production. This report reviews the latest progress in the research and development of
graphene prepared from biomass waste. The basic structure, characteristics, derivatives,
and production methods of graphene are summarized with a detailed discussion of the
inherent advantages of selecting biomass waste as a precursor to its preparation. Although
many relevant studies on graphene have already been conducted, a detailed focus on its
application in sports equipment is still lacking in the literature. Therefore, this report fills
the literature gap by focusing on the application prospects of graphene and its derivatives
in the sports industry. Finally, the challenges and future outlook of biomass waste-derived
graphene are presented from the perspective of the sports industry.

2. Graphene Overview

Graphene is a 2D single-atomic-layer material with a honeycomb lattice structure of
closely arranged carbon atoms. Due to its thermodynamic instability, graphene has been
used as a theoretical model to describe the structure of other carbon materials before it was
discovered [1]. The relevant academic research on graphene can be traced back to 1947
when Wallace et al. [2] proposed a theoretical model of graphene. This breakthrough model
established the starting point of academic research on graphite electrical properties. In 2004,
physicists Novoselov et al. [15] of the University of Manchester in the United Kingdom
practically obtained single-layer graphene for the first time using a tape-stripping method.
This breakthrough attracted much attention and inspired scholars to conduct in-depth
research on graphene’s structure, properties, and derivatives.

2.1. Graphene Structure

Figure 2 shows the structure of graphene and its derivatives, which exhibit a honeycomb-
like shape with individual carbon atoms evenly distributed in a 2D lattice, each having
2 s and 2 p electrons in its outer shell [16,17]. The s and p orbitals are sp2-hybridized
to make a typical hexagonal benzene ring structure, which provides the material with
significant mechanical stability [18]. In addition, there are pz orbitals perpendicular to
the direction of the plane, forming π chemical bonds. The electrons involved in these π

bonds are crucial for the conductivity of graphene, which exhibits different electronic band
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structures depending upon the structure of the edge carbon chain and the number of staked
layers in graphene [19,20].
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Figure 2. The structure of (a) graphene honeycomb, (b) graphene oxide (GO), and (c) reduced
graphene oxide (RGO) (adapted from Ref. [21]).

Graphene has a mechanically stable chemical structure of short C-C bonds (0.142 nm
length) connected in a solid fashion [22]. Consequently, when an external force is applied
to the sheet, the bond lengths deform to offset the external stress without rearranging the
individual carbon atoms, thus maintaining a stable structure [23]. Moreover, scanning
tunneling microscopy (STM) shows that the surface of graphene possesses some nanoscale
wrinkles [17], which helps overcome the limitations of thermodynamic fluctuations, en-
abling the stable existence of the 2D lattice [24].

2.2. Graphene Properties

Carbon has achieved a quantum leap from graphite to graphene with a fully exposed
bulk and edge atomic arrangement on its surface, which endows it with excellent mechani-
cal, electrical, optical, and other properties. Researchers have conducted in-depth studies
on graphene properties and have continuously identified surprising discoveries, which
have aroused the interest of many interdisciplinary scholars.

Graphene exhibits high mechanical strength, good toughness, and excellent flexibility.
The strong σ and π covalent bonds formed between the graphene carbon atoms are mainly
responsible for the superior mechanical properties and structural rigidity [25]. Since
graphene is extremely thin in atomic order, its thickness is challenging to measure directly
through experimentations. Consequently, determining Young’s modulus of graphene
is more challenging than that of bulk materials. Lee et al. [26,27] pioneered the study
of graphene monolayers’ elastic properties and inherent strength using nanoindentation
technology based on atomic force microscopy (AFM). The results showed that Young’s
modulus of graphene monolayers was as high as 1.1 TPa, and its breaking strength could
reach up to 42 N m−1. Interestingly, graphite paper composed of graphene exhibited weak
toughness initially, but its toughness was significantly enhanced following oxidation and
functionalization. In addition, Lee et al. [28] demonstrated graphene balloon technology by
preparing graphene through chemical vapor deposition (CVD), transferring it to a circular
hole, and placing the sample in a vacuum. Due to the airtightness of graphene, air could
not penetrate it, resulting in a higher air pressure inside the balloon. The researchers
used Raman spectroscopy to study the balloon and compared the results with numerical
simulations. The study concluded that Young’s modulus of monolayer graphene was about
2.4 ± 0.4 TPa.

