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Abstract: An enzyme-promoted addition of nitromethane to the appropriate phosphorylated imine
(aza-Henry reaction) intended to be used in the synthesis of the title phosphoemeriamine, a phospha-
analog of emeriamine (aminocarnitine), failed due to the tautomerization of the imine to the cor-
responding enamine. Nevertheless, both enantiomers of phosphoemeriamine were synthesized
in high yield and enantiomeric purity using another chemoenzymatic approach, starting with a
crucial step involving a CAL-B-mediated acetylation of the appropriate racemic precursor—diethyl
2-amino-3-dimethylaminopropylphosphonate—under kinetic resolution conditions. The enzymatic
reaction was very efficient and provided each enantiomeric product in acceptable yield and with
enantiomeric excess of 91 and 92%. The following appropriate chemical transformations led to the
desired enantiomers of phosphoemeriamine in the form of phosphoemeriamine sesquichloride with
enantiomeric excess up to 90%.

Keywords: chemoenzymatic synthesis; phosphoemeriamine; enzymatic kinetic resolution; chemical
correlation; enantiomeric excess

1. Introduction

Continuing our interest in the enzyme catalytic promiscuity [1], i.e., the ability of a sin-
gle active site of the enzyme to catalyze more than one reaction, particularly those which are
different from that designed in studies published in Nature [2–6], we have recently reported
on our investigations of the enzyme-promoted addition of nitromethane to aldimines (i.e.,
the aza-Henry reaction). We succeeded in obtaining, for the first time, the desired products
of this type of addition 3 in the yields of 14–81%. The most efficient enzymes turned out
to be lipase TL from Pseudomonas stutzeri and oxynitrilase from Arabidopsis thaliana. We
have expected that the compounds 3 will be produced with high enantiomeric excess.
However, much to our disappointment, all the reactions investigated turned out to be
non-stereoselective (Scheme 1) [7].
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Scheme 1. Enzyme-promoted aza-Henry reaction.

Although the above results have not been fully satisfactory, we have decided to
apply the newly elaborated procedure in the synthesis of a particular diaminophospho-
nic acid, namely phosphoemeriamine 8, a phospha-analog of emeriamine (aminocarni-
tine). The latter is a natural amino acid showing interesting biological properties. It be-
haves as an inhibitor of fatty acid oxidation and acts as a hypoglycemic and antiketogenic
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agent [8–11]. It should be stressed that both enantiomers of phosphoemeriamine have so far
been only synthesized ones, using an enantiomeric sulfinyl group as a chiral auxiliary. This
methodology was developed in our department and has proven to be very efficient [8–11].
The synthetic strategy was based on a highly diastereoselective addition of the O,O-diethyl
methylphosphonate carbanion to (S)-N-(p-toluenesulfinyl)cinnamaldimine, followed by
isolation of the major diastereoisomeric β-amino adduct and its further conversion to the
desired target through proper transformations. However, to obtain the opposite enantiomer,
it would be necessary to apply the (R) enantiomer of the starting aldimine and to repeat
the whole troublesome transformation procedures. To overcome these obstacles, we have
decided to develop an environmentally friendly, chemoenzymatic methodology, which
would use the approach shown above.

2. Results and Discussion

Our plan to accomplish the synthesis of phosphoemeriamine based on the aza-Henry
reaction is shown in Scheme 2. Thus, N-p-toluenesulfonyl-2-diethoxyphosphorylethanimine
4 was planned to be treated with nitromethane in the presence of various enzymes (which
were reported efficient in the cited publication [7]).
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First, we attempted to synthesize substrate imine 4 via condensation of α-diethoxy 
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mation since it easily underwent tautomerization to the corresponding enamine 4a, thus 
making the appropriate addition impossible (Scheme 3). The same transformation hap-
pened with the N-toluenesulfinyl analog of 4 since it behaved in a similar way. 
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N-p-toluenesulfonyl-2-diethoxyphosphorylethanimine 4. * denotes chirality centre.

