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Abstract: Due to boron’s metalloid properties, aromatic boron reagents are prevalent synthetic inter-
mediates. The direct borylation of aryl C-H bonds for producing aromatic boron compounds offers an
appealing, one-step solution. Despite significant advances in this field, achieving regioselective aryl
C-H bond borylation using simple and readily available starting materials still remains a challenge.
In this work, we attempted to enhance the reactivity of the electron-donor-acceptor (EDA) complex
by selecting different bases to replace the organic base (NEt3) used in our previous research. To our
delight, when using NH4HCO3 as the base, we have achieved a mild visible-light-mediated aromatic
C-H bond borylation reaction with exceptional regioselectivity (rr > 40:1 to single isomers). Compared
with our previous borylation methodologies, this protocol provides a more efficient and broader
scope for aryl C-H bond borylation through the use of N-Bromosuccinimide. The protocol’s good
functional-group tolerance and excellent regioselectivity enable the functionalization of a variety of
biologically relevant compounds and novel cascade transformations. Mechanistic experiments and
theoretical calculations conducted in this study have indicated that, for certain arenes, the aryl C-H
bond borylation might proceed through a new reaction mechanism, which involves the formation of
a novel transient EDA complex.

Keywords: photocatalysis; C-H bond; borylation; electron-donor-acceptor; B2Pin2; isoquinoline

1. Introduction

Aromatic boron reagents are widely used as synthetic intermediates in the produc-
tion of pharmaceuticals and natural products through Suzuki–Miyaura/Chan-Lam cross-
coupling [1–5], oxidation [6], halogenation [7,8] and homologation [9] benefiting from the
unique metalloid properties of boron [10–12]. In principle, the direct borylation of aryl
C-H bonds for producing aromatic boron compounds offers an appealing, one-step solu-
tion compared to traditional strategies [13–16]; however, this approach has proven to be
quite challenging.

Transition metal-promoted directed C-H bond activation, especially using Ir/Rh, has
emerged as a powerful tool for the construction of C-B bonds [17–19] (Scheme 1a), commonly
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relying on precious metal catalysts and appropriate directing groups (DG). Moreover, the
presence of multiple functional groups in complex bioactive molecules often poses a challenge
for their late-stage borylation, particularly under harsh reaction conditions.
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Ritter developed a series of elegant late-stage C-H bond functionalization proto-
cols [20–22] through site-selective thianthrenation, utilizing thianthrene S-oxide as a
versatile pre-functionalization reagent. Triggered by a single electron transfer (SET)
progress, the C-S bond of aryl thianthrenium salts can be cleaved to form thianthrene
and aryl radical [23,24], which is then spontaneously captured by the diboron reagent
(Scheme 1b) [25]. Despite these pioneering advancements, achieving regioselective aryl
C-H bond borylation using simple and readily available starting materials still remains
a challenge.

In recent years, photocatalysis [26–31] using the electron-donor-acceptor (EDA) com-
plex [32–35] has gained popularity, offering new methods for radical-mediated transfor-
mations. Due to boron’s metalloid properties [10–12], there is increasing interest in using
boron reagents as alternatives to prevalent transition metals for photocatalysis. The notably
high reactivity of diboron reagents makes them excellent precursors for constructing the
EDA complex, as they can effectively combine with electron donor partners, such as amines
and N-containing heterocycles (NCHs) (Scheme 1c). Glorius [36] disclosed a photoinduced
decarboxylative borylation of aryl N-hydroxyphthalimide esters via the use of Katritzky
salts as acceptor in the EDA complex. Aggarwal [37] proposed an EDA complex formed by
2-iodophrnyl thiocarbonate, bis(pinacolato)diboron (B2Pin2) and N,N-dimethylformamide,
resulting in the formation of boronic esters with high stereocontrol. König [38] achieved
an ipso-borylation of substituted arenes by utilizing an EDA complex formed between
thiolate, B2Pin2 and boryl anion activated substrates.

Our group has recently described several strategies for generating aryl radicals under
visible-light catalysis [39–41], and our previous studies have demonstrated that the reduc-
tive coupling of isoquinoline and B2Pin2 can produce a dimer. This dimer can coordinate
with an organic base (NEt3) in situ to form an EDA complex (Scheme 1d). Under visible-
light irradiation, the excited state of the in situ-formed EDA complex is a highly active
reductant and can facilitate SET with aryl halides to produce aryl radical intermediates [40].

