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Abstract: There are several highly damaging Phytophthora species pathogenic to forest trees, many
of which have been spread beyond their native range by the international trade of live plants and
infested materials. Such introductions can be reduced through the development of better tools capable
of the early, rapid, and high-throughput detection of contaminated plants. This study utilized a
volatilomics approach (solid-phase microextraction coupled to gas chromatography–mass spectrome-
try) to differentiate between several Phytophthora species in culture and discriminate between healthy
and Phytophthora-inoculated European beech and pedunculate oak trees. We tentatively identified
14 compounds that could differentiate eight Phytophthora species from each other in vitro. All of the
Phytophthora species examined, except Phytophthora cambivora, uniquely produced at least one com-
pound not observed in the other species; however, most detected compounds were shared between
multiple species. Phytophthora polonica had the most unique compounds and was the least similar of
all the species examined. The inoculated seedlings had qualitatively different volatile profiles and
could be distinguished from the healthy controls by the presence of isokaurene, anisole, and a mix of
three unknown compounds. This study supports the notion that volatiles are suitable for screening
plant material, detecting tree pathogens, and differentiating between healthy and diseased material.

Keywords: gas chromatography–mass spectrometry; tree disease; volatilomics; Fagus sylvatica;
Quercus robur

1. Introduction

Phytophthora is an extremely important genus of plant pathogens responsible for mas-
sive economic losses and ecological damage in agriculture, horticulture, and forestry [1,2].
Currently, approximately 200 species of Phytophthora are known, but it has been estimated
that the total number of species globally is likely to be 600 or more [3]. The host ranges
of Phytophthora spp. vary greatly, but as an example, Phytophthora cinnamomi has a host
range close to 5000 species of plants, including many of importance in agriculture, forestry,
and horticulture [4,5]. As tree pathogens, Phytophthora are most damaging as root rots and
stem cankers, but they can also cause foliar blights. Infection can lead to reduced growth,
plus an increased sensitivity to drought, herbivores, and other stresses [4–6], the decline
and death of individual trees, and even widespread mortality in the landscape [1]. Their
diverse host ranges, persistence in soil once introduced, and potential for highly damaging
outbreaks have made Phytophthora species some of the most important plant pathogens
regarding plant health and management practices.
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Many of the most problematic Phytophthora spp. are so because they are invasive
alien species (IASs) and the native flora lack sufficient and evolved defenses against
them [7]. Economic and ecological losses stemming from the introduction of IASs have been
recognized as an increasingly difficult challenge worldwide in agriculture, horticulture,
and forestry [8,9]. The spread of plant pathogens that can potentially become invasive is
enabled foremost by the international plant trade, which has increased substantially in
recent decades [10], with no signs of slowing down [11]. Phytophthora spp. are common
IASs found in the plant trade [12], often in the soil and compost used in the production of
hardy woody nursery stock [13], making them difficult to detect by traditional methods in
shipments of asymptomatic potted plants. Moreover, in nurseries, large numbers of plants
are raised in restricted spaces, promoting the survival and proliferation of Phytophthora spp.
due to the high host plant availability, regular irrigation, and favorable temperatures, with
the consequence of the pathogens accompanying the plants to their final planting positions.
Numerous introductions of Phytophthora spp. into forest environments have occurred over
many years in this way [12]. This problem can be reduced by the implementation of suitable
management and prevention practices and novel detection techniques in trade and at ports
of entries [14,15]. Proactive strategies and the development of advanced pathogen detection
methods could greatly improve our capacity to mitigate the infiltration of invasive alien
pathogens in international and national trade and limit their introduction to new areas.

Nucleic-acid-based techniques for detecting plant pathogens are improving rapidly [16].
For example, loop-mediated isothermal amplification and nanopore sequencing can be used
on-site for point-of-need detection [17,18], while the long-read sequencing capabilities of
PacBio and Oxford Nanopore Technologies grant a better taxonomic resolution for regions
like the fungal internal transcribed spacer [19]. Despite these improvements, molecular
methods still have limited utility in plant biosecurity due to (i) the extensive volume of
plants traded internationally, which overwhelms the staffing levels at entry ports, limiting
the ability to conduct comprehensive inspections on a significant portion of the units in
transit [15,20], (ii) limitations in detection, in that DNA analyses require the destructive
sampling of the correct tissues on the plants or the infested compost, and (iii) the need
for molecular and bioinformatics proficiencies in ensuring the correct sample processing.
Hence, novel non-DNA-based approaches better tailored for early and high-throughput
detection are needed. Such approaches could also serve as initial screening tools when
combined with more targeted molecular techniques.