First, we attempted to synthesize substrate imine 4 via condensation of α-diethoxy
phosphorylacetaldehyde with p-toluenesulfonamide, according to a procedure in the
literature [12]. However, this derivative turned out to be useless in the envisaged trans-
formation since it easily underwent tautomerization to the corresponding enamine 4a,
thus making the appropriate addition impossible (Scheme 3). The same transformation
happened with the N-toluenesulfinyl analog of 4 since it behaved in a similar way.
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In continuing our efforts, we decided to employ another chemoenzymatic approach.
The latter is a recently and widely used application in asymmetric synthesis [13,14]. One of
the crucial parts of this approach would comprise a kinetic resolution of an appropriate
racemic precursor [15,16]. Noteworthy, a similar approach was successfully applied in our
laboratory earlier in the synthesis of enantiomers of phosphocarnitine [17].
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Thus, we chose racemic diethyl 2-amino-3-N,N-dimethylaminopropylphosphonate 12
as a substrate in the lipase-promoted acetylation under kinetic resolution conditions. It was
synthesized by us starting from diethyl 2-hydroxy-3-N,N-dimethylaminopropylphosphonate
9 [18]. The ensuing mesylation resulted in 10 and followed by its reaction with sodium azide
gave diethyl 2-azido-3-N,N-dimethylaminopropylphosphonate 11. The latter was subjected to
the Staudinger reaction with triphenylphosphine to furnish the desired racemic substrate 12
(Scheme 4).
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The kinetic resolution of rac-12 was achieved via its N-acetylation with ethyl acetate in
the presence of various hydrolytic enzymes [e.g., CAL-B (Novozym 435)—lipase acrylic
resin from Candida antarctica, PFL—lipase from Pseudomonas fluorescens, TL—lipase from
Pseudomonas stutzeri and others], of which lipase from Candida antarctica, CAL-B (Novozym
435) proved most efficient (Scheme 5) [19–21].
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Scheme 5. Enzymatic kinetic resolution of rac-12.

This approach turned out to be successful and both the recovered substrate—amine
(+)-12 and the acetylation product—N-(diethoxyphosphoryl)methyl-(N′,N′-dimethyl-
aminomethyl)acetamide (−)-13 were obtained in 30% and 42% yield, respectively, and
with enantiomeric excess up to 92% (e.r. 96:4) and 91% (e.r. 95.5:4.5), respectively. Their
absolute configurations were not determined at this stage (vide infra), but the recovered
substrate (+)-12 was chemically acetylated to give (+)-13 exhibiting almost the same value
(though obviously of the opposite sign) of optical rotation as (−)-13, which could be
taken as proof of the efficiency of the kinetic resolution (Scheme 5). The enantiomeric
excess of the recovered amine (+)-12 was determined by 31P NMR using optically pure
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(+)-(R)-t-butylphenylphosphinothioic acid as a chiral solvating agent [22,23]. In turn, the
enantiomeric excess of the acetylation product, acetamide 13, was determined on the basis
of its optical rotation and via a chemical correlation shown in Scheme 5.

The ensuing chemical transformations of each enantiomer of the acetamide 13
were as follows (Scheme 6). The subsequent methylation of the terminal tertiary amino
group furnished the final phosphoemeriamine precursor, trimethyl (2-acetamido)-
(3-diethoxyphosphoryl)-propylammonium iodide 14. It was subjected to hydrolysis, using
the procedure described in a previous publication [11] to give the desired products 8. It
must be stressed that the enantiomers of 8 were obtained in the form of the complexes
in which two molecules of phosphoemeriamine were complexed with one additional
chloride anion, indicated here as 8a, which is in accordance with the result described
earlier [11]. Hence, in one molecule of the product, prepared as above, the ratio between
the phosphoemeriamine cation and the chloride anion is 1:1.5; thus, the final structure may
be described as phosphoemeriamine sesquichloride 8a. In this way, each enantiomer of
phosphoemeriamine sesquichloride 8a was obtained and characterized and their absolute
configurations were ascribed by comparing the sign of their optical rotation with that
described previously (for the (−)-(R) enantiomer of >99% ee, [α]D = − 9.2) [11], although a
partial racemization was observed in our work, most probably at the stage of the acidic
hydrolysis of 14. The determination of the absolute configuration of the final products
enabled us to also determine absolute configurations of the intermediates 12, 13 and 14
since their transformations into phosphoemeriamine sesquichloride proceeded without
involvement of the stereogenic center (Schemes 5 and 6).
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3. Experimental Section
3.1. General Information