Graphene is very sensitive to its environment due to its unique 2D structure. Its
interactions with other materials may affect its electrical and optical properties and trigger
new physical phenomena. Most applications based on graphene rely on its high electronic
mobility. Electrons in graphene are free to move owing to the extended delocalized bonds.
However, the mobility is hindered by internal structural defects and scattering due to
lattice vibrations [29], which are almost independent of temperature [30]. Therefore, at
room temperature, when the carrier concentration is about 1012 cm−2, due to scattering
by phonons, the charge mobility can be as high as 200,000 cm2V−1s−1, which is almost
140 times that of commercial crystalline silicon [31]. Moreover, graphene has excellent



Molecules 2024, 29, 1825 4 of 19

optical properties, especially high optical transmittance. When white light is irradiated
vertically on single-layer graphene, only about 2.3% of the light is absorbed, resulting
in a transmittance of 97.7% [32]. As the number of layers increases, the visible light
transmittance decreases by 2.3% for each successive layer. Non-interactive Dirac–Fermi
simulations showed that the transmittance in graphene was affected by its thickness, and the
number of graphene layers could be estimated from the value of transmittance [33,34]. In
addition, the optical transitions in graphene could be modulated by changing its Fermi level
with an applied gate voltage. For instance, when graphene absorbs photons, the generated
electron-hole pairs can recombine in a very short time of picosecond. However, when an
external electric field is applied, the excited electron-hole pairs are separated, resulting in
a photocurrent flow [35–37]. Due to the unique zero-bandgap structure of graphene, the
energy required for electrons to transition from the valence band to the conduction band
is almost zero (theoretically calculated). Consequently, the majority spectrum of incident
light can generate a certain photocurrent intensity in graphene. Furthermore, graphene can
also be excited by appropriately modifying its zero bandgap [38].

2.3. Graphene Derivatives

Graphene derivatives are chemical modifications based on graphene, imparting novel
properties to the material, thus significantly expanding its application fields [39,40]. Table 1
compares the mechanical properties of the graphene family.

Table 1. Mechanical properties of the graphene family.

Materials Experimental Technique Young’s
Modulus

Tensile
Strength Refs.

Monolayer graphene Nano-indentation in AFM 1 TPa 130 GPa [41]

Free standing GO Nano-indentation on a
dynamic contact tool 697 ± 15 GPa 3–33 GPa [41]

RGO paper - 41.8 GPa 293.3 MPa [42]

Graphene oxide (GO) is the prime representative of graphene-derived materials, also
known as graphite oxide. It is prepared by the chemical oxidation of graphite powder.
Due to variations in the oxidation conditions, the structure of GO has not been understood
in detail until recently. As per the most widely accepted model of GO, the most active
functional groups, such as epoxy (-O-) and hydroxyl (-OH), are mainly distributed on its
surface. In contrast, functional groups, such as carboxyl (-COOH), carbonyl (-C=O), and
phenol (Ar-OH), are connected to the edges of the GO sheet [43]. Moreover, the number of
functional groups on GO depends on the preparation method employed.

GO exhibits properties utterly different from those of graphene due to its many oxygen
functional groups and its layer structure, which markedly differs from the latter. Compared
with graphene, GO exhibits stronger hydrophilicity because of its ability to make hydrogen
and polar bonds with water molecules. This property makes GO easy to exfoliate and
disperse stably in water and suitable organic solvents [44,45]. However, compared with
graphene, oxygen-containing functional groups can lead to structural defects in the 2D
atomic structure of GO, resulting in a corresponding loss of mechanical and electrical
properties [46,47].

GO can easily disperse in water to make a stable solution that can facilitate its depo-
sition on suitable substrates through the standard deposition techniques of drop casting,
spraying, and spin coating [17]. At the same time, these oxygen functional groups can
facilitate the covalent or non-covalent binding of the material to other substances, fur-
ther expanding GO applications [48]. However, the large number of oxygen-containing
functional groups on the surface of GO disrupts the continuous conjugated structure of
graphene, resulting in the loss of the characteristic high thermal and electrical conductivity
of the material. To re-establish the conjugated structure and unique properties of graphene,
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researchers chemically reduce GO to obtain reduced graphene oxide (rGO) with partial
recovery of the conjugated structure associated with unavoidable defects.

rGO is, therefore, also a graphene derivative, which has properties similar to graphene,
particularly excellent conductivity and mechanical properties [49]. The GO reduction
process removes the oxygen-containing groups and restores the conjugated structure of
graphene. Different reduction methods (including thermal, chemical, microwave, photo-
chemical, and hydrothermal reduction) lead to significantly different quality of the final
rGO. Chemical and thermal reductions are the two most widely used methods. Chemi-
cal reduction usually employs chemical reducing agents, including hydrazine, ascorbic
acid, hydroiodic acid, and sodium borohydride, to treat GO in rGO. Among the various
reducing agents, ascorbic acid has gained particular interest for the scalable production of
rGO without generating toxic gases [50]. Thermal reduction, on the other hand, employs
high-temperature conditions to remove oxygen-containing functional groups on the GO
surface. Theoretically, GO can be completely deoxidized under extreme temperatures of
more than 2000 ◦C.