Plants release a multitude of volatile organic compounds (VOCs) into their immediate
environment, which fulfill critical roles in growth, intra- and interspecific communication,
defense, and survival [21]. The composition of emitted VOCs, akin to distinct chemical fin-
gerprints, dynamically varies among plant species and may differ in each plant–pathogen
interaction, offering a potential utility for VOCs as indicators of plant health [21,22]. For
example, VOCs produced by plant pathogens are already targeted for the detection of food-
stuff spoilage in agriculture [22,23]. In forestry, VOCs-based detection methods are less re-
searched and have not yet been implemented commercially. Recently, Nordström et al. [24]
successfully distinguished Fusarium circinatum-infected Pinus spp. seedlings from healthy
ones, and this study also revealed that each included Fusarium spp. showed discernible
VOC blends, even when cultivated on the same substrate. Vuorinen et al. [25] pointed
to the potential of VOCs as pathogen-specific disease indicators, as Betula spp. trees ex-
posed to pathogens could be distinguished from those affected by herbivores. In addition,
Johne et al. [26] could distinguish between pathogenic fungi in Aesculus spp. in infected
oak acorns, and Borowik et al. [27] were able to distinguish between Phytophthora plurivora
and Pythium intermedium using a VOCs-based detection method.

This project was devised as two separate but complementary experiments. The
first experiment examined the in vitro VOCs of multiple Phytophthora spp., with the aim
of determining whether an analysis of VOCs can be used to distinguish species and
generate potential VOC biomarkers for the tested species. The second experiment examined
the in vivo VOCs of stem-inoculated trees to ascertain whether infected trees could be
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distinguished from healthy controls. For this work, we used solid-phase microextraction
(SPME) fibers in conjunction with gas chromatography–mass spectrometry (GC-MS) to
examine the VOCs from eight Phytophthora species when grown in vitro, and differences in
P. cinnamomi- and P. plurivora-infected pedunculate oak (Quercus robur) and European beech
(Fagus sylvatica) were compared to mock-inoculated controls (MIC). Volatilomics using
SPME is a versatile technique commonly used for the static capture of VOCs in biological
systems, because it is an economical, simple, and non-destructive sampling strategy that
can capture a large fraction of the full volatilome [28]. Combining SPME and GC-MS
is, therefore, useful and germane in a screening study like this, where the objective is to
discover biomarkers of disease that can be used in targeted methods for disease detection
and diagnosis in the future.

2. Results
2.1. In Vitro Study

The objective of the in vitro study was to discover Phytophthora-related volatiles that
were qualitatively different from the media controls. In total, we found 58 compounds from
the Phytophthora species (isolates listed in Table S1) that were not in the media-only control
vials; a list of these compounds is presented in Table 1. There was a similar number of
Phytophthora compounds detected at both collection time points, 14 days post-inoculation
(dpi) and 30 dpi. In total, 43 compounds were detected at 14 dpi and 46 compounds at
30 dpi. Of the 58 total compounds, 31 were observed at both time points, while 12 were only
detected at 14 dpi and 15 were only detected at 30 dpi. There was considerable variability in
the number of compounds observed between the Phytophthora species examined (Table 1).
Phytophthora gonapodyides and P. polonica had the most compounds detected with 25 each,
P. cambivora was next with 22, followed by P. multivora with 18. Meanwhile, nine com-
pounds were detected from P. plurivora, eight from P. cinnamomi, five from P. citricola, and
only three from P. syringae. Phytophthora plurivora had all nine of its detected compounds
occurring at both the 14 and 30 dpi time points. Phytophthora cinnamomi had all but one of
its eight compounds occurring at both time points. Phytophthora cambivora, P. gonapodyides,
and P. polonica had the most differences in the number of compounds between time points.
In Phytophthora cambivora and P. gonapodyides, 13 and 17 compounds, respectively, were
uniquely present at the 30 dpi time point, while P. polonica had 14 compounds present only
at the 14 dpi time point.

All Phytophthora species, except P. cambivora, had at least one exclusive VOC. Phytoph-
thora polonica had the highest number of compounds only found in a single species, with
12 compounds, P. multivora had 7, P. gonapodyides had 6, and P. cinnamomi had 2, while
P. citricola, P. plurivora, and P. syringae each had 1. Since most of the examined species
had only a few unique compounds (many of which were specific to a certain time point),
multivariate analyses were run on the full compound list in Table 1. The PCA demonstrated
that some Phytophthora species can be distinguished based on VOCs (Figure 1). At 30 dpi,
P. cambivora and P. gonapodyides were well separated from the other species via PC1, but
did not separate well from each other. Phytophthora polonica was separated from the other
species at the 14 dpi time point, predominantly via PC2. The remaining species and time
points had a poor resolution, with only P. multivora at 30 dpi showing some separation. The
top five loadings for PC1 and PC2 are listed in Table 2.