All solvents were dried and distilled prior to use. The starting materials and enzymes
were purchased from Merck (Poznan, Poland), Sigma-Aldrich (Poznań Poland, TCI Chem-
icals (Trimen, Łódź, Poland) or Fluorochem (Hadfield, UK). The synthesized products
were purified by column chromatography on a Merck 60 silica gel (0.063–0.200 mm) or
preparative plate chromatography using a Merck 60 F254 silica gel plate (2.5 mm). TLC
was performed on a Merck 60 F254 silica gel plate (0.25 mm). All the reactions were run
in duplicate. The NMR spectra were recorded in CDCl3 or D2O using a Bruker AV III 500
spectrometer (Poznań, Poland) at 500 MHz (1H), 126 MHz (13C) and 202 MHz (31P). Mass
spectra, including HRMS, were measured on a Finnigan MAT instrument (Bremen, Ger-
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many) Optical rotations were measured on a Perkin-Elmer 241MC polarimeter (Uberlingen,
Germany).

3.2. Diethyl 2-Azido-3-N,N-dimethyloaminopropylphosphonate 11

To the solution of diethyl 2-hydroxy-3-N,N-dimethyloaminopropylposphonate 9 (1 g,
4.16 mmol), in dry methylene chloride (5 mL) was added at −10 ◦C along with triethylamine
(0.7 mL) and mesyl chloride (0.518 g, 350 µL, 4.4 mmol). The reaction mixture was stirred
at this temperature for 1 h and, without separation of the mesyl derivative 10, sodium
azide (0.546 g, 8.2 mmol) was added. After stirring for 24 h at room temperature, water
(5 mL) was added and the organic fraction was separated and dried over MgSO4. The crude
reaction mixture was purified using column chromatography (silica gel, CH2Cl2:MeOH
20:1) to give 11. Yield 0.7 g, 63%.
1H NMR (CDCl3): δ = 1.29 (t, J = 7 Hz, 6H, CH3CH2); 1.38 ÷ 1.73 (m, 1H, CH2P);
1.83 ÷ 2.03 (m, 1H, CH2P); 2.23 (s, 6H, NMe2); 3.02 ÷ 3.18 (m, 1H, CHNMe2);
3.29 ÷ 3.48 (m, 2H, CH2N); 3.99 ÷ 4.13 (q, J = 7 Hz, 4H, CH3CH2).
31P NMR (CDCl3): δ = 30.1.
HRMS (FAB) calcd for C9H22P1N4O3 (M + 1); 265.1429 found 265.1430.