Inspired by our earlier work and other elegant conceptions [42–45], we wonder
whether selecting different bases could facilitate the photoinduced formation of a transient
EDA complex between the in situ-formed EDA complex and certain arenes through π–π
interaction. This transient EDA complex could then undergo direct C-H borylation upon
treatment with regioselective oxidative additives (e.g., N-Halosuccinimides/NXS: X = Cl,
Br, I) [46,47] (Scheme 1e).

Our mechanistic experiments and theoretical calculations in this study have indicated
that, when using NH4HCO3 as the base, certain arenes may indeed yield borylation
products through the transient EDA complex formation pathway. Furthermore, the yield is
significantly increased compared to the organic base (NEt3) used in our previous work [40].
This research holds the potential to enhance the highly efficient, site-selective, direct C-H
borylation of more challenging arenes.

2. Results
2.1. Optimization of Reaction Conditions for the Aryl C-H Bond Borylation

We optimized the reaction conditions for the borylation of methyl 4-amino-2-methoxy-
benzoate using a mixture of B2Pin2, isoquinoline (a N-containing heterocycle, NCH) and
a base under visible-light irradiation (Table 1). Extensive screening of the reaction condi-
tions revealed that treating methyl 4-amino-2-methoxybenzoate with NBS (0.22 mmol),
isoquinoline (20 mol%), B2Pin2 (0.8 mmol), and NH4HCO3 in acetonitrile resulted in the
borylated product with a 72% NMR yield (68% isolated yield, entry 1). The choice of the
base had a great influence on the efficiency of borylation (entries 2–5). Organic bases such
as N,N-Diisopropylethylamine (DIEPA) and triethylamine (NEt3) did not perform well
under standard condition compared to NH4HCO3 (see Supporting Information Table S1).
These results indicate that using NH4HCO3 as a base provides a clear advantage over
our previous work using organic base (NEt3) [40]. A total of 2.0 eq NBS led to reduced
quantities of the desired product (54%; entry 6). Not surprisingly, no desired product was
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observed without the addition of NBS (entry 7). Finally, the photochemical nature of this
borylation strategy was confirmed, as the reaction did not occur either in the absence of
light (entry 8) or in the absence of the EDA complex precursor (entry 9).

Table 1. Optimization of the reaction conditions [a].
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[a] Reactions were performed with 0.2 mmol methyl 4-amino-2-methoxybenzoate, 1.0 mmol base, 20 mol% N-
containing heterocycle (NCH), 0.8 mmol B2Pin2, and 0.22 mmol NBS in 0.5 mL acetonitrile under 390 nm LEDs
irradiation for 36 h. [b] NMR yields using pyrazine or hexamethyl disiloxane as internal standard. [c] Isolated yields.

2.2. Substrate Scope of the Photoinduced Aryl C-H Borylation

Having demonstrated the validity of our proposal, we turned our attention to the
substrate scope of arenes utilizing NH4HCO3 as the additive. A variety of aromatic
substrates were subjected to the C-H borylation procedure using B2Pin2 as the aryl radical
trap in the photochemical progress (Figure 1).

Phenol, aniline, and their electron donating/withdrawing group-protected derivatives
(1–14) were smoothly converted to the corresponding arylboronates in moderate-to-good
yields (30–76%), with excellent selectivity for the para-selective products (rr > 40:1 for
single isomers). Heterocycles such as morpholine (15) and pyrrolidine (16) were also
competent substrates.

Electron-rich and electron-deficient group di-substituted arenes, such as 1,2-, 1,3-,
and 1,4-substituted arenes can also undergo the C-H borylation reaction in moderate-
to-good yields (17–32), showcasing the compatibility of our method with a broad array
of functionalities (e.g., difluoromethoxyl-, trifluoromethyl-, trifluoromethoxy-, cyano-,
methoxycarbonyl-, cyclohexyl- and naked hydroxyl/amino). A dual borylation product
(28) was successfully synthesized using boronic ester aniline. Medically relevant fluorine-
containing anilines led to C-H borylation products with high efficiencies (21, 23–26, 29).

Of particular note is the capability of this method to regioselectively and efficiently
construct the C-B bond from the hindered aryl C-H bond, as shown by the reaction
of substrates 33–44, yielding the desired borylation products in good yield and with
excellent chemoselectivities.

Remarkably, the borylation reaction of bicyclic aromatic substrates, such as 2,3-
dihydrobenzofuran (45), chromane (46), and 1,2,3,4-tetrahydroisoquinoline derivative (47),
all proceeded smoothly and afforded the corresponding borylation products as single regio-
isomers in accordance with the high reactivity of these positions for
electrophilic substitution.