Following the elimination of the oxygen-containing groups, the rGO shows completely
different properties to GO in some respects [51]. For instance, rGO exhibits better chemical
stability and electronic conductivity than GO. Moreover, rGO is prone to aggregation
in aqueous and related media, thus controlling its shape and specific surface area [52].
Conversely, oxygen-containing groups significantly enhance the hydrophilicity of GO,
making it more stable to disperse uniformly in water [53]. These characteristics open up
new opportunities for rGO and rGO-based devices in various fields.

Three-dimensional graphene (3D graphene) is a derivative of graphene consisting of
longitudinally grown stacks of 2D graphene, preserving many of its inherent properties,
such as high electrical conductivity. In addition, it possesses unique structural/electrical
characteristics, resulting in the increased absorption of near-infrared (NIR) to infrared (IR)
radiations by up to 16% [54]. The other most common chemical derivative of graphene
is nitrogen-doped graphene. Nitrogen is usually present in various carbon-based mate-
rials; however, its content is low, with no well-defined stoichiometry. The presence of
heteroatoms in the aromatic carbon rings of graphene interferes with its aromaticity, result-
ing in various effects, including bandgap opening [55,56], charge separation, ferromagnetic
ordering, different interlayer forces, and catalytic potential [57]. Subsequently, the proper-
ties of pristine graphene are altered, providing broad prospects for its application in specific
fields, such as nanoelectronics, electrochemical biosensors, energy storage, and other fields.

3. Preparation Method of Graphene

The preparation of graphene plays a crucial role in advancing its scientific research
and wide applications. Different preparation methods vary in the yield and quality of
the resulting graphene, which are suitable for different applications [58]. Achieving the
large-scale, automated, low-cost production of high-quality graphene is essential for manu-
facturing high-performance graphene devices. The preparation methods reported in the
literature can be classified into the following two categories: top-down and bottom-up
approaches [59–61]. The top-down approach aims to break down bulk graphite into lamel-
lar graphene sheets through exfoliation. Conversely, the bottom-up approach assembles
graphene from individual carbon atoms using precursors such as methane or polymers
with benzene rings and is advantageous for high-yield production. Table 2 compares the
different preparation methods of graphene, including the typical micromechanical lift-off,
CVD, redox synthesis, and epitaxial growth methods.
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Table 2. Comparison of different preparation methods for graphene.

Method Substrate Temperature (◦C) Yield Refs.

Micromechanical
exfoliation SiO2/Si Room temperature Difficult to generate

production output [62]

Chemical vapor
deposition

Cu, Pt, Ni,
Ru, Ir >1000 Can be produced on a large scale [63]

Oxidation reduction - <500 Can be produced on a large scale [64]
Epitaxial growth SiC 1200–1600 Suitable for small-scale production [65]

3.1. Micromechanical Lift-Off

The mechanical exfoliation method was the earliest method used to prepare multilayer
graphene. This process of graphite delamination was achieved by applying a mechanical
force. Geim et al. [66,67] successfully separated graphene nanosheets by repeatedly sticking
adhesive tape to highly oriented pyrolytic graphite (HOPG) to obtain layered graphene,
combined with applying oxygen plasma etching. The principle of this preparation method
is based on the fact that van der Waals forces between graphite sheets are weak and, thus,
can easily be separated by applying an external force. Paton et al. [68] reported a simple
and efficient method for producing graphene using liquid-phase exfoliation. Graphite
powder was placed in an organic solvent containing a specific surfactant and subjected
to high-energy shear using a stator-rotor homogenizer (made by Silverson Machine, East
Longmeadow, MA, USA). This method effectively improved the speed of graphene pro-
duction via mechanical exfoliation. Furthermore, the automated exfoliation method has
significant advantages, including the simplicity, low cost, and high quality of the resulting
graphene. However, the graphene prepared through this method is highly laborious and
time-consuming. Additionally, there are uncontrollable factors causing difficulty control-
ling wrinkles and the number of layers. As a result, this method is limited to laboratory
research and is challenging to meet the demands of scaled-up production [69].