A cluster analysis largely corroborated the PCA, as P. polonica (at 14 dpi), P. go-
napodyides, P. cambivora, and P. multivora (all at 30 dpi) tended to form distinct clusters with
greater separation from the other species based on node height (Figure 2). The other species
had shorter branch lengths and lower node branching points, indicating that they were
more similar. For all species, except P. citricola, replicates did generally cluster by species
and sampling time.
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Table 1. Occurrence of volatiles, denoted by x, after 14 and 30 days of growth for the eight Phytophthora species when grown in vitro.

P. cambivora P. cinnamomi P. citricola P. gonapodyides P. multivora P. plurivora P. polonica P. syringae
Peak No. MS Library Match RT 1 (min) KI (KI lit.) D14 D30 D14 D30 D14 D30 D14 D30 D14 D30 D14 D30 D14 D30 D14 D30

1 2,3-Butanediol 6.19 777 (785) 1 x x
2 Hexanal 6.53 803 (801) 2 x x x x x x
3 2-Furanmethanol 7.48 856 (867) 1 x
4 Unknown 1 9.53 957 x
5 1-Heptanol 9.83 971 (959) 2 x x
6 1-Octen-3-ol 10.03 980 (980) 3 x x x
7 Unknown 2 10.45 998 x
8 2,4-Heptadienal # 10.73 1013 (1013) 2a x x x x
9 Unknown 3 11.23 1039 x
10 Unknown 4 11.44 1050 x
11 Unknown 5 11.52 1054 x x x
12 Unknown 6 11.94 1074 x x
13 Unknown 7 12.16 1084 x
14 3,5-Octadien-2-one # 12.4 1095 (1098) 4 x x
15 2-Nonanol 12.5 1100 (1097) 2 x x x
16 3-Nonen-1-ol # 13.57 1157 (1157) 2b x
17 2,6-Nonadienal # 13.58 1158 (1154) 2c x x
18 4-Ethylphenol 13.8 1169 (1178) 5 x x
19 Unknown 8 13.81 1169 x
20 1-Nonanol 13.86 1172 (1165) 2 x x x x
21 Unknown 9 14.34 1195 x x x
22 2,4-Nonadienal # 14.74 1218 (1212) 2a x x x
23 Unknown 10 15.06 1236 x x
24 4-Decen-1-ol # 15.48 1259 (1259) 2d x
25 Unknown 11 15.66 1269 x
26 1-Decanol 15.71 1272 (1266) 2 x x x x x x x x
27 6-Undecen-2-one # 15.86 1279 (N/A) x x x x x x
28 4-Ethylguaiacol 15.98 1286 (1282) 6 x x x x x x x x x
29 2,4-Decadienal (E,Z)- * 16.17 1296 (1292) 2 x x x x x
30 2,4-Decadienal (E,E)- * 16.58 1320 (1319) 2 x x x x
31 3-Undecen-2-one # 16.97 1344 (1344) 7a x x x x x x x x x x x x

32 Methyl 2,4,6-trimethyl
benzoate 17.15 1354 (1349) 8 x x

33 Decanoic acid 17.28 1362 (1366) 2 x x x x x x
34 2-Undecenal # 17.36 1367 (1366) 7b x x
35 2,4-Undecadien-1-ol # 17.4 1369 (N/A) x
36 Unknown 12 17.75 1389 x x x x x
37 Unknown 13 18.17 1414 x x
38 Unknown 14 18.37 1428 x
39 1-Phenyl-2-hexanone 18.7 1449 (N/A) x x
40 2,6-Dodecadienal # 18.77 1454 (1445) 2c x
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Table 1. Cont.

P. cambivora P. cinnamomi P. citricola P. gonapodyides P. multivora P. plurivora P. polonica P. syringae
Peak No. MS Library Match RT 1 (min) KI (KI lit.) D14 D30 D14 D30 D14 D30 D14 D30 D14 D30 D14 D30 D14 D30 D14 D30

41 Unknown 15 19.25 1483 x x x
42 Unknown 16 19.29 1486 x x x x
43 2-Tridecanol 19.56 1503 (1510) 9 x
44 Aristolochene 19.62 1507 (1487) 10 x x
45 Unknown 17 19.84 1522 x x
46 Unknown 18 20.24 1549 x
47 Dodecanoic acid 20.43 1562 (1565) 2 x x x
48 1-Tridecanol 20.67 1578 (1570) 2 x
49 Unknown 19 20.82 1587 x
50 Unknown 20 20.92 1594 x x x
51 Unknown 21 21.33 1622 x
52 1-Tetradecanol 22.17 1681 (1671) 2 x x x
53 6-Pentadecen-2-one # 22.21 1684 (1667) 2b x
54 γ-Dodecalactone 22.31 1691 (1676) 2 x x x x x x
55 δ-Dodecalactone 22.76 1724 (1704) 2 x x x
56 1-Hexadecanol 24.86 1845 (1874) 2 x
57 Unknown 22 25.55 1874 x
58 Unknown 23 25.62 1876 x

