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Abstract: In traditional Chinese medicine, Aurantii Fructus Immatures (AFIs) have been utilized
for more than 2000 years. The proportions of different fruit parts are crucial for evaluating AFI
quality in China. However, the basis for this statement’s substance is unclear. Differences in quality
are intimately correlated with a plant’s metabolite composition. On the basis of a widely targeted
metabolome, this study intended to investigate the metabolite composition and evaluate the an-
tioxidant capacity of the peel and pulp of an AFI. Metabolites were identified and quantified by
UHPLC-QqQ-MS. To assess their antioxidant ability, DPPH and ABTS assays were carried out. There
were 1327 chemical compounds identified by UHPLC-QqQ-MS. After screening the differential
metabolites using a multivariate statistical analysis, it was found that there were 695 significant
differences in the metabolites between the peel and the pulp. Among them, it was discovered that the
content of active ingredients in the peel group was higher than that in the pulp group. Furthermore,
the aqueous extracts from the peel showed stronger antioxidant capacities than those from the pulp.
The metabolites and antioxidant capacities were significantly different between the peel and the pulp.
This study of different fruit parts might provide a guide for AFI quality assessments.

Keywords: Aurantii Fructus Immatures; quality evaluation; metabolic profiling; antioxidant
activity; chemometrics

1. Introduction

Citrus fruits are highly popular worldwide [1]. Typically, mature citrus fruits are
used to make a variety of foods, including marmalade, drinks, and oils [2]. Variations in
the compositions of citrus fruits at different ripening stages provide them with additional
properties and applications, while the immature fruits of some citrus varieties are preferred
by people due to their medicinal properties. The most well-liked of these are Aurantii
Fructus Immatures (AFIs; Zhishi in Chinese), which have been utilized extensively as
Chinese herbal medicines (CHMs). AFIs are the dried immature fruits of Citrus aurantium
L. and its cultivars or Citrus sinensis Osbeck [3,4]. They are distributed all over the world,
especially in the southern regions of China, and are credited with regulating qi and aiding
digestion [5].

Currently, AFIs are receiving more attention due to their health-promoting effects and
bioactivities [6]. Modern phytochemical research has found that AFIs contain various bioac-
tive substances, particularly flavonoids, which act as free radical scavengers and display
strong antioxidant capabilities [1,4]. Nevertheless, the types and contents of these bioactive
substances in AFIs have not been sufficiently investigated. The bioactivities and health
beneficial properties of AFIs include anticancer [7], antianxiety [8], anti-obesity [9,10], an-
tibacterial [11], and antioxidant [12] capabilities. As a result, AFIs are used to treat a variety
of conditions, including gastrointestinal disorders, anxiety, and lung cancer [6–11,13,14].
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It is well recognized that the qualities and therapeutic efficacies of CHMs are intimately
correlated with their bioactive components, which are primarily secondary metabolites
accumulating in different tissues or parts of the CHMs [15–17]. The Illustrated Classic of Ma-
terial Medica states the following: “AFI with a higher proportion of peel thickness are more
efficacious”. Until now, traditional Chinese pharmacists and farmers have also believed
that AFIs with lower proportions of pulp thickness will have better quality. Although the
effects of different fruit parts’ thicknesses on their efficacies are documented in medical
classics and clinical applications, the basis for this statement’s substance is unclear. Inter-
estingly, modern studies have suggested that the distributions of secondary metabolites
are plant-part specific [18–20]. However, previous studies on AFIs have frequently concen-
trated on whole fruits. Moreover, concerning differences in the metabolomic compositions
of different fruit parts of AFIs, very limited information is available.

In recent years, widely targeted metabolomics analyses, which primarily use ultrahigh
performance liquid chromatography coupled with triple quadrupole mass spectrometry
(UHPLC-QqQ-MS) techniques, have emerged as a potent method that combines the benefits
of both non-targeted and targeted metabolomics [21]. Due to its characteristics of quick
separation, high sensitivity, broad coverage, and high throughput, this approach has
been used extensively in plant metabolite analyses for many herbs [22–24]. Thus, it can
serve as a useful method for performing qualitative and quantitative analyses to quickly
identify a variety of metabolites in AFIs. In view of this, this study aimed to investigate
the metabolite compositions and variations in the peels and pulps of AFIs using widely
targeted metabolomics and chemometrics. At the same time, this approach was combined
with an antioxidant ability experiment to compare the antioxidant capacities of the peels
and pulps of AFIs. These results will serve as a foundation for further quality evaluations
of AFIs.