3.2. Chemical Vapor Deposition

The CVD technology originated in the 1960s and was initially used for thin film
preparation in the semiconductor industry. Later, it gradually expanded to the field of
nanomaterials. In recent years, this technology has played an essential role in promoting
the development of high-quality graphene. Before introducing the CVD technology to
prepare graphene, researchers found that layered graphitic materials can be formed on
nickel (Ni) substrates through high-vacuum annealing [70,71]. The CVD preparation
is mainly divided into two types based on the growth mechanism: (1) the dissolution
precipitation mechanism, employing Ni, cobalt (Co), and other metals with high carbon
dissolution ability, and (2) the surface catalytic mechanism, utilizing metals with low
dissolved carbon content, such as copper (Cu), molybdenum (Mo), and platinum (Pt).
In the former mechanism, the dehydrogenation of the carbon source produces carbon
atoms that penetrate the metal substrate at high temperatures. When rapidly cooled, the
carbon atoms precipitate out of the interior of the metal to nucleate and grow into graphene
on the surface of the substrate [72–76]. On the other hand, in the latter mechanism, the
carbon source is dehydrogenated at high temperatures to generate activated carbon atoms,
which, after reaching a certain supersaturation on the metal surface, leads to nucleation and
growth to form the graphene crystal domains. Finally, continuous graphene is obtained
through 2D growth and merging of the crystal domains precipitated on the surface of the
substrate [77,78].

CVD technology can prepare single-crystal graphene films with sizes ranging from
10 microns to 1.5 inches [79,80]. Park et al. [81] used CVD technology to prepare few-layer
graphene (FLG) on nickel-coated substrates and found that chemical bonds connected
different crystal domains of the FLG. Although the FLG samples were not uniform in
macrostructure, they demonstrated excellent mechanical properties. The advantages of
CVD technology include the preparation of graphene with a large 2D area, superior quality,
and complete lattice structure. However, this technology is challenged by the difficulty of
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separating graphene from the metal substrate and the possible product contamination of
the organic molecules used for its separation.

3.3. Oxidation–Reduction Method

rGO is prepared by the oxidation–reduction method. Generally, graphite is first oxi-
dized using a strong acid and oxidant and then exfoliated into GO by ultrasonic treatment.
Finally, the oxygen-containing functional groups on the surface of the GO are reduced to
obtain rGO. Various oxidation strategies, including Brodie, Hummer, and Staudenmaier
methods, are commonly found in the literature [82–84]. Since the synthesized GO is rich in
polar functional groups, it can be dispersed in water or alkaline solutions by ultrasonica-
tion. Then, GO flakes are reduced using various methods, such as microwave reduction,
solvothermal reduction, vapor phase reduction, and chemical reduction [51,85,86]. It is
noted that rGO prepared through the redox method destroys the π-electrons conjugated
structure, resulting in more functional groups and other types of defects in the synthesized
rGO, thus compromising its performance [87,88]. However, a large amount of only a few
layers of rGO could be obtained by this method, offering a low-cost production [89–92]
demanded by various fields of application.

3.4. Epitaxial Growth Method

In the early 1970s, graphene growth on a nickel single crystal (111) surface was
studied [93]. A graphene-decorated SiC substrate was obtained by heating a silicon carbide
(SiC) single crystal at high temperatures for the silicon atoms to evaporate, which is
associated with the reconstruction of the carbon atoms through self-assembly. Initially, the
growth conditions for graphene on a nickel single crystal (111) surface required an ultra-
high vacuum (UHV). When a clean Ni (111) surface is exposed to hydrocarbons, surface
carbide or graphene is produced. Additionally, it has been confirmed that the thermal
decomposition of hydrocarbons at low temperatures leads to the formation of surface
carbide, while graphene typically forms at temperatures between 500 ◦C and 700 ◦C [94].
However, recent studies showed that an atmosphere of argon or small amounts of disilanes
can reduce the rate of silicon sublimation, allowing better-quality graphene to be prepared
at higher temperatures [95]. Hass et al. achieved controlled single and multilayered
graphene growth using the SiC decomposition method [96]; however, multilayer graphene
up to 100 layers is relatively easy to obtain. The quality of graphene prepared through
this method is closely related to the heating temperature, reaction pressure, and protective
gas type. Therefore, high-quality graphene can be obtained by adjusting the reaction
parameters using the epitaxial growth method. However, the graphene yield is low while
the reaction temperature is high, limiting its adaptation for the large-scale synthesis of
single-layered graphene [97,98].