RT = retention time; KI = Kovâts index; lit. = KI from literature that used authentic standards for KI calculations. D14 = 14 days post-inoculation; D30 = 30 days post-inoculation.
x = present in the species at that given time point, absent in all controls. * = suggested isomer based on KI values and MS match. # = cis-trans isomerism cannot be confirmed.
1 Ames et al. [29]; 2 Adams [30] [a = (2E, 4E)-isomer; b = (Z)-isomer; c = (2E, 6Z)-isomer]; d = (E)-isomer KI 1259 or (Z)-isomer KI 1262; 3 Beaulieu et al. [31]; 4 Lozano et al.
[32]; 5 Martí et al. [33]; 6 Steinhaus and Schieberle [34]; 7 Lazarević et al. [35] [a =isomer unspecified; b = (2E)-isomer]; 8 Rostad and Pereira [36]; 9 Ohnishi and Shibamoto [37];
10 Retta et al. [38].
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Table 2. The five most important compounds for distinguishing Phytophthora species from each other
based on principal components (PC) 1 and 2 and the random forest (RF) analysis in the full set of
in vitro produced compounds and in which species they were detected.

Peak No. Tentative ID Selection Criteria Species Detected in

2 Hexanal PC1 camb, cinn, gona, polo
6 1-Octen-3-ol RF citr, polo
10 Unknown 4 PC2 polo
13 Unknown 7 PC2 polo
16 3-Nonen-1-ol PC2 polo
17 2,6-Nonadienal PC1 camb, gona
18 4-Ethylphenol RF plur
22 2,4-Nonadienal PC1 camb, gona, polo
25 Unknown 11 PC2 polo
31 3-Undecen-2-one PC1, RF camb, cinn, gona, mult, plur, polo
33 Decanoic acid RF camb, gona, plur
34 2-Undecenal PC2 polo
44 Aristolochene RF cinn
45 Unknown 17 PC1 camb, gona

Phytophthora species abbreviations: camb = P. cambivora; cinn = P. cinnamomi; gona = P. gonapodyides; mult = P.
multivora; plur = P. plurivora; polo = P. polonica.

The five most important compounds for discriminating between Phytophthora species,
according to the random forest analysis based on mean Gini scores, are listed in Table 2
(see Table S2 for the full random forest analysis results and Figure S1 for mass spectra
for unknown compounds in Table 2) and were tentatively identified as 1-octen-3-ol, 4-
ethylphenol, 3-undecen-2-one, decanoic acid, and α-selinene.

2.2. In Vivo Study

All Phytophthora-inoculated trees developed lesions that were significantly larger than
those on the MIC trees (Figure 3; see Tables S3 and S4 for statistical analyses). Across
both tree species, five compounds in total were detected in the inoculated trees that were
not present in the MIC trees (Table 3). Two of these compounds, tentatively identified as
anisole and isokaurene, occurred only in the beech trees. Anisole was detected in beech
trees infected with either P. cinnamomi or P. plurivora, but only at 21 dpi. Isokaurene and an
unknown compound were detected only in P. plurivora-inoculated beech trees at 9 dpi.

Table 3. Tentatively identified in vivo compounds uniquely present in Phytophthora-inoculated trees.

Tree Pathogen Compound MF RT (min) KI (KI lit.) 9 dpi 21 dpi

Quercus robur P. cinnamomi Unknown 1 C14H20O2 25.10 1445 x x
Unknown 3 C15H24 30.25 1661 x

P. plurivora Unknown 3 C15H24 30.25 1661 x
Fagus sylvatica P. cinnamomi Anisole C7H8O 10.00 922 (913) 1 x

P. plurivora Anisole C7H8O 10.00 922 (913) 1 x
Unknown 2 C15H24 29.48 1627 x
Isokaurene C20H32 38.21 1964 (1988) 2 x

MF = suggested molecular formula; RT = retention time; dpi = days post-infection; KI = Kovâts index; lit. = KI
from literature that used authentic standards for KI determinations. x = present in inoculated trees, not detected
in controls. 1 Adams [30]; 2 Skaltsa et al. [39].