2. Results
2.1. Metabolomic Profiling

Total ion current (TIC) plots and an extracted ion chromatogram (XIC) plot in MRM mode
of one QC sample are shown in Figure S1 (Supplementary Materials). A total of 1327 compounds
were identified, including 397 flavonoids, 161 phenolic acids, 141 lignans and coumarins,
139 lipids, 127 alkaloids, 101 amino acids and derivatives, 61 organic acids, 50 nucleotides and
derivatives, 41 terpenoids, and 109 other metabolites (Figure 1). Detailed data on all the identified
metabolites are shown in Table S1 (Supplementary Materials).
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An overlay analysis was used to evaluate the technical repeatability of the metabolite
extractions and detections. In Figure S2A,B (Supplementary Materials), an overlay of the
TIC plots for three QC samples is shown, indicating that the TIC plots of the metabo-
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lites had a perfect overlap, that is, the retention time and peak intensity were consistent,
demonstrating good sample homogeneity.

2.2. PCA and OPLS-DA for the Peel and Pulp of AFIs

In order to compare the metabolite compositions of the peels and pulps, a PCA analysis
was performed on the dataset obtained by UHPLC-QqQ-MS/MS in ESI+/ESI− mode. As
shown in Figure 2, two principal components (PC1 and PC2) contributed 68.36% and
9.82% of the variation, respectively. The results show that the two groups were obviously
separated, and the three biological replicates of each variety were closely clustered together,
indicating that the experiment had good repeatability and reliable results. This comparison
showed a significant difference between the peel and pulp, and all samples fell within the
95% confidence interval. Furthermore, they were clearly divided into two categories on the
heatmap (Figure 3), indicating significant differences in metabolite content between the
peel and the pulp. These results demonstrate the differences in metabolites between the
two different fruit parts of AFIs.
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To further screen the variables responsible for the peel and pulp of AFIs, a supervised
OPLS-DA model was subsequently established. As seen in Figure 4, samples from the two
groups were significantly and accurately segregated into two different parts, suggesting
significant differences in the metabolites of the two parts, and the outcome was similar
to the PCA results. The OPLS-DA model (Figure 5) compared the metabolite contents
of the different fruit parts in pairs to evaluate differences between the peel and the pulp
(R2X = 0. 819; R2Y = 1; Q2 = 0.992). The Q2 values in this study were greater than
0.9, indicating the excellent fitness and predictability of the model. The above results
revealed that the established OPLS-DA model was reliable and could be used to screen the
variables responsible for the peel and the pulp of AFIs.
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2.3. Differential Metabolite Screening, Functional Annotation, and Enrichment Analysis between
Peel and Pulp

We further conducted a differential metabolite screening based on the fold change
(FC ≥ 2 or FC ≤ 0.5) and variables identified as necessary in the projection scores (VIP ≥ 1)
(Table S2 (Supplementary Materials)). The results of the screening were presented in
the form of a volcano plot (Figure 6). There were 695 significantly different metabolites
between the peel and the pulp. Among them, compared with the pulp, 300 metabolites in
the peel were upregulated, that is, the relative content was increased, and 395 metabolites
were downregulated, that is, the relative content was decreased. The most significant
difference was found for flavonoids, accounting for about 34.68% (Table 1). It is worth
noting that almost all polymethoxylated flavones (PMFs) were downregulated, indicating
that the relative content of PMFs in the peel was significantly higher than that in the pulp.
Numerous studies have recently reported the powerful biological activities of PMFs, which
play an important role in antioxidant, antibacterial, anticancer, antiobesity, antidiabetic,
etc., activities [25]. These results show that secondary metabolites vary between the peel
and the pulp of AFIs.
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Table 1. Classification and statistics of metabolites with different relative contents between the peel
and pulp of AFIs.