4. Biomass Waste-Derived Graphene

With the increasing emphasis on resource sustainability and environmental protection,
people are gradually becoming aware of the broad prospects of biomass resources [99,100].
Biomass waste, including biomass waste from agriculture, forestry, and MSW, constitutes
an integral part of biomass resources, which is cheap and widely available [101]. Figure 3
shows the raw materials and advantages of green synthetic graphene.

The treatment and recycling of biomass waste directly impact the comprehensive
utilization and efficiency of natural resources. Following proper treatment and processing,
biomass waste has the potential to produce high-value-added chemicals and carbon materi-
als. Therefore, biomass waste recycling is expected to promote the synergistic development
of environmental protection and resource utilization. Figure 4 shows various strategies for
utilizing biomass to produce graphene.
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4.1. Agricultural Waste

Globally, large quantities of agricultural products are produced daily to meet the
needs of a growing population, leading to the large-scale incineration of agricultural
waste [104–106]. The indiscriminate incineration of these wastes releases harmful sub-
stances, such as carbon monoxide, sulfur dioxide, and dust, which are significant sources
of air pollution and pose a severe threat to respiratory health [107]. At the same time, the
disposal of agricultural waste without proper treatment may also cause various hazards,
such as the spread of infectious diseases, water pollution, and ecosystem damage.

Agricultural waste mainly includes three organic substances: cellulose, hemicellulose,
and lignin. Hemicellulose is a heteropolysaccharide whose specific composition varies
according to its source. For instance, hemicelluloses from angiosperms and gymnosperms,
composed of xylans and glucomannan, respectively [108], are excellent carbon sources
for synthesizing carbon materials. In addition, agricultural waste provides abundant
raw materials for producing high-performance graphene, with significant advantages in
adsorption performance and the quality of the obtained graphene [109].

Rice is one of the major sources of food. The rice husk is the outer covering of the
rice grains. During growth, rigid silica in the husk protects rice from insects and bacteria
and ensures it can obtain the necessary water and nutrients. To achieve dual functions,
silica in rice husks has evolved naturally into a unique 3D porous nanostructure [110–112].
Wang et al. [113] reported biocompatible graphene quantum dots derived from rice husks
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with a yield of 15% and obtained mesoporous silica nanoparticles as a by-product of the
preparation, realizing the comprehensive and effective utilization of agri waste.

Wheat straw is the stalk left after wheat harvesting, and its main components include
cellulose, hemicellulose, lignin, trace metals, and crude proteins [114]. Chen et al. [115] used
potassium hydroxide (KOH) to dissolve hemicellulose and lignin in wheat straw. After
multiple heat treatments to overcome its complex structure, wheat straw was finally con-
verted into cellulose fibers, which, like other lignocellulosic materials, could be converted
into graphene using high-temperature carbonization (HTC). Zhou et al. [116] successfully
synthesized interconnected high-graphite carbon nanosheets (HGCNSs) using wheat straw
as a precursor and combining the hydrothermal and graphitization processes. The ex-
perimental results showed that HGCNS possessed an interconnected two-dimensional
nanostructure capable of providing multiple storage sites for lithium ions and facilitating
the rapid transport of electrons and ions. Additionally, due to its high degree of graphiti-
zation, HGCNS significantly reduced voltage hysteresis, demonstrating excellent cycling
and rate performance. Graphene prepared from agricultural waste has significant sustain-
ability, cost-effectiveness, and environmental advantages, reducing resource waste and
environmental pollution while simultaneously achieving multifunctional applications.

4.2. Forestry Waste

Forestry waste is a vital biomass resource. Energy conversion utilizing forestry waste
is one of the research hotspots in renewable energy. Forestry waste, mainly including
branches, sawdust, rolled bark, shavings, and scraps, is continuously generated in forestry
processing. Whether woody plants or herbs, their cell walls are primarily composed of
cellulose, hemicellulose, and lignin [117], indicating that their structure has a high carbon
content. Eucalyptus bark extract is rich in 29 polyphenol compounds, which are considered
bioactive due to their excellent antioxidant and anticancer properties. Manchala et al. [118]
synthesized soluble graphene using a eucalyptus polyphenol solution obtained from the
Eucalyptus bark extract. The results showed that the polyphenol compounds in Eucalyptus
bark extract had a reducing ability; therefore, exfoliated GO could be reduced to soluble
graphene under reflux in an aqueous medium.