In oak trees, an unidentified sesquiterpene was detected at 21 dpi in trees inoculated
with either Phytophthora species. An unknown compound was also detected at both 9 and
21 dpi, but only in trees inoculated with P. cinnamomi.
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Figure 3. Average stem lesion lengths on Fagus sylvatica and Quercus robur saplings artificially
inoculated with Phytophthora cinnamomi (P. cinn) or Phytophthora plurivora (P. plur) compared to
mock-inoculated controls (MIC). Lesion lengths were recorded 50 days post inoculation. N = 3 for
each bar; error bars are ± SD. Asterisks denote significant differences in lesion length compared to
the MIC trees of the same species as determined by Dunnett’s test at the α = 0.05 level.

3. Discussion

This work reports diagnostic volatiles from several known Phytophthora pathogens
of trees in urban and forest landscapes. Many of these pathogens are introduced to new
locations via the global trade of live plants, and due to their cryptic nature, are difficult to
detect. Discerning VOCs indicative of the presence of Phytophthora species may allow for
fast and in vivo detection in traded plants. While the in vitro VOC profiles from most of the
Phytophthora species in our analysis were similar, some species were still easily discernable,
and all but P. cambivora produced at least one volatile compound that was not present
in the other species. Such qualitative differences between species are desirable, because
unique compounds could serve as biomarkers of disease and indicate which Phytophthora
species are present in an unknown sample. These differences would also be useful for
chemotaxonomy, particularly for discriminating between closely related species [40,41]
and the species complexes that are common in the genus Phytophthora [42]. Obtaining
a richer blend of in vitro volatiles for biomarker generation could be achieved by using
different media with more complex substrates for metabolism [43], something observed by
Qiu et al. [44] with P. cinnamomi. EMA is a basic medium with only one carbon source and
one nitrogen source, not including the amendment β-sitosterol, so there may be a limited
capacity for variable VOC production. Future studies comparing species should consider
using a blend of nutrients and media constituents, potentially derived from host material
to maximize variation.

We hypothesized that in vitro compounds could be useful as biomarkers for detecting
infected plants, but none of the in vitro volatiles were observed to differ qualitatively be-
tween the infected and mock-inoculated control (MIC) plants. In fact, only five compounds
were observed in the Phytophthora-infected trees that were not present in the MIC trees.
Of these five compounds, two were tentatively identified, anisole and isokaurene; both
occurred only in beech. Anisole was detected in beech trees inoculated with P. cinnamomi
and P. plurivora, but other studies examining European beech VOCs have not reported
anisole [45,46], including a study looking at VOCs from trees infested with aphids [47]. If
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anisole is produced only during certain stress events, it may be a useful marker of Phy-
tophthora infection in beech trees. Anisole was reported in the roots of hybrid oak (Quercus
petraea × Q. robur) after Melolontha hippocastani feeding [48], indicating that damage-induced
anisole production might be tissue-specific, pest-specific, or both, since it was not seen after
stem infection in this study. It is also possible that anisole was produced by the Phytoph-
thora species. Anisole is known to be produced by at least one Penicillium sp. [49], but its
occurrence in Phytophthora is unknown. Nonetheless, its occurrence only in the infected
beech makes it a potential target for disease diagnosis. Isokaurene has not previously been
reported as occurring in European beech either, but it has been induced in maize tissue
when infected by different fungi [50]. Isokaurene is a diterpene, and thus, considerably
less volatile than most other compounds in this study, so passive sampling methods such
as SPME, especially when short sampling times are applied, may not consistently be able
to detect it. Isokaurene does, however, have a distinct mass spectrum, meaning it can
be unambiguously identified in a sample should it be captured, making it an excellent
biomarker in that regard. The other beech-specific volatile was an unknown sesquiterpene,
which was only present at the 9 dpi time point. Sesquiterpenes are generally difficult to
identify due to their ambiguous mass spectra, and if this compound is only ephemerally
present in the early stages of disease, it may not be a suitable biomarker of disease, while
if it is consistently present at later time points not examined here, it may still be of value
as a biomarker.

In the infected oak trees, two unknowns were detected, an unknown sesquiterpene
and an unknown compound with the suggested molecular formula C14H20O2 (Table 3). Of
all the in vivo compounds detected for both tree species, the latter unknown compound
was the only one present at both sampling time points, and was specific to the P. cinnamomi-
inoculated trees. The specificity of this unknown to the P. cinnamomi treatment and its
consistency at both time points make it an ideal candidate for biomarker selection and
worthy of further structural elucidation.

In this study, we chose to analyze only compounds that were qualitatively different
from the controls in order to increase the likelihood of identifying a viable biomarker
that could later be used in targeted and more commercial approaches, such as e-nose
devices or ion-mobility spectrometry. In the quest for robust solutions to the burgeoning
challenges posed by IASs, and specifically Phytophthora spp., finding such “silver bullets”
of qualitative differences would present an opportunity for them to be exploited by future
VOCs-based tree disease detection methods, marking a new era in plant biosecurity and
ecosystem protection. Plants produce and alter their volatile profiles in response to a
plethora of different stimuli. Many of these VOCs are shared between different stimuli,
are transient, and differ quantitatively depending on the intensity of the stimuli [21,51,52].
Therefore, using compounds that differ quantitatively to differentiate between healthy and
diseased plants may lead to erroneous classifications when environmental conditions and
other biotic stressors are variable and sampling methods are inconsistent. Brilli et al. [53]
successfully used a targeted approach, where plane trees infected with Ceratocystis platani
were readily distinguishable from healthy controls using a few compounds that were
uniquely present in the infected trees. We similarly saw disease-exclusive compounds,
but unlike Brilli et al. [53], our unique compounds were likely not from the pathogens
themselves. A targeted method may be of limited value in systems with no prominent
pathogen-derived VOCs or in pathosystems that do not have any qualitative differences.
For example, pine species inoculated with Fusarium circinatum could be distinguished from
their healthy control plants using SPME-collected VOCs, despite there being no qualitative
differences in volatiles between treatments [24]. Whether these quantitative differences
are still present under non-laboratory conditions is unknown. Other studies were able to
distinguish different disease and insect damage treatments based on differences in volatiles
in a variety of tree species [54–57].

Different tree organs can have different VOC profiles [58,59]. Since some pathogens
only attack certain plant organs and substructures with different chemical compositions,
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volatile profiles associated with damage to a given structure may be sufficiently different for
disease diagnosis. Tissue-targeted analyses should increase the sensitivity and specificity
of VOCs-based detection methods [60]. Our in vivo sampling method sampled all of
the above-ground tissue, but if we had excluded the leaves and only collected VOCs
around the inoculation sites, we may have obtained more disease-associated volatiles,
and perhaps even some pathogen-derived VOCs. Future studies should consider using
a more targeted sampling method that is focused on symptomatic tissues or organs of
interest for a certain pathosystem. The extent to which different pests attacking the same
tissues can be differentiated is less clear, but some studies have shown that different pests
attacking the same tissues emit different VOC profiles [25,26,61–63]. In this study, trees
infected with P. cinnamomi were discernable by VOCs from trees infected with P. plurivora,
for both oak and beech, even without tissue-targeted sampling. These results further
support the contention that pathogens of the same tissue can be differentiated in planta by
using volatiles.

Although none of the in vitro Phytophthora compounds were found in the in vivo
study, some have been reported in other Phytophthora pathosystems. For example, 1-octen-
3-ol, which was found in P. polonica and P. cambivora and was an important determinant
of Phytophthora species from the random forest analysis, was the only compound found
at higher levels in the volatiles from solvent extracts of Phytophthora ramorum-inoculated
Rhododendron plants compared to mock-inoculated controls [64]. The C-8 alcohol 1-octen-
3-ol is one of the most common fungal volatiles [65]. Its occurrence in oomycetes is less
reported, but it was produced by P. cinnamomi in culture [66,67].

Hexanal is another common volatile that has been recorded in a number of microbial
volatile studies. Interestingly, in Qiu et al. [44], hexanal was observed only in the blank
media controls (V8 agar and potato dextrose agar), but not in P. cinnamomi colonized media.
We observed the opposite, where hexanal was produced by P. cinnamomi but was not
observed in the control EMA. Hexanal was also detected in P. cambivora, P. gonapodyides,
and P. polonica and was identified as an important discriminating compound by PCA.
In the in vitro study, this compound was only detected as a minor peak. As hexanal
is also prevalent in the environment, its value as a biomarker of disease is limited in
practice. Furthermore, our results are in agreement with Qiu et al. [44], in that Phytophthora
cinnamomi did not produce 4-ethylphenol in culture. However, Qiu et al. [44] did detect 4-
ethylphenol from P. cinnamomi-infected plants and infested soil, whereas we did not. We did,
however, detect 4-ethylphenol from P. plurivora cultures in vitro, where it was an important
compound for discriminating between species according to the random forest analysis.
Phytophthora plurivora and P. cinnamomi volatiles were also reported by Loulier et al. [66],
but none of the compounds they detected for either P. cinnamomi or P. plurivora were
observed by us for the same species. Their methods used a different in vitro growth
medium and SPME fiber chemistries, so these differences are not completely surprising,
but do demonstrate that volatiles may vary considerably between different setups.

In a study examining the effects of Phytophthora cactorum and P. plurivora infections
on the physiology of hybrid poplar, Ďurkovič et al. [67] found that infected trees emitted
germacrene D and α-cubebene from detached leaves, while control trees did not. In this
study, neither of these compounds were found solely in the Phytophthora-infected trees,
but both compounds are known to be emitted by pedunculate oak [68,69] and germacrene
D by European beech [70]. Neither germacrene D nor α-cubebene were evident in this
study when manually searching for them in the chromatograms of the MIC trees of either
species. Since these sesquiterpenes were not found and are known to be emitted by the
host trees, they are not considered as suitable biomarkers by our a priori criterion regarding
qualitative differences. Furthermore, neither germacrene D nor α-cubebene match either
of the unknown C15H24 compounds in Table 2, despite all being sesquiterpenes (based
on tentative molecular formulas and fragmentations), because their respective retention
indices are considerably different from those reported for the unknowns with similar mass
spectra [71,72].
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4. Materials and Methods
4.1. In Vitro Phytophthora VOC Study

Eight Phytophthora species were chosen for the in vitro volatile analysis: Phytophthora
cambivora, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora gonapodyides, Phy-
tophthora multivora, Phytophthora plurivora, Phytophthora polonica, and Phytophthora syringae
(see Table S1 for isolate information). All Phytophthora isolates were cultivated on Elliott’s
medium agar—EMA [73]. Three-millimeter plugs containing hyphae were excised from
the margins of actively growing cultures using a sterilized cork borer and transferred to
the center of agar slants of EMA amended with β-sitosterol. To make the EMA slants,
concentrated β-sitosterol in ethyl acetate (30 mg mL−1) was added to cooling but not
solidified EMA to reach a final concentration of 10 mg L−1 [73], then 5 mL of the amended
medium was pipetted into 20 mL glass headspace vials (SU860097, Merck, Darmstadt,
Germany). The slants were allowed to cool and solidify before inoculation. The inoculated
slants were sealed with headspace vial caps (SU860101, Merck). EMA slants inoculated
with sterile EMA plugs were used as non-inoculated controls for identifying background
non-Phytophthora-derived volatiles. The vials were incubated at room temperature for
14 or 30 days prior to VOC sampling; no cultures or control vials were sampled at more than
one time point. Four replicate vials for each species by time point were used. The sampling
time points were chosen based largely on the growth rates of the different Phytophthora
species and preliminary tests. Most species examined had nearly overgrown the agar slant
by day 14, so it was used as an active-growth time point, while day 30 represented a more
stagnate-growth metabolism. Volatiles from earlier time points were found to be very
similar to those at 14 dpi in preliminary tests, so earlier time points were not used.

Culture volatiles were sampled using divinylbenzene/carboxen/polydimethylsiloxane
(DVB/CAR/PDMS) 24 ga SPME fibers (57348-U, Merck) with a 50 µm DVB layer and
a 30 µm CAR and PDMS layer. All fibers were conditioned at 260 ◦C for 5 min before
sampling. The fibers were inserted into the vials through the pre-pierced cap septa, and
the vials were placed in an incubator maintained at 35 ◦C and sampled for 24 h. The fibers
were manually injected into a 6890 N gas chromatograph (GC) coupled with a 5975 inert
mass selective detector (MS, Agilent Technologies, Santa Clara, USA). The injection inlet
conditions were splitless, with a temperature of 260 ◦C and a purge flow of 30 mL min−1

for 0.5 min, with an ultra-inert, straight, 2 mm liner. The column was a HP-5 ms ultra
inert 60 m, 0.25 mm, 0.25 µm, 7-inch cage (19091S-436UI, Agilent Technologies) with an
initial oven temperature of 50 ◦C. The initial oven temperature of 50 ◦C was held for
2 min, followed by an 8 ◦C min−1 ramp to 280 ◦C and a 2.5 min hold. The transfer line
temperature was 150 ◦C. The MS was operated in positive ion mode with a scanning
range of 29–500 m/z and an ion source temperature of 230 ◦C run at 70 eV. The quadrupole
temperature was 150 ◦C and the detector voltage was 1906 V. An alkane standard mixture
C8–C20 (04070, Merck) was also sampled by SPME for 2 h at room temperature in the same
headspace vials and injected into the GC-MS using the same parameters for calculating the
retention indices.

4.2. In Vivo VOC Study

Phytophthora cinnamomi and P. plurivora were selected for the in vivo inoculation exper-
iments on pedunculate oak (Quercus robur) and European beech (Fagus sylvatica). The trees
were approximately 2 years old, potted in 3 L pots, and maintained in greenhouse condi-
tions with a 16 h light cycle, an average day temperature of 25 ◦C, and regular watering to
runoff for 3 weeks prior to experimentation. The trees were artificially inoculated on either
side of the main stem by removing a 1 cm × 0.5 cm piece of bark to expose the xylem. The
inoculation points were approximately 5 and 10 cm above the soil line. The excised tissue
was replaced by an EMA plug of the same size, taken from the margin of actively growing
Phytophthora cultures. The mock-inoculated control (MIC) trees were treated with a sterile
plug of EMA instead of colonized agar. The inoculation sites were sealed with Parafilm to
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limit desiccation and contamination. Every treatment and control was run in triplicate for a
total of 18 trees.

Volatiles from the inoculated and control trees were analyzed at 9 and 21 days post-
inoculation (dpi). These time points were chosen based on lesion development in a pilot
inoculation test. Lesions were still small at around 9 dpi, but had grown considerably
by 21 dpi. The selected time points attempted to capture an early stage and later stage
of symptom development. Parafilm was removed 1 day prior to the day 9 sampling. In
preparation for the VOC sampling, a cut Sterilin autoclave bag (11329103, Thermo Fisher
Scientific Inc., Waltham, USA) was placed around the stem and soil line to cover the
potting mix to limit soil volatiles. The volatiles were collected using the same SPME fibers
detailed above, placed in empty, uncapped headspace vials, and secured to the tree near
the inoculation point. Immediately after, conditioned fibers were placed in the vials, and
the above-ground parts of the trees were encased in another autoclave bag, which was
taped shut at the base of the stem and above the cut autoclave bag. The fibers were left for
48 h before being removed and analyzed by GC-MS with the same inlet settings, liner, and
column as above. An initial oven temperature of 50 ◦C was held for 2 min followed by a
5 ◦C min−1 ramp to 200 ◦C and a 2.5 min hold, followed by a 10 ◦C min−1 ramp to 280 ◦C
with a 2 min hold.

To ensure the inoculations were successful, the bark was gently peeled back using a
scalpel to expose the lesions at 50 dpi. The lesion lengths were measured and averaged to
obtain a single lesion length per tree.

4.3. Data Analysis

For both in vitro and in vivo data sets, GC peaks present in the Phytophthora-inoculated
treatments but not present in the controls were of greatest interest and further analyzed.
This was conducted because we posit that qualitative differences are more relevant than
quantitative differences for biomarker selection, particularly given the non-quantitative
nature of SPME fibers. To be included, a peak had to be present in at least three of the
four replicates for a Phytophthora species in the in vitro experiment, and in two of the three
treatment replicates in the in vivo experiment, while not being present in any of the MICs.
All peak integrations were performed with MSD ChemStation version E.02.02.1431 (Agilent)
and the peaks were deconvoluted using AMDIS 32 (NIST). Based on preliminary analyses,
a minimum peak area of 11,000 was used for peak calling. The peaks of interest observed in
the treatments had their key ions manually searched for in the control specimens to verify
their absence. The retention indices for the peaks were calculated based on the retention
time of the alkane standards using the calculator from [74]. Tentative identifications were
made by matching the mass spectra to compounds in the NIST20 and Wiley12 MS databases
and a comparison of known retention indices from verified standards from the literature.

Statistical analyses were performed using RStudio 2023.06.1+524 (Posit). A principal
component analysis (PCA) was run on the in vitro compound data sets using the prcomp
function to observe the data trends and similarity of the Phytophthora VOC profiles. A
hierarchical cluster analysis was run with the hclust function on autoscaled data. A random
forest analysis was used to determine the in vitro compounds most important for predicting
Phytophthora species, using the randomForest (with ntree = 500) and caTools packages. A
one-way analysis of variance (ANOVA) and a two-tailed Dunnett’s post hoc test were used
to determine if the lesion lengths of the Phytophthora-inoculated trees differed from those of
their respective MICs.

5. Conclusions

We demonstrated that Phytophthora-infected trees can be distinguished from MIC
trees based on the presence of anisole, isokaurene, and a few unidentified VOCs. We also
showed that several Phytophthora species can be differentiated from each other based on
their in vitro volatiles. These compounds have the potential to be used as biomarkers for
the development of faster, simpler, and cheaper methods of disease detection, such as
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e/bio-noses and proton transfer reaction-mass spectroscopy, which offer near real-time
analysis. New, higher-throughput methods for identifying diseased plants, particularly
those that are still in the asymptomatic phase, are key to limiting the spread of diseased
material and safeguarding forests. Volatilomics approaches for disease detection like those
used here are one step towards a more secure future in plant health.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29081749/s1, Figure S1: Mass spectra of im-
portant unidentified compounds 4, 7, 11, and 17 in Table 2 from the in vitro study; Figure S2: Mass
spectra of unidentified compounds 1–3 in Table 3 from the in vivo study; Table S1: Phytophthora
species used in the study; Table S2: Random forest output; Table S3: R outputs of ANOVA tables and
Dunnett’s test for lesion lengths in pedunculate oak trees; Table S4: R outputs of ANOVA tables and
Dunnett’s test for lesion lengths in European beech trees.
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