3.3. Diethyl 2-Amino-3-N,N-dimethyloaminopropylphosphonate Rac-12

To the azide 11 (0.3 g, 1.36 mmol) dissolved, benzene (5 mL) was added triphenylphos-
phine (0.325 g, 1.24 mmol) and the solution was stirred for 1 h at room temperature, then
for 4 h at reflux. After cooling to room temperature, water (5 mL) was added, stirred
intensively for 1 h and the water fraction separated (it was repeated 3 times). The water
fractions were collected and evaporated, the residue formed was dissolved in methylene
chloride (5 mL) and dried over MgSO4. The crude product was purified using column
chromatography (silica gel, CH2Cl2: MeOH 10:1, then MeOH). Yield 0.122 g, 45%.
1H NMR (CDCl3): δ = 1.29 (t, J = 7 Hz, 6H, CH3CH2); 1.38 ÷ 1.55 (m, 1H, PCH); 1.76 ÷ 2.00
(m, 2H, CHP, NH2); 2.16 (s, 6H, N(CH3)2; 2.54 ÷ 2.60 (m, 1H, CHNH2); 2.78 ÷ 2.99 (m, 2H,
CH2N); (q, 4H, CH3CH2).
31P NMR (CDCl3): δ = 31.7.
13C NMR (CDCl3): δ = 16.4, 21.1 (d, J = 137.7 Hz, PCH2); 39.6; 43.4; 61.4.
HRMS (FAB) calcd for C9H24P1N2O3 (M + 1); 239.1525 found 239.15344.

3.4. N-(Diethoxyphosphoryl)methyl-(N′,N′-dimethylaminomethyl)acetamide (+)–(R)-13

To the solution of an enantiomerically enriched diethyl 2-amino-3-N,N-
dimethyloaminopropylphosphonate (+)-(R)-12 (0.1 g, 0.42 mmol) and triethylamine
(0.043 g, 0.42 mmol) in THF (10 mL) at −78 ◦C and under nitrogen, acetyl chloride (0.033 g,
0.42 mmol) was added dropwise. The reaction mixture was stirred at this temperature for
4 h. After warming to room temperature, water (5 mL) was added, product was extracted
with CH2Cl2 (3 × 5 mL) and dried over MgSO4, to give (+)-(R)-13. Yield 0.095 g, 80%,
[α]D = −7.8, c = 1, CH2Cl2.
1H NMR (CDCl3): δ = 1.31 (t, J = 7 Hz, 6H, CH3CH2); 1.40 ÷ 1.64 (m, 1H, CHP); 1.90 ÷ 2.10
(m, 1H, CHP); 1.95 (s, 3H, CH3O); 2.20 (s, 6H, NCH3)2); 2.83 ÷ 3.31 (m, 2H, CH2);
3.56 ÷ 3.70 (m, 1H, CH); 4.01 ÷ 4.15 (m, 4H, CH3CH2); 6.53 (bs, 1H, NHCO).
31P NMR (CDCl3): δ = 30.9.
13C NMR (CDCl3): δ = 16.3, 22.5 (d, J = 138.15 Hz, PCH2); 23.0; 39.6; 40.9; 52.7; 57.3; 61.8;
169.9 (CO).
HRMS (FAB): calcd for C11H25P1N2O4 (M + 1); 281.1628 found 281.1630.

3.5. Kinetic Enzymatic Resolution of Diethyl 2-Amino-3-N,N-dimethylaminopropyl-phosphonate
Rac-12

To the aminophosphonate rac-12 (35 mg, 1.47 mmol) in CH2Cl2 (6 mL), ethyl acetate
(3.5 mL) and CAL-B (70 mg) were added and the suspension was warmed to 35 ◦C and
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vigorously stirred. The reaction progress was controlled using the 31P NMR technique.
After the conversion reached 50%, the enzyme was filtered off and the solvent evapo-
rated. The crude reaction mixture was separated using flash chromatography (silica gel,
CH2Cl2:MeOH 5:1, then MeOH) to give 17.3 mg (42.1%) of (−)-13, [α]D = −7.6, c = 1,
CH2Cl2 and 10.1 mg (30%) of (+)-12, [α]D = +1.4, c = 1, CH2Cl2 (both yield values with
respect to the 50% yields of the substrate and the product, which can be produced in the
enzymatic kinetic resolution).