Type Number Percentage

Flavonoids 241 34.7
Lignans and coumarins 114 16.4

Phenolic acids 77 11.1
Lipids 75 10.8

Alkaloids 63 9.1
Others 32 4.6

Amino acids and derivatives 30 4.3
Organic acids 23 3.3

Terpenoids 22 3.2
Nucleotides and derivatives 18 2.6
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A pathway annotation and an enrichment analysis using the KEGG pathway database
were performed for the vital differential metabolites. The differential metabolites were
involved in 79 pathways (Figure 7, Table S3 (Supplementary Materials)). The results
showed that the top 10 pathways with the highest numbers of differential metabolites were
metabolic pathways (86), the biosynthesis of secondary metabolites (66), ABC transporters
(17), the biosynthesis of cofactors (16), the biosynthesis of various plant secondary metabo-
lites (15), the biosynthesis of amino acids (15), flavonoid biosynthesis (13), nucleotide
metabolism (12), 2-Oxocarboxylic acid metabolism (11) and D-Amino acid metabolism
(10). In addition, the top 20 significant pathways are presented in bubble plots (Figure 8,
Table S4 (Supplementary Materials)). A metabolic pathway analysis of differential metabo-
lites screened in the peel and pulp indicated that two pathways with p < 0.05 in the
enrichment analysis were the biosynthesis of secondary metabolites and the citrate cycle.
These results suggest that the effects of different fruit parts’ thicknesses on efficacies may
be explained by the metabolic pathway, mainly due to differences in the biosynthesis of
secondary metabolites, especially flavonoids.
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2.4. Antioxidant Activities of Different Fruit Parts in AFIs

In this investigation, DPPH and ABTS scavenging activity assays were used to pre-
liminarily analyze the antioxidant activities of aqueous extracts from the peel and pulp.
Antioxidant capacities were indicated by an IC50 value: the lower the IC50 value, the greater
the antioxidant capacity. The findings demonstrated that the IC50 in the DPPH assay of
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the peel was lower than that of the pulp (Table 2). Furthermore, there was a significant
difference in the IC50 in the DPPH assay between the peel and the pulp.
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Table 2. Antioxidant activities (mg·mL−1) of peel and pulp in AFIs.

Peel Pulp

DPPH (IC50) 0.124 ± 0.009 0.237 ± 0.017 ***
ABTS (IC50) 0.130 ± 0.008 0.211 ± 0.010 ***

Results are expressed as means ± standard deviations (analyses from three replicates of 12 fruits per group).
Means in the same line with the asterisks are significantly different (*** p < 0.001). The DPPH and ABTS IC50
values of VC were 0.007 mg·mL−1 and 0.012 mg·mL−1, respectively.

As shown in Table 2, the ABTS antioxidant capacities of the aqueous extracts from the
peel were also higher than those of the pulp, with IC50 values of 0.130 ± 0.08 mg·mL−1

and 0.211 ± 0.010 mg·mL−1, respectively. Similar to the results of the DPPH assay, the
difference in the ABTS antioxidant capacities between the peel and the pulp was significant.

3. Discussion

The proportions of different fruit parts of AFIs are significant in traditional Chinese
medicine. Since the time of records of herbalism from the Song Dynasty, traditional Chinese
pharmacists and farmers have been paying attention to the different characteristics of
the peel and pulp of AFIs. They noted that a higher proportion of peel thickness is an
essential characteristic of high quality in AFIs. This traditional quality assessment method
is consistent with the current research results on citrus, which indicate that the distribution
of some metabolites in citrus fruits has tissue specificity [26]. However, this needs to be
further clarified in AFIs. Only a few types of metabolites between the peel and the pulp
of AFIs have been studied thus far. These compounds include four flavonoids (narirutin,
naringin, hesperidin, and nobiletin) and one alkaloid (Synephrine) [27]. In the present
study, we performed a widely targeted metabolomics analysis for the peel and the pulp of
AFIs and provided a partial metabolic profile of this popular functional food.

Based on the findings of the metabolomics analysis, 1327 chemical compounds were
discovered from the extracts, including a significant number of phytochemicals. There were
161 phenolic acids in the AFIs in total. Some phenolic acids, such as caffeic acid, ferulic
acid, vanillic acid, and gallic acid, were detected at significantly high levels. According to
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the current findings, most of these chemicals were also previously documented in extracts
of AFIs [4,28,29]. These highly accumulated compounds have been shown to possess
beneficial bioactivities. For example, caffeic acid is a phenolic acid and a catechol deriva-
tive possessing anticancer, anti-AIDS, antioxidant, and anti-inflammatory activities [30].
Ferulic acid has attracted attention for its potential role as an adjuvant therapy for several
free-radical-induced diseases [31]. Vanillic acid promotes favorable outcomes in various
disease models due to its potent antioxidant and antimicrobial properties [32]. In addition,
141 lignans and coumarins, 139 lipids, 127 alkaloids, 101 amino acids and derivatives,
61 organic acids, 50 nucleotides and derivatives, 41 terpenoids, and 109 other metabolites
were also identified in the AFIs.

We performed a statistical analysis of the metabolites, and significant differences were
found between the peel and the pulp. A metabolic pathway analysis of the differential
metabolites in the peel and the pulp revealed that flavonoid biosynthesis contained a
high number of differential metabolites, indicating significant differences in the relative
content of flavonoids between the peel and the pulp. It is noteworthy that 61 of the
241 differential flavonoid compounds were PMFs, that is, a chemical family of flavones
with a number of methoxyl groups equal to or greater than four [33]; moreover, these
PMFs were significantly higher in the peel than in the pulp. Functionally, PMFs have
received considerable attention as strong antioxidant compounds with various bioactivities
as anti-atherosclerosis, anti-inflammation, neuroprotection, anti-cancer, and anti-microbial
activities [34]. Thus, enhanced antioxidant activities in the peel of AFIs may be correlated
with an increase in the relative levels of PMFs. Similar to the results in the present study,
Helena et al. [35] found that the in vitro antioxidant capacities of all peels were higher than
those of pulps in four Citrus species (C. sinensis, cvs. Pera and Lima; C. latifolia Tanaka
cv. Tahiti; C. limettioides Tanaka cv. Sweet lime and C. reticulate, cv. Ponkan), which was
associated with high PMF contents. With the help of earlier research, we surmise that the
significant differences in the content of flavonoids, particularly PMFs, are associated with
clinical effects.

A pharmacological study indicated that PMFs isolated from citrus peels could improve
impaired intestinal barrier function caused by epithelial damage and the dysregulation
of tight junction proteins, modulating the gut microbiome toward a healthier profile [36].
In our study, the presence of more PMF metabolites, such as 5-Demethylnobiletin, Isosi-
nensetin, 3,5,6,7,8,3′,4′-Heptamethoxyflavone, and 6-Demethoxytangeretin, in the peel than
in the pulp, tended to strengthen the regulating qi and aid the digestive effects of AFIs.
AFIs’ pharmacological action and therapeutic effectiveness may differ depending on the
types and quantities of these pharmacologically active metabolites.

The clinical effectiveness of traditional Chinese medicine, particularly its active in-
gredients, is impacted by the intricate chemical makeup of medicinal plants [37]. The
difference in metabolites between the peel and the pulp resulted in the quality of the AFIs,
affecting clinical outcomes. This research via metabolomics analysis may provide a partial
scientific basis for the quality evaluation of AFIs. The correlation between the types or
contents of components in the peel and pulp of AFIs and AFIs’ qualities or efficacy still
needs further verification, such as the impact of different varieties and habitats.

4. Materials and Methods
4.1. Plant Materials

The study materials for the widely targeted metabolomics analysis consisted of imma-
ture fruits of Citrus aurantium L., which were obtained from Liugongmiao Town, Zhangshu
City, Jiangxi Province, China, in June 2022. In addition, the study materials for the determi-
nation of antioxidant capacities included 12 groups of immature fruits of Citrus aurantium
L. which were bought from a traditional Chinese medicine market in Jiangxi Province,
China. The pulp was gently peeled off using tip tweezers to separate the pulp from the
peel (Figure 9). The samples were packed in polythene pouches and stored at 20 ◦C in a
pharmaceutical cooling cabinet until further analysis.
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4.2. Reagents

Liquid chromatography-grade acetonitrile and methanol were acquired from Merck
(Darmstadt, Germany). Aladdin (Shanghai, China) provided the formic acid and potassium
persulfate. 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2-azino-bis-(3-ethylbenzothiazoline-
6-sulphonic acid) diammonium salt (ABTS) were obtained from Macklin (Shanghai, China).

4.3. Widely Targeted Metabolomics Analysis
4.3.1. Sample Preparation and Extraction

The peel and pulp samples were vacuum freeze-dried in a lyophilizer (Scientz-100F;
SCIENTZ, Ningbo, China), and they were then ground into a fine powder using a grinder
(MW400; Retsh, Haan, Germany) at 30 HZ for 1.5 min. Then, 50 mg of powder was
mixed with 1.2 mL of 70% aqueous methanol, vortexed 6 times for 30 s every 30 min,
and left at 4 ◦C overnight. The supernatant was separated and filtered using microporous
membranes (0.22 µm pore size, ANPEL, Shanghai, China) and then stored in vials following
centrifugation at 12,000 rpm for 10 min. The peel and pulp samples were divided into
two groups; each sample had three biological replicates. Quality control (QC) samples
were prepared by mixing extracts and inserting one QC sample for every two samples
analyzed [21,38,39].

4.3.2. UHPLC Conditions and ESI-Q TRAP-MS/MS

The extracts were analyzed using a UPLC-ESI-MS/MS system (UPLC, ExionLC™ AD;
MS, Applied Biosystems 4500 Q TRAP, AB Sciex, Foster City, CA, USA). The analytical
parameters were as follows: UPLC—an Agilent SB-C18 (1.8 µm, 2.1 mm × 100 mm, Agilent,
Santa Clara, CA, USA) chromatographic column was applied. The mobile phase consisted
of solvent A (pure water containing 0.1% formic acid) and solvent B (acetonitrile containing
0.1% formic acid). The samples were determined using a gradient program with a starting
condition of 95% solvent A and 5% solvent B. A linear gradient to 5% solvent A and 95%
solvent B was conducted within 9 min and kept in this state for 1 min. Within 1.1 min, a
composition of 95% solvent A and 5.0% solvent B was programmed and kept for 2.9 min.
The column oven was set to 40 ◦C. The flow velocity was set at 0.35 mL per minute. The
injection volume was 4 µL, and the effluent was alternatively connected to an ESI–triple
quadrupole–linear ion trap (Q TRAP) MS system [21,24,39].

The triple quadrupole–linear ion trap mass spectrometer (Q TRAP) API 4500 Q TRAP
UHPLC/MS/MS System, equipped with an ESI Turbo Ion-Spray interface, operated
in positive and negative ion modes and was controlled by Analyst 1.6.3 software (AB
Sciex, Foster City, CA, USA). The ESI source operation conditions were as follows: ion
source—turbo spray; source temperature—550 ◦C; ion spray voltage (IS)—5500 V (positive
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ion mode)/—4500 V (negative ion mode); and ion source—gas I (GSI), gas II (GSII), and
curtain gas (CUR), which were set at 50, 60, and 25 psi, respectively; the collision-activated
dissociation (CAD) was high. QqQ scans were acquired as MRM experiments with the
collision gas (nitrogen) set to medium [21,37,39].

4.3.3. Analyzing Metabolites Qualitatively and Quantitatively

Based on the self-built database MWDB (MetWare Biological Science and Technology
Co., Ltd., Wuhan, China), primary and secondary mass spectrometry data were analyzed
qualitatively. During the data analysis, repetitive signals made up of NH4+, Na+, and K+, as
well as isotope signals and fragments of other compounds with a higher molecular weight,
were eliminated [39].

Utilizing triple quadrupole mass spectrometry, metabolites were analyzed quantita-
tively using the multiple-reaction-monitoring (MRM) mode. In the MRM mode, QqQs were
used to select single-fragment ions with the desired characteristics. All chromatographic
peaks were submitted to area integration and correction by MultiQuantv 3.0.2 (AB Sciex,
Concord, ON, Canada) after the metabolite mass spectrometry data were collected for
each sample. Chromatographic peak area integrals expressed the corresponding relative
metabolite contents [37,39].

4.3.4. Multivariate Statistical Analysis

In order to achieve data standardization and homogenous variance, the metabolite
data were log-transformed to normalize them. Metabolites from the two groups of samples
were used for a principal component analysis (PCA) within R (base package 3.5.1), a
cluster analysis with R (ComplexHeatmap 2.8.0), and an orthogonal partial least squares
discriminate analysis (OPLS-DA) within R (MetaboAnalystR 1.0.1). Differential metabolites
were annotated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) compound
database (http://www.kegg.jp/kegg/compound/; accessed on 21 October 2022), and the
annotated metabolites were then mapped to the KEGG pathway database (http://www.
kegg.jp/kegg/pathway.html; accessed on 21 October 2022).

4.4. Determination of Antioxidant Capacities
4.4.1. Sample Preparation and Extraction

The peel and pulp samples were ground into a powder and sieved through a 65-mesh
sieve, respectively. Then, the extracts were extracted by carrying out a refluxing extraction
with 0.5 g of the powders and 10 mL of deionized water at 100 ◦C for 1 h. The filtered
residue was refluxed and extracted for 1 h as before. After combining and concentrating
the filtrate, the enriched solution was diluted to a suitable concentration.

4.4.2. DPPH Assay

The DPPH assay followed the method described by Guo et al., with some modifica-
tions [21,40,41]. That is, 0.1 mL of a 0.2 mM DPPH• methanolic solution as mixed with
0.1 mL of extracted solutions at varying concentrations (0.001~0.9 mg·mL−1), which were
provided in microtubes. The mixture was automatically shaken, and the absorbance was
measured at 517 nm (SpectraMax® iD3, Molecular Devices, San Jose, CA, USA) immediately
after incubation at 25 ◦C for 30 min. Vitamin C (VC) was employed as a positive control.
The DPPH radical scavenging capacity was calculated using the following formula:

Scavenging rate(DPPH)% = 1 −
(

Asample − Acontrol
)

Ablank
(1)

where Asample is the absorbance of the DPPH• methanolic solution with the extracted
solution, Acontrol is the absorbance of the methanolic solution with the extracted solution,
and Ablank is the absorbance of the DPPH• methanolic solution with deionized water.
The concentration required for the half-maximal inhibitory concentration (IC50) was used

http://www.kegg.jp/kegg/compound/
http://www.kegg.jp/kegg/pathway.html
http://www.kegg.jp/kegg/pathway.html
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to represent the antioxidant activities using GraphPad Prism 8.0.2 software (GraphPad,
San Diego, CA, USA).

4.4.3. ABTS Assay

The ABTS assay followed the method described by Opitz et al., with some modifi-
cations [40–42]. That is, 2.5 mM potassium persulphate was added to a 7.4 mM ABTS
aqueous solution (1:1, v/v), and the reaction was carried out at 25 ◦C for 12 h under
light-protected conditions. The ABTS•+ solution was diluted with absolute methanol to an
absorbance of 0.70 ± 0.02 at 734 nm to obtain an ABTS•+ radical working solution. Then,
0.1 mL sample extracts with varying concentrations (0.001~0.6 mg·mL−1) were added
to the ABTS•+ solution in a microplate. The mixture was automatically shaken, and the
absorbance was measured at 734 nm immediately after incubating it at 25 ◦C for 6 min. VC
was employed as a positive control. The ABTS radical scavenging ability was calculated
using the following formula:

That is, 2.5 mM aqueous potassium persulfate (1:1, v/v) was added to a 7.4 mM
aqueous ABTS solution, and the reaction was carried out at 25 ◦C for 12 h under light-
protected conditions.

Scavenging rate(ABTS)% = 1 −
(

Asample − Acontrol
)

Ablank
(2)

where Asample is the absorbance of the ABTS•+ solution with the extracted solution, Acontrol
is the absorbance of the methanolic solution with the extracted solution, and Ablank is the
absorbance of the ABTS•+ methanolic solution with deionized water. The concentration
required to reach the IC50 was used to represent the antioxidant activities using GraphPad
Prism 8.0.2 software.

5. Conclusions

In this study, a UHPLC-QqQ-MS/MS-based metabolomics approach was used to
evaluate differences in metabolites between the peel and pulp of AFIs. This is the first
report of metabolomics in AFIs, and a total of 1327 metabolites in Citrus aurantium L. were
identified. In total, 695 significantly different metabolites were identified by comparing the
peel and the pulp. A metabolic pathway analysis of the differential metabolites revealed
that the biosynthesis of secondary metabolites was significantly enriched, and flavonoid
biosynthesis demonstrated more differential metabolites. Furthermore, the aqueous extracts
from the peel showed stronger antioxidant capacities than those from the pulp.

In summary, based on the quality evaluation, which included chemical aspects and
biological effects, we found that the peel had higher levels of some active ingredients
and increased antioxidant activities in comparison with the pulp. Therefore, the scientific
connotation of the traditional quality evaluation standard in which “AFIs with a higher
proportion of peel thickness are more efficacious” was preliminarily confirmed. The study
of different fruit parts might provide a guide for AFI quality assessments.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29081733/s1, Figure S1: Total ion current of one quality
control sample by mass spectrometry detection (A,B) and multi-peak detection plot of metabolites
in the multiple reaction monitoring mode (C,D). A and C were acquired in positive ionization
mode. B and D were acquired in negative ionization mode. The abscissa is the retention time of
the metabolite and the ordinate is the ionic strength of the ion. Each different color mass spectrum
peak represents a detected metabolite; Figure S2: Total ions current overlaps of the three quality
control samples by mass spectrometry detection. A, TIC overlay plot in positive ionization mode. B,
TIC overlay plot in negative ionization mode. The abscissa is the retention time of the metabolite
and the ordinate is the ionic strength of the ion.; Table S1: Metabolite information of peel and pulp;
Table S2: List of differential metabolites between peel and pulp; Table S3: Pathway annotation and
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enrichment analysis of key differential metabolites using KEGG pathway database; Table S4: List of
significant pathways.
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