Wood processing produces a tremendous quantity of waste wood. Although the
wood-based panel processing industry consumes many wood processing residues, wood
chips are more cumbersome. Therefore, these biomass resources have not been recycled
and reused effectively as fuel. Although sawdust has not been widely used for fuels due to
its chemical composition, it still has the potential to produce high-quality, high-value-added
carbonaceous materials such as graphene. Severo et al. [119] successfully prepared 3D
graphene sponges from sawdust by pre-carbonization and KOH chemical activation. In
addition, this method achieves the high value-added utilization of sawdust, helping to
reduce biomass waste generation and protect the environment.

4.3. Municipal Solid Waste

MSW is a heterogeneous waste stream, which is an inevitable part of daily life [120],
characterized by complex components and a high organic content. On average, 0.74 kg of
waste is generated per person per day globally. The per capita waste generation is closely
related to the local economic level and the degree of urbanization. Generally, the higher the
income, the higher the per capita waste generation. Moreover, global waste generation is
growing more than twice the population growth rate and is projected to reach 3.4 billion
tons by 2050 [121].

Disposable paper cups (DPCs) are widely used in many families, enterprises, and pub-
lic places due to their relative hygiene, low cost, convenient use, and mass production [122].
However, most DPCs have a short service life and are difficult to segregate from waste
after use. They are eventually incinerated or buried in landfills, posing a severe threat to
human ecosystems. DPCs usually comprise high-grade cardboard and an inner polyethene
coating. Wang et al. [113] proposed a new route to prepare Fe/graphene sheets using Fe2+
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catalysts with DPCs as a carbon source. It was demonstrated that the proposed synthesis
strategy could produce graphene sheets with high yield and high quality along with two
additional products, Fe/graphene and Pt/graphene, where the latter showed high catalytic
activity for an oxygen reduction reaction in fuel cells. Ruan et al. [123] used inexpensive
carbonaceous raw materials without pre-purification, including biscuits, chocolate, grass,
plastic, cockroaches, and dog feces, to grow graphene directly on copper foil using CVD
technology. The results showed high-quality graphene monolayers prepared from these
carbon sources. Graphene production using MSW has potential in terms of quality; how-
ever, it currently faces challenges regarding yield. With process optimization, this method
could become a competitive route to produce high-quality graphene.

5. Graphene Applications in Sports Equipment

In today’s rapidly advancing society of science and technology, as we address the
contradiction between pushing the limits of human athletic abilities and sports training, the
performance of sports equipment consistently plays a crucial role in influencing athletes’
performance. To a certain extent, it enhances the ability of the human body to engage
in physical activities. According to the specific requirements of different sports events,
high-performance sports equipment has unique advantages in material selection, process
design, and ergonomics. They also play a significant auxiliary role in improving athletes’
experience, performance, and safety. Figure 5 summarizes some applications of graphene
in the sports industry.
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5.1. Graphene Wearable Sensors

Scientific training in modern competitive sports relies on intelligent motion monitoring
devices that provide athletes with physiological signals during training or competition [124].
Researchers have proposed various types of flexible electronic sensors. Graphene-based
flexible wearable electrodes are considered efficient and promising because of their higher
elasticity, flexibility, and hydrophobicity, which can better retain contact with human skin
and remain stable after long-term use [125–127]. Graphene-coated highly conductive textile
electrodes are, therefore, expected to replace the traditional metal-based electrodes in health
monitoring devices such as electrocardiograms (ECG), electroencephalograms (EEG), and
electromyograms (EMG) [128]. Shanthi et al. [129] successfully developed a highly flexible
and washable sports undergarment using graphene-coated textile electrodes by mat curing
technology. The study showed that due to the hydrophobic nature of graphene when the
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textile electrode was exposed to sweat in maximum contact with the skin, its impedance,
and conductivity were not disturbed by human sweat. Therefore, this sportswear could
monitor high-quality ECG and heart rate under different conditions, such as rest, walking,
and running. Graphene-coated textile electrodes exhibit excellent washability and are more
suitable for long-term use than metal (Ag/AgCl) ECG electrodes, which are less flexible
and stretchable. However, due to the chemical inertness of the graphene surface and the
absence of dangling bonds to effectively control the channel carriers, the dielectric layer
should be thin by a few nanometers. Li et al. [130] achieved this by optimizing pre-H2O
treatment and employing a two-step temperature growth atomic layer deposition technique.
This way, they controlled the gas–solid physical adsorption between water molecules and
the graphene surface, directly coating a uniform and dense Al2O3 film on graphene with a
thickness of 5 nm. Consequently, the quality of the graphene–alumina was comparable to
the optimal quality of the silicon–alumina film. Raza et al. [131] designed graphene textile
(IGT) sensors by converting different polymer substrates into laser-induced graphene (LIG)
and applying them to volleyball sportswear. The results showed that IGT sensors had
four functions in volleyball sportswear: catch detection, finger contact foul detection when
blocking the ball, spike force measurement, and player position monitoring. It is anticipated
that graphene-wearable electronic sensors will improve the consistency between actual
sports and virtual activities while enhancing the ability to correct movements in virtual
space, thus providing unlimited opportunities for improving competitive levels.