3.6. Trimethyl-(3-diethoxyphosphoryl-2-acetamido)propylammonium Iodide 14 (S or R)

To a solution of 13 (0.1 g, 0.36 mmol) prepared as above in acetone (5 mL), methyl
iodide (0.071 g, 0.5 mmol) was added dropwise under nitrogen. The reaction mixture
was stirred at room temperature for 4 h. Acetone was evaporated, water (5 mL) added
and then extracted with CH2Cl2 (3 × 2 mL). The water phase was evaporated and the
oily residue was dissolved in CH2Cl2 (5 mL). The organic solution was dried over MgSO4
and evaporated to afford the crude product (a light brown solid), which upon column
chromatography (CH2Cl2:MeOH 20:1), resulted in the desired iodide 14 as a yellowish
solid. Yield 0.063 g, 60%. (+)-(S)-14: [α]D = +6.3, c = 1, CH2Cl2; (−)-(R)-14: [α]D = −6.6,
c = 1, CH2Cl2.
1H NMR (D2O): δ = 1.27 (t, J = 7 Hz, 6H, CH3CH2); 1.96 (s, 3H, CH3CO); 2.60 ÷ 2.80 (m, 2H,
PCH2); 3.11 (s, 9H, NCH3); 3.58 ÷ 3.82 (m, 3H, CH2CH); 4.13 (q, J = 7 Hz, 4H, CH3CH2).
31P NMR (D2O): δ = 26.7.
13C NMR (D2O): δ = 15.6; 22.0; 33.9 (d, J = 143.1 Hz); 39.0; 51.7; 64.2; 68.0; 174.7 (C=O).
HRMS (FAB) calcd for C12H28P1N2O4 295.17924 found 295.1787.

3.7. 2-Amino-3-phosphoryl-1-trimethylammonium (Emeriamine) Sesquichloride 8a (R or S)

Ammonium iodide 14 (0.063 g, 0.21 mmol) was refluxed with conc. hydrochloric acid
(3 mL) and acetic acid (1 mL) for 5 h. Then, water (15 mL) was added and the aqueous
solution was extracted with CH2Cl2 (4 × 3 mL). The water phase was evaporated to give a
light-yellow oil. It was dissolved in EtOH (2 mL) and neutralized with propylene oxide.
The white solid that had formed was filtered off, washed with EtOH (2 × 1 mL) and Et2O
(3 mL), and dried over P2O5, affording the title product 8 in the form of white crystals.
Yield 0.0287g, 73%. (+)-(S)-8a: [α]D = +8.1, c = 1, CH2Cl2; (−)-(R)-8a: [α]D = −8.3, c = 1,
CH2Cl2.
1H NMR (D2O): δ = 4.14 ÷ 4.00 (m, 1H, CHNH2), 3.90 ÷ 3.66 (m, 2H, CH2), 3.18 (s, 9H,
(CH3)3N), 2.11 ÷ 1.97 (m, 2H, CH2P).
31P NMR (D2O): δ = 16.5.
13C NMR (D2O): δ = 66.4, 52.3, 41.9, 29.9 (d, JPC = 129.8 Hz, PCH2).
HRMS: calcd for C6H18N2PO2 [M+] 197.1051 found 197.1055.
Elemental analysis for C6H18Cl1.5N2O3P (250.37): calcd for C 28.81, H 7.26, N 11.21; found
C 29.30, H 7.71, N 10.85.

4. Conclusions

An attempt to synthesize enantiomeric phosphoemeriamine via the enzyme-
promoted addition of nitromethane to aldimines (aza-Henry reaction) failed due to the
tautomerization of the appropriate phosphorylated imine to the corresponding enam-
ine. However, another chemoenzymatic approach, in which the crucial step involved a
CAL-B-mediated acetylation of the appropriate racemic precursor—diethyl 2-amino-3-
dimethylaminopropylphosphonate under kinetic resolution conditions—proved to be very
efficient and provided each enantiomeric product (the starting amine and the acetamide
formed) in acceptable yield and with enantiomeric excesses up to 92%. The following ap-
propriate chemical transformations led to the desired enantiomers of phosphoemeriamine
in the form of their sesquichlorides with ee up to 90%.
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