However, thioanisole and strong electron-withdrawing-group substituted arenes were
not tolerated. Methyl benzoate and benzonitrile did not deliver the desired products under
standard reaction conditions.
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The regioselectivity of the C-H borylation reaction is governed by both the electronic
and steric effects of the substituents, similar to the nucleophilic substitution reactions
induced by triptycenyl sulfide, as reported by Miura and co-workers [46].

2.3. Late-Stage Functionalization and Novel Cascade Transformation

To assess the applicability of this aryl C-H borylation strategy for late-stage functional-
ization, a variety of representative active pharmaceutical ingredients (APIs) and natural
products, including anaesthesine, gemfibrozil, levodropropizine, atomoxetine, and natural
phenol thymol, were subjected to this protocol. These compounds were found to be toler-
ant in this protocol, yielding the corresponding borylated derivatives in good yields in a
single-isomer manner (Figure 2). These transformations accommodated various functional
groups, including sensitive esters, amides, and N-heterocycles, highlighting the mildness
and practicality of this protocol. Notably, this methodology also worked well with a series
of diboron reagents to produce gemfibrozil derivatives A–D with useful efficiencies (e.g.,
D, 52% yield).
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To further demonstrate the utility of this novel borylation protocol (Figure 3), more
challenging cascade transformations were studied. Reductive cleavages of unusual N-
N/C-O bonds and detosylation followed by direct C-H bond borylation under standard
conditions afforded the borylated aniline and phenol derivatives with good efficiencies.
Each of these transformations is highly important, as site-selective cascade transformation
of the aromatic C-H bond remains a major challenge.
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Figure 3. Novel cascade transformation. Reactions were performed with 0.2 mmol substrate, 1.0 mmol
NH4HCO3, 20 mol% N-containing heterocycle (NCH), 0.8 mmol B2Pin2, 0.22 mmol NBS in 0.5 mL
acetonitrile under 390 nm LEDs irradiation for 36 h, isolated yield. (A) Reductive C-O bond cleavage
and C-H bond borylation. (B) Reductive N-N bond cleavage and C-H bond borylation. (C) Reductive
N-S bond cleavage and C-H bond borylation.

3. Discussion

To gain more insight into the mechanism for this C-H bond borylation reaction, mech-
anistic and computational experiments were performed (Scheme 2). Scheme 2a shows that
the N-methylacetanilide substrate cannot directly undergo the bromination reaction with
NBS to afford N-(4-Bromophenyl)-N-methylacetamide without photoirradiation, and the
borylation also cannot occur. However, the borylation of the N-methylacetanilide can occur
under the standard condition, as well as under the condition where isoquinoline is replaced
by complex A (complex A is formed by isoquinoline and B2Pin2) (Scheme 2b). Based on
these observations, we infer that the arene substrate may interact with complex B (complex
A + base) to form a new transient EDA complex, thereby being excited by visible light to
increase the electron density of the arene, and then react with NBS and the diboron reagent
to produce the borylation product. Density functional theory (DFT) calculations [48] show
that the Gibbs free energy is uphill by 4.3 kcal/mol when complex B interacts with arene
substrate via π–π stacking, indicating that the existence of the transient EDA complex is
feasible (see Scheme 2c). Furthermore, the time-dependent DFT (TD-DFT) method was
used to study the charge-transfer-type transitions of the transient EDA complex. The
involved molecular orbitals (HOMO-1, HOMO and LUMO + 2) are depicted in Scheme 2d.
Two significant excitations (HOMO-1 to LUMO + 2, and HOMO to LUMO + 2) can be
assigned to the corresponding charge transfer from the complex B to the substrate, and the
arene substrate with more electron density will facilitate the subsequent transformations.
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Scheme 2. Mechanistic and computational experiments: (a) mechanistic experiments using isoquino-
line (0.04 mmol)/4-N-methylacetanilide (0.2 mmol)/NH4HCO3 (1.0 mmol)/B2Pin2 (0.8 mmol)/NBS
(0.22 mmol) without 390 nm LEDs irradiation for 72 h; (b) mechanistic experiments using complex
A (0.2 mmol)/4-N-methylacetanilide (0.2 mmol)/NH4HCO3 (1.0 mmol)/B2Pin2 (0.6 mmol)/NBS
(0.22 mmol) with 2 × 390 nm LEDs irradiation for 72 h; (c) the binding Gibbs free energy between
complex B and the arene substrate to form transient EDA complex; (d) TDDFT-computed donor and
acceptor orbitals of charge transfer transitions in the transient EDA complex.

With these mechanistic insights, as well as the related literature, a plausible mech-
anism is proposed in Scheme 3. Complex A, generated through the reductive coupling
of isoquinoline and B2Pin2, coordinates with the substrate and base to afford a transient
EDA complex, which is then excited by 390 nm light, yielding a highly reactive excited
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state. Oxidation by NBS may afford N-(4-Bromophenyl)-N-methylacetamide C (path b in
Scheme 3) or directly afford aryl radical D (path a in Scheme 3) and regenerate complex
A. Subsequently, aryl radical D could be trapped by the diboron reagent, furnishing the
desired borylation products.
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Compared with our previous reports of borylation methodologies, this concise strategy
provides more efficient and a broader scope for aryl C-H bond borylation, achieved directly
from simple arenes rather than the two-step one-pot synthesis from electron-rich arenes,
presenting a new reaction mechanism.

4. Methods and Materials
4.1. Photo Reaction Setup

Irradiation of the photochemical reaction was carried out using Kessil PR160L-390 nm
ultraviolet lamps from both sides at 1–2 cm, with an average intensity of 159 mW/cm2

(measured from 6 cm distance). Reactions were cooled using a 20 W clamp fan placed
on the top of the reactor. Stirring was achieved by placing the assembled reactor on IKA
C-MAG HS 7 control magnetic stir bars. All reactions were performed in 2 mL vial and
were run under air.

4.2. Thin-Layer Chromatography (TLC)

Analytical TLC was performed on silica gel GF254 plates. The TLC plates were visual-
ized by ultraviolet light (λ = 254 nm). Organic solutions were concentrated using a rotary
evaporator with a diaphragm vacuum pump purchased from EYELA and Heidolph. Fresh
silica-gel chromatography was performed using 300–400 mesh silica gel (Qingdao, China).

4.3. Nuclear Magnetic Resonance Spectroscopy (NMR)

Proton and carbon magnetic resonance spectra (1H NMR, 13C NMR, 11B NMR and
19F NMR) were recorded on a Bruker AVANCE III (1H NMR at 400 MHz or 600 MHz, 13C
NMR at 101 MHz or 151 MHz, 11B NMR at 128 MHz or 193 MHz, 19F NMR at 377 MHz)
spectrometer, with solvent resonance as the internal standard (1H NMR: CDCl3 at 7.26 ppm;
13C NMR: CDCl3 at 77.16 ppm). NMR yield using pyrazine or hexamethyldisiloxane
(HMDSO) was used as the internal standard.
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4.4. Materials

Commercially available reagents were purchased from Sigma-Aldrich, Adamas-beta,
TCI, and Bidepharm were used as received unless otherwise noted. Super Dry solvents such
as acetonitrile (AcN), dimethylformamide (DMF), tetrahydrofuran (THF), dichloromethane
(DCM), 1,2-dichloroethane (DCE) and dimethyl sulfoxide (DMSO) were purchased from
Adamas-beta. Other common solvents such as petroleum ether (PE) and ethyl acetate
(EtOAc) were rectification grade for flash chromatography on silica gel, purchased from
General-reagent.

5. Conclusions

In summary, we have developed a novel diboron-type EDA-complex catalyzed C-H
borylation of arenes, which occurs under ambient temperature and mild conditions. This
operationally simple protocol exhibits exceptional regioselectivity and tolerates a wide
range of functional groups, allowing convenient modification of complex natural products
and APIs. Furthermore, the key role of the transient EDA complex formed in situ was
confirmed through control experiments and computations, and a plausible mechanism
was proposed. Perhaps even more useful, this method offers a versatile strategy to achieve
novel one-pot multi-transformations, such as challenging reductive C-O/N-N/N-S bond
cleavages followed by cascade aromatic C-H bond borylation.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29081783/s1. Scheme S1: Photo reaction setup;
Table S1: Optimization of reaction conditions; Scheme S2: Substrates with low yield under opti-
mized conditions; Scheme S3: Novel cascade transformation; Table S2: Oxidative additives screen
and control experiments; Table S3: Reaction with complex A; Figures S1 and S2: The computa-
tional results; Tables S4–S7: Crystal data and structure refinement. References [49–85] are cited in
Supplementary Materials.
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