5.2. Graphene Sneakers

Sports shoes can be divided into many types depending on the application require-
ments. Generally, polymer foams, especially ethylene vinyl acetates (EVA), are widely used
as midsole cushioning materials in these articles. Therefore, the key to further improving
the performance of sports shoes is to develop polymer foams with the required proper-
ties. Graphene is a carbon-based 2D material with potential advantages for improving
polymer matrices’ mechanical, electrical, thermal, and electromagnetic wave absorption
properties [132]. The molecular dynamics (MDs) modeling of the interaction between
the graphene and EVA matrix showed that adding graphene increases Young’s modu-
lus, the yield strength, and the glass transition temperature of the EVA matrix. When
the solid interfacial bonding between the graphene additive and the EVA matrix (the
graphene content is 9 wt.%) limits the mobility and flexibility of the EVA chain, the me-
chanical strength and thermal stability of EVA are improved [133]. Lunchev et al. [134]
mixed graphene contents in EVA foam with a twin-screw extruder. After mechanical prop-
erty analysis, graphene/EVA foam sports shoes were prepared with a sample containing
0.2 phr graphene. The results indicated that the graphene/EVA foam sneakers had a 40%
increase in wear resistance and a 30% increase in axial stiffness compared to the pure
EVA foam reference sneakers. This increase in the mechanical properties could effectively
improve propulsion during running. At the same time, the compression testing revealed
that the graphene/EVA foam sneakers were more flexible, which could help enhance their
appearance and service life.

5.3. Graphene Tennis Racket

The design of tennis rackets constantly seeks to provide athletes with competitiveness,
durability, and comfort; therefore, manufacturers are continually working to improve the
materials and designs of their products. Graphene/polymer composites are graphene-
dispersed in epoxy resin [135] and have higher strength and elastic modulus than ordinary
materials. These composite materials can significantly improve the tennis rackets’ stiffness
and strength. Moreover, graphene/polymer composites are generally less dense than
aluminum, have strength comparable to steel, and have a high elastic modulus and fatigue
strength [136], making them more suitable for tennis rackets. In 2013, HEAD launched a
new series of tennis rackets (YouTek Graphene Speed series) made of graphene/polymer
composites [137]. Young et al. [138] analyzed the microstructure of these rackets through
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combined optical microscopy and Raman spectroscopy. The study found that graphene-
based nanoparticles were utilized in the heads of the tennis rackets and the areas where
they connected to the handles, aiming to enhance the mechanical performance of these
regions. Thus, the excellent performance of graphene/polymer composites makes rackets
lighter and stiffer and lays a solid foundation for athletes to achieve good results.

5.4. Graphene Sportswear

Sports clothing must have a cooling function to rapidly release heat and sweat from
the body through different pathways, such as conduction, convection, evaporation, and
radiation [139], especially when there is a significant temperature difference between the
body and the surrounding environment or surfaces in direct contact [140]. Graphene has
become popular in textile applications, especially in lightweight sportswear, due to its
excellent properties, high thermal conductivity, mechanical strength, antistatic effect, UV
protection, electrical conductivity, and ease of functionalization. It has been used as a
conductive filler to increase heat transfer in sportswear textiles [141]. Brazilian sportswear
manufacturer BiaBrazil launched sportswear printed with graphene ink that is claimed to
improve moisture management and heat transfer by 18% [142].

In boxing, the wrong training method can easily cause physical injury. Therefore,
many sports protective clothing use high-performance materials to reduce the negative
impact of boxing training. Liu used the orthogonal test method [143] to study the effect
of materials and knitting structure on boxing clothing performance. Based on the char-
acteristics of boxing injury, the researcher(s) prepared seamless boxing clothing using a
graphene/polymer composite fiber. These graphene-based composite boxing suits were
more comfortable and robust than ordinary ones and had excellent impact resistance, pro-
tecting the athletes from potential injuries. Li et al. [144] developed a form of compression
clothing for running crafted from biomass-derived graphene-modified nylon fibers. The
findings of the study revealed that the graphene-modified nylon fibers demonstrated a
tensile strength of 4.52 cN/dtex, boasting superior mechanical properties compared to
conventional nylon fibers. Additionally, it exhibited an outstanding low-temperature
far-infrared (FIR) performance, with the FIR raising its temperature by 2.3 ◦C/30 s. This
feature can enhance blood circulation and improve bodily functions, thereby amplifying
athletic performance.

5.5. Graphene Coating

Anterior cruciate ligament (ACL) rupture is a common joint ligament injury, especially
in young athletic people aged 16 to 39 [145]. Due to the poor healing ability of ruptured
ACLs and the need for injured people to restore their function in time, artificial ligaments
are becoming increasingly popular. Graphene can potentially promote cell attachment,
proliferation, and differentiation and has shown excellent results in various biological
applications in vivo and in vitro. Graphene has been the focus of tissue repair applications
due to its excellent mechanical properties. Studies have shown that graphene can pro-
mote the differentiation of human bone marrow mesenchymal stem cells into osteoblasts
while promoting the differentiation of human neural stem cells into neurons [146,147].
Wang et al. [148] investigated the effect of graphene coating on the bioactivity of PET-based
artificial ligaments (PET-ALS). The results showed that bone tunnel healing rates were
significantly accelerated after graphene-coated grafts were implanted in bone tunnels.
Therefore, graphene-coated grafts can promote early recovery of ACL reconstruction and
show great potential in enhancing the biological activity of the material surface.
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5.6. Challenges of Biomass Waste Graphene in Sports Applications

Three-dimensional nanostructured graphene not only inherits some unique properties
of two-dimensional graphene but also offers numerous novel features, such as a boosted
surface area, rapid gas diffusion, and abundant reaction sites [149–151]. Its applications
in the sports field are steadily expanding, encompassing enhancements in sports equip-
ment performance and monitoring athletes’ physiological indicators. However, certain
biomass wastes contain metal ions such as potassium and sodium, which can complicate
the exfoliation process when deriving biomass graphene [152]. At the same time, varying
temperatures and lignocellulose compositions can induce defects in the biowaste product
composition, degradation rate, and other defects. Consequently, ensuring stability in the
properties of the biowaste precursor materials becomes a key challenge [153]. In addition,
heterogeneous waste precursor materials often contain small amounts of organic or inor-
ganic impurities, necessitating suitable pretreatment [154]. Therefore, at an industrial scale,
the costs of pretreatment and the requirements for supply chain stability may impede the
large-scale production of biomass waste-derived graphene in the sports sector.

However, although graphene derived from biomass waste has not yet been produced
on an industrial scale in the sports sector, its conversion to graphene offers potential benefits
over traditional methods. These include reduced emissions of exhaust gases, wastewater,
and solid waste to some extent, as well as decreased energy consumption [155], which
further promote the development of the green sports industry.

6. Conclusions

This paper discusses the properties, production methods, and different biomass waste
sources of graphene. Graphene has excellent electrical conductivity, biocompatibility, and
mechanical properties compared to traditional carbon materials. Its application advantages
in sports are mainly reflected in manufacturing lightweight and robust sports equipment
and improving athletes’ comfort. At the same time, it has the potential to study the
physiological mechanism of athletes deeply and promote training and rehabilitation. In
addition, graphene is expected to shine in ice and snow sports based on its excellent thermal
conductivity. Although graphene prepared from biomass waste is similar to graphene from
traditional sources, the quality of the graphene produced is compromised due to most of
the biological waste being heterogeneous in origin, thus limiting its large-scale application.
Future research should focus on the sustainability and scalability of graphene production
from natural resources. Graphene and its derivatives with superior performance can be
produced on a large scale by improving the processing techniques and standardizing the
sources and characteristics of biomass waste to meet the demands of various applications,
including sports equipment manufacturing. Although graphene based on biomass waste is
of poor quality, it still shows great potential for various applications.
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