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Abstract: A series of boron-promoted Ni-Co/Ca catalysts were synthesized by the sol–gel method to
enhance syngas generation from biomass pyrolysis. The efficiency of these catalysts was evaluated
during the pyrolysis of rice straw in a fixed-bed reactor, varying the Ni/Co ratio, boron addition,
calcination temperature, and residence time. The catalysts underwent comprehensive characterization
using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy
(SEM), and hydrogen temperature-programmed reduction (H2-TPR). The results indicated that the
Ni-Co/Ca catalysts yielded superior syngas compared to singular Ni or Co catalysts, suggesting a
synergistic interplay between nickel and cobalt. The incorporation of 4% boron significantly decreased
the particle size of the active metals, enhancing both the catalytic activity and stability. Optimal
syngas production was achieved under the following conditions: a biomass-to-catalyst mass ratio of
2:1, a Ni-Co ratio of 1:1, a calcination temperature of 400 ◦C, a pyrolysis temperature of 800 ◦C, and a
20 min residence time. These conditions led to a syngas yield of 431.8 mL/g, a 131.28% increase over
the non-catalytic pyrolysis yield of 188.6 mL/g. This study not only demonstrates the potential of
Ni-Co/Ca catalysts in biomass pyrolysis for syngas production but also provides a foundation for
future catalyst performance optimization.

Keywords: syngas production; biomass pyrolysis; B addition; Ni-Co/Ca catalysts; resource utilization

1. Introduction

As the world’s energy demand increases, fossil energy consumption generates a
large amount of CO2. This situation can lead to serious energy security and ecological
problems. On the one hand, the conversion of organic matter into fossil fuels takes millions
of years, leading to the depletion of nonrenewable energy resources [1,2]. Furthermore, the
combustion of fossil fuels releases sulfur dioxide (SO2), a toxic gas, and carbon dioxide
(CO2), a potent greenhouse gas. These emissions contribute to environmental challenges
such as acid rain and disrupt the ecological equilibrium [3]. I t has become a significant
trend to meet the current energy demand while maintaining sustainability. In contrast to
traditional fossil fuels, hydrogen (H2) is a clean energy source that produces only water and
heat upon combustion. It does not emit greenhouse gases such as CO2, which contribute to
pollution and global warming. Furthermore, hydrogen can be produced from renewable
energy sources, reducing our dependence on nonrenewable fossil fuels [4]. This makes
it a promising alternative for a more sustainable future. Lignocellulosic biomass is a
promising renewable resource that is widely available and abundant in locations with large-
scale planting, such as China. According to the National Report on the Comprehensive
Utilization of Crop Straw by Chinese Government, in 2021, there were 647 million tons of
crop straw utilized nationwide, indicating a wide range of utilization prospects for straw in
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China [5]. It has zero net CO2 emissions and is one of the most promising solutions to global
warming caused by the transitional use of fossil resources. According to the International
Energy Agency (IEA) report, the share of renewable energy in global electricity generation
rose from 27% in 2019 to 29% in 2020. The use of bioenergy in industry increased by 3%.
It is expected that in 2021, the proportion of renewable energy in electricity generation
will reach a historical high of 30%. Consequently, biomass is expected to become a viable
alternative to fossil energy [6–8].

Renewable energy can be transformed into a hydrogen-rich gas through two primary
methods: thermochemical conversion and bioconversion. Thermochemical conversions
stand out for their cost-effectiveness and the relative maturity of the technology. They
excel in decomposing carbonaceous materials, breaking chemical bonds, and harnessing
energy efficiently [9,10]. Pyrolysis involves transforming biomass into char, bio-oil, and
gases—predominantly carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), and
methane (CH4)—within a high-temperature, oxygen-free environment. However, the
process generates substantial quantities of bio-oil and CO2, making it increasingly critical
to address the challenge of effectively removing these by-products [11].

When comparing biomass energy conversion technologies such as pyrolysis and
gasification, although gasification can directly convert biomass into syngas at higher tem-
peratures, expanding its range of chemical product applications, this technology faces
challenges including higher energy consumption, strict feedstock pretreatment require-
ments, higher initial investment and operational costs, and the potential production of
difficult-to-handle by-products, limiting its widespread application. In contrast, pyrolysis
technology, with its lower operational temperatures, strong adaptability to feedstocks,
relatively lower technical and economic barriers, and the environmental and economic
benefits of its by-product, biochar, offers a more efficient, flexible, environmentally friendly,
and economically viable pathway for biomass energy conversion. Pyrolysis not only effec-
tively reduces the complexity and cost of by-product handling but also enhances the yield
and quality of syngas through optimized operational conditions, achieving the high-value
utilization of biomass resources [12]. Therefore, based on a comprehensive assessment of
energy conversion efficiency, technological adaptability, environmental benefits, and eco-
nomic considerations, pyrolysis emerges as the preferred technology pathway for syngas
production, aiming to meet production needs while delivering additional environmental
and economic benefits.

In generating hydrogen-rich synthesis gas (syngas) through biomass pyrolysis, the
incorporation of catalysts plays a pivotal role not only in amplifying the gas yield but also
in enhancing the selectivity towards the desired product [13,14]. The selection of a suitable
catalyst can promote tar reforming and selectively control the pyrolysis products through
CO2 adsorption [15]. Nickel-based catalysts are recognized for their effectiveness in facil-
itating hydrogenation reactions. They offer several advantages, including high catalytic
activity, cost-effectiveness, and wide availability. Given their exceptional performance in
catalysis, they are broadly utilized in the steam reforming of biomass to generate hydro-
gen [16]. Additionally, cobalt (Co) plays a crucial role in facilitating the cleavage of C-C
bonds and amplifying water–gas shift reactions, thereby promoting H2 generation [17,18].
Furthermore, calcium oxide (CaO) is abundant and inexpensive, reacting easily with CO2 at
650 ◦C to 750 ◦C for CO2 absorption. At 850 ◦C to 900 ◦C, the generated calcium carbonate
(CaCO3) is reduced for recycling [19].

Xu et al. [20] developed a series of Ni/CaO catalysts and systematically analyzed
their efficacy in the catalytic pyrolysis of herbal residues. The results demonstrated that
incorporating Ni into CaO could effectively enhance its anti-deactivation capability for the
cyclic adsorption of CO2. Moreover, at 700 ◦C, the addition of a 10% Ni/CaO catalyst not
only improved the gas yield to 325.3 mL/g but also decreased the tar output. Lu et al. [21]
investigated the Ni/Ca-promoted Fe catalyst’s potential for sustainable hydrogen genera-
tion, revealing that the incorporation of Ca and Ni effectively promoted the dispersion of
Fe particles. The Fe/Ca/Ni catalyst system significantly increased the production of light
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oil and hydrogen-rich gas. For instance, San-José-Alonso et al. [22] documented that the
5Fe1.5Ca0.8Ni catalyst reached a maximum hydrogen yield of 91.19 mL/g at 750 ◦C. The
investigation into alumina-supported NiCo catalysts aimed at identifying active and stable
catalysts. The findings indicated that catalysts containing both Co and NiCo facilitated
significant carbon build-up during the dry reforming of methane, which subsequently led
to diminished catalytic activity. In contrast, Santamaria et al. [23] reported that catalysts
with a higher Co content exhibited enhanced catalytic performance, and they conducted a
similar study and found that the formation of Ni-Co alloys in bimetallic catalysts prevented
the formation of Co0 and thus improved the catalyst activity. Additionally, Wu et al. [24]
discovered that adding boron facilitated the catalytic performance and selectivity of the
NiCeZr catalyst in ethanol steam reforming. It enhanced the decomposition of acetalde-
hyde and reduced the selectivity for acetone. This reduced the formation of coke. Singh
et al. [25] demonstrated that adding 1% and 2% boron to Ni/SBA-15 could enhance the
conversion of CH4 and CO2 in the dry reforming of ethanol while effectively controlling the
particle size of NiO. However, excessive boron may obstruct the pore channels of SBA-15
and consequently diminish catalytic activity. Thus, it is imperative to select an optimal
amount of boron doping.

Building on the findings of the previous studies, we employed the sol–gel method
to synthesize a series of Ni-Co/Ca catalysts, aiming to preserve their porous structure
and thermal stability [26]. Our study investigated the effects of incorporating boron into
Ni-Co catalysts to improve their catalytic activity in producing syngas. Additionally,
we evaluated how variations in active metal content, calcination temperature, residence
time, and pyrolysis temperature affect the syngas yield from biomass pyrolysis, aiming
to experimentally determine the most favorable conditions. Furthermore, we examined
the effect of boron addition on catalyst activity and employed characterization techniques,
including XRD, H2-TPR, BET, and SEM, to assess differences in the physicochemical
structures of the catalysts.

2. Results
2.1. Characterizations of Catalysts
2.1.1. XRD

Figure 1 displays (XRD) patterns for both fresh and utilized catalysts. In the case of
the fresh catalyst, prior to the incorporation of boron, distinct peaks characteristic of NiO
were identified at 2θ angles of 37.25◦, 43.29◦, and 62.85◦ (JCPDS No. 44-1159). Similarly,
peaks denoting the presence of CoO were discerned at 2θ = 36.51◦, 42.41◦, and 61.52◦, as
per JCPDS No. 43-1004. These observations confirm that the active metals were initially
present in their oxide forms. Upon introducing boron into the catalyst composition, a
gradual attenuation in the intensity of these oxide peaks was observed. This trend persisted
until the addition of 10% boron, beyond which the original oxide peaks vanished, leaving
behind only faint characteristic peaks of Ni and Co. This phenomenon suggested that boron
addition effectively enhances the dispersion of active metals within the catalyst matrix [27].
The particle size of NiO in the fresh catalyst, before the addition of boron, was determined
to be 21.4 nm using Scherrer’s formula. When the boron content was increased to 4%, a
notable reduction in the NiO particle size to 5.0 nm was observed. This significant decrease
in particle size further corroborated the role of boron in diminishing the particle size of the
catalysts. Such findings are consistent with the results presented by Fouskas et al. [28]. In
the used catalyst samples, those devoid of boron supplementation exhibited distinctive
peaks corresponding to CaO. Conversely, such characteristic peaks appeared subdued in
the boron-enriched samples, suggesting that boron’s inclusion may deter the sintering of
CaO under elevated temperatures. It is noteworthy that no characteristic peaks of CaCO3
were found in the XRD pattern, which may be due to the presence of H2 in the generated
syngas, which reacts with CaCO3 to form CaO [29]. Furthermore, all utilized catalysts
presented characteristic peaks indicative of NiCx, attributable to carbon deposition [30].
However, the incorporation of boron was observed to diminish the intensity of these peaks,



Molecules 2024, 29, 1730 4 of 15

indicating boron’s efficacy in mitigating carbon deposition [31]. A comparative analysis
of the catalysts, each incorporating boron at concentrations of 4% and 10%, unveiled a
discernible contrast in their peak intensities. Specifically, the catalyst with a 4% boron
content exhibited a diminished peak intensity relative to its 10% boron counterpart. This
observation underscores the pivotal role of boron content in enhancing the crystallinity and
mitigating carbon deposition on the catalysts. Furthermore, a universal increase in particle
size was observed across all utilized catalysts when compared to their pristine counterparts
(see Table 1 below), signifying that metal aggregation transpired to a certain extent during
the catalytic reaction process.
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Figure 1. XRD pattern of the fresh and used catalysts: (a) fresh catalysts, (b) used catalysts. 
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Table 1. Particle size in the sample according to the Scherrer formula.

Samples Fresh 0%
B (nm)

Used 0% B
(nm)

Fresh 4%
B (nm)

Used 4% B
(nm)

Fresh 10%
B (nm)

Used 10%
B (nm)

NiO 21.4 65.8 5.0 - - -
Ni - 31.7 8.8 13.2 10.1 14.8

CoO 20.7 28.5 4.7 - - -
Co - 36.9 6.8 19.4 11.2 16.0

CaO - 66.4 - - - -

2.1.2. N2 Adsorption/Desorption

The physicochemical attributes of both fresh and spent catalysts are delineated in
Table 2. The nitrogen adsorption–desorption isotherms, along with the pore size distri-
bution for these catalysts, are depicted in Figure 2. The specific surface areas of the fresh
catalysts were observed to be in the range of 20–30 m2/g, which notably tended to be aug-
mented subsequent to utilization. This increase was particularly pronounced for catalysts
with a 4% boron composition, a phenomenon attributable to the redistribution of catalyst
particles post use and the emergence of a more porous network structure (Figure 3) [32].
Such structural modifications not only enhanced the pore volume but also augmented
the available pore space conducive to the incorporation of active metal species, thereby
elevating the specific surface area of the catalyst. Conversely, catalysts composed of 10%
boron exhibited a reduction in pore volume. This phenomenon was linked to the conver-
sion of numerous rod-like structures into more voluminous, filamentous configurations
post use, which, while occupying substantial pore channels, also enriched the catalyst’s
specific surface area. This structural evolution was crucial as it significantly influenced
the catalyst’s functionality and durability. The augmented specific surface area played a
pivotal role in enhancing catalytic activity; however, the diminished pore volume could
have potentially impinged on the pore architecture and the catalyst’s long-term stability.
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Moreover, in both pristine and spent catalysts, the inclusion of 10% boron resulted in
larger pore sizes compared to those containing 4% boron. This observation underscored
the role of boron in augmenting the pore dimensions [33]. Table 2 reveals that the fresh
catalyst enriched with 10% boron exhibited a greater pore volume compared to its used
counterpart, a contrast not observed in the catalyst with 4% boron addition. According to
the IUPAC classification, all catalysts displayed characteristic type IV isotherms, with fresh
catalysts showing H3 hysteresis loops and used catalysts exhibiting H4 hysteresis loops.
This indicated that the fresh catalysts possessed mesoporous structures with slit-like pores
created by loosely aggregated particles, whereas the used catalysts maintained the presence
of slit pores [34,35]. The data presented in Table 2, alongside the pore size distribution
illustrated in Figure 2, reveal the existence of mesoporous structures within the catalysts,
characterized by pore sizes predominantly ranging from 0 to 20 nm. Notably, the pore
size distribution underwent a modification upon the catalysts’ utilization, evidenced by
a reduction in pore sizes to varying extents. Specifically, Table 2 demonstrates that the
catalyst containing 10% boron experienced a decrease in pore size by 0.9 nm following
its application, whereas the catalyst comprising 4% boron witnessed a reduction of ap-
proximately 0.6 nm in pore size. This observation underscored the dynamic nature of the
catalysts’ mesostructures under operational conditions and highlighted the influence of
boron content on the resilience of pore architecture post utilization.

Table 2. Textural properties of the fresh and deactivated catalysts.

Catalyst SBET (m2/g) Pore Volume (cm3/g) Pore Size (nm)

10% B 29.0 0.11 7.3
4% B 20.4 0.05 6.9

Used 10% B 33.8 0.06 6.4
Used 4% B 53.2 0.09 6.3
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2.1.3. SEM

SEM analysis was used to investigate the surface morphology of the catalysts. Figure 3
shows the SEM images of the fresh catalyst (left) and used catalyst (right) and their EDS
images. The surface of the fresh catalyst without B addition exhibited a bumpy structure
(Figure 3a left), with surface masses increasing significantly after use (Figure 3a right). In
contrast, all fresh catalysts with B addition displayed specific structures; for example, the
surface of the fresh catalyst with 4% B addition (Figure 3b left) showed a tight accumulation
of spherical particles [36], which was associated with NiO or/and CoO particles [15]. This
structure effectively promoted gas diffusion within the catalyst, thus enhancing catalytic
performance. In contrast, the fresh catalyst with 10% B addition (Figure 3c left) had a
smoother carrier surface with numerous strip-like columnar structures. Additionally, the
morphology of these B-loaded catalysts, when used, differed significantly from those
without B. The surface of the catalysts without B was disordered and accompanied by
lumps. The catalysts loaded with 4% B exhibited a porous mesh structure, increasing the
specific surface area, whereas those loaded with 10% B developed a filamentous structure
after use. Moreover, the analysis of EDS images for the freshly prepared 4% B-enhanced
Ni-Co/Ca catalyst (Figure 3d) and the 10% B-enhanced Ni-Co/Ca catalyst (Figure 3e) not
only confirmed the successful loading of active metal elements onto the surface of the
catalysts but also unveiled the uniform dispersion of these metallic elements across the
catalyst surfaces.

2.1.4. H2-TPR

To delve deeper into the stability of the catalyst, especially under actual use conditions,
H2-TPR measurements were conducted on the used catalysts, as shown in Figure 4. This
analysis aimed to examine the reduction behavior of the catalysts after use and the inter-
action between nickel species and the carrier, thereby offering direct evidence of catalyst
stability. Within the temperature range of 200 to 700 ◦C, two significant H2 consumption
peaks were observed, corresponding to the reduction of exposed oxide species and their
interaction with the carrier [37].
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Specifically, the reduction peak near 310 ◦C primarily originated from the reduction of
free oxide species on the carrier surface, while the significant reduction peak near 690 ◦C
was due to the reduction of oxide species that strongly interacted with the carrier [38], a
process that consumed a substantial amount of H2 [39]. The presence and characteristics of
these reduction peaks indicated that the catalysts retained their reduction properties even
after use, serving as an important sign of catalyst stability.
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Comparing the H2-TPR analysis of the three catalysts, we found that the reduction
temperatures of these catalysts were essentially the same, indicating that the role of the
metal carriers within the catalysts did not change significantly before and after the addition
of boron, further emphasizing the stability of the catalysts during the reaction process.
Notably, the catalysts without the addition of boron exhibited stronger reduction peaks,
suggesting that a larger particle size of NiO/CoO facilitated the reduction of oxides. This
not only revealed the impact of boron addition on the catalyst particle size but also high-
lighted the potential role of boron in enhancing catalyst resistance to carbon build-up and
promoting catalyst stability [40]. Conducting H2-TPR tests on used catalysts revealed their
retained reduction properties after reaction, providing important evidence of the catalyst’s
ability to resist carbon accumulation and maintain activity.

2.2. Analysis of Influencing Factors
2.2.1. Ni/Co Ratio

Figure 5 shows the effect of the Ni and Co active metal ratios on the pyrolysis gas
yield. The four main pyrolysis gas products from rice straw are H2, CO, CO2, and CH4.
It can be observed that single Ni catalysts or Co catalysts are much less effective than Ni
Co bimetallic catalysts. Due to the synergy, the H2 yield with Ni-Co bimetallic catalysts
is around 200 mL/g. Li et al. [39] demonstrated that bimetallic Ni-Co catalysts had a
slightly higher conversion rate of CH4 and CO2 in methane reforming with CO2 (MRC)
compared to monometallic Ni or Co catalysts, attributed to the synergistic effect of the Ni
and Co transition metals. However, the highest H2 yield of 227.6 mL/g was obtained at
a Ni-to-Co ratio of 1:1. In addition, the yield of CO was relatively stable, and the yield
reached its peak when the ratio of Ni-Co was 1: 1, which was 204.2 mL/g, indicating the
similar catalytic performance in generating CO. With the continuous addition of Co, the
CO2 content increased gradually, reaching its maximum when only Co was used. This
shows that CO and CO2 are more likely to be produced in the presence of Co.
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2.2.2. Residence Time

Residence time refers to the duration that the catalyst remains in contact with the
reactants under specific conditions. A longer residence time favors secondary pyrolysis,
reducing the yield of bio-oil and increasing the production of gaseous components [41]. The
pyrolysis experiment on rice straw was conducted at 800 ◦C [42] using a 4% B-Ni-Co/Ca
catalyst with a Ni-to-Co ratio of 1:1. Figure 6 shows the effect of residence time on the
distribution of gas products. H2 and CO accounted for the majority of the generated gas
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components, accounting for more than 75% of the total gas. Notably, after 20 min, including
at the 20 min mark, the total syngas (CO + H2) content exceeded 80%. However, Lan
et al. [43] reported the highest syngas level at only 78.9%. With increasing residence time,
the total gas volume rose from 481.8 mL/g at 10 min to 565.2 mL/g at 40 min. The variation
in the production of H2 and CH4 was not significant. However, the CO2 content decreased
from 100.8 mL/g to 73.2 mL/g, and the CO content gradually increased from 171.0 mL/g
to 243.6 mL/g, mainly due to the conversion of CO2 to CO and the further cracking of tar
(C + CO2 → 2CO, CO2 + H2 → CO + H2O and CnHm + nCO2 → 2nCO + m/2H2) [44–46].
In summary, a longer residence time leads to more complete straw pyrolysis and a higher
production of syngas.
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2.2.3. Calcination Temperature

Changes in calcination temperature significantly impact the activity and stability
of catalysts during the catalytic process [47]. As shown in Figure 7, as the calcination
temperature increased, the total gas emission decreased [42]. CO, H2, and CO2 all decreased
significantly when the calcination temperature was increased from 400 to 500 ◦C. Emissions
continued to decrease beyond 500 ◦C though by a lesser amount. This decrease may
be attributed to the higher calcination temperature, accelerating CaO sintering. Wang
et al. [48] also found that an increase in calcination temperature leads to the sintering and
aggregation of metal oxide particles. Furthermore, Ma et al. [49] determined that excessively
high calcination temperatures significantly decrease the surface area and pore volume of the
catalyst while simultaneously forming metal clusters, leading to a deterioration in catalyst
performance. Additionally, catalysts calcined at low temperatures may exhibit lower
interaction between the active component and the carrier due to minimal carrier sintering,
resulting in the highest syngas yield of 436.2 mL/g (H2: 227.6 mL/g, CO: 208.6 mL/g) at
400 ◦C with the 4% B-Ni-Co/Ca catalyst.
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2.2.4. Addition of B

Due to its unique properties, boron is considered an important component in non-
metallic catalysts [50]. Therefore, the study explored the effect of boron addition (0–10%)
on gas content changes at calcination temperatures of 400 ◦C and pyrolysis temperatures of
800 ◦C. The results were compared with the gas production without a catalyst, as shown in
Figure 8. It was evident that the addition of boron exhibited an interesting trend in terms of
overall gas production. It displayed a pattern of increment followed by decrement and then
increment again with respect to both H2 and CO production. The catalyst activity exhibited
a gradual increase, and the syngas concentration progressively rose when boron was added
from none to 4%. Among them, the syngas concentration reached its peak at 436.2 mL/g
with the 4% addition. Compared to 384.6 mL/g without boron, the increase was 13.42%.
When compared to 188.6 mL/g without a catalyst, the increase was 131.28%. At higher
boron additions (6% and 8%), the catalytic activity of the catalysts was suboptimal, and
the total syngas production was lower than that of the catalysts without boron addition.
Furthermore, the yields of H2 and CO were comparable in the absence of catalyst presence.
Even when the boron-free catalyst was added, the catalysts exhibited similar enhancements
of CO and H2 yields. The yield of CH4 was significantly reduced by the addition of boron
to the catalyst. However, the amount of boron had minimal effect on the yield of CH4.
Furthermore, the XRD and SEM results revealed that boron addition reduced metal particle
size and improved metal distribution on the catalyst surface, forming a more ordered
structure. This enhanced the catalytic performance of the catalyst.

The catalyst with 4% boron addition demonstrated evidently enhanced catalytic per-
formance. Its longevity, as depicted in Figure 9, was evaluated and compared to that of
the catalyst without boron. In the initial three trials, the catalyst enriched with 4% boron
markedly increased the syngas yield, producing a higher proportion of H2 relative to CO.
Conversely, with the boron-free catalyst, the yields of H2 and CO were nearly identical.
After adding boron, fluctuations in the H2 levels significantly surpassed those in CO, sug-
gesting that boron primarily affected H2 production. This phenomenon could be attributed
to boron’s role in advancing the carbonation reaction while exerting minimal impact on CO
production [51]. The activity of the 4% boron-containing catalyst significantly diminished
after four uses, with the syngas yield dropping to merely 223.6 mL/g. Conversely, the
boron-free catalyst almost lost its efficacy after three uses, with a syngas yield of 221.8 mL/g.
Nevertheless, these yields were superior to those obtained without any catalyst, which
were recorded at 188.6 mL/g.
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Further investigations, using XRD characterization, revealed the presence of NiCx,
implicating carbon accumulation on the surface as a key factor in catalyst deactivation. The
addition of boron was observed to promote an orderly distribution of metal on the carrier
surface, enhancing the catalyst’s resistance to deactivation. This is in line with findings by
Fouskas et al. [28], demonstrating that boron addition not only reduces the particle size of
Ni but also impedes catalyst coking, consequently extending the operational lifespan of
the catalyst.

3. Materials and Methods
3.1. Catalyst Preparation

The biomass used in the experiments was rice straw, which was sourced from Wuhan,
Hubei Province. The main characteristics of rice straw were shown in our previous studies
and are presented in Table 3 [52]. The rice straw was pulverized and sifted to produce a
powder with particle sizes ranging from 1 to 2 mm, suitable for experimental use. The
Ni(NO3)2·6H2O, Ca(NO3)2·4H2O, Co(NO3)2·6H2O, C6H8O7·H2O, and (CH2OH)2 required
for the experiments were purchased from Sinopharm Chemical Reagent Co, Ltd. And, the
boric acid was purchased from Damao Chemical Reagent Factory. The purchased reagents
are of analytical grade and can be used without any further processing.
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Table 3. Proximate and ultimate analyses of rice straw.

Sample
Ultimate Analysis (wt.%) Proximate Analysis (wt.%)

C H O * N S M A V FC

Rice straw 39.67 5.73 39.51 0.84 0.16 4.21 14.09 76.33 5.37

* The oxygen (O) content was determined by difference. M: moisture content; V: volatile matters; A: ash; FC:
fixed carbon.

A series of B-modified Ni-Co catalysts was prepared using the sol–gel method. In
a 100 mL beaker, 6.60 g of Ca(NO3)2·4H2O was dissolved, followed by the addition of
1.98 g of Ni(NO3)2·6H2O and 1.98 g of Co(NO3)2·6H2O, with stirring for 30 min. To the
mixed solution, 10.29 g of C6H8O7·H2O and 5.46 mL of (CH2OH)2 were added, and the
mixture was stirred for an additional 30 min. The mixed solution was then transferred
to an oil bath and stirred continuously at 95 ◦C for several hours until a gel-like solution
formed. The solution was subsequently dried in an oven at 110 ◦C for 12 h to obtain the
Ni-Co/Ca catalyst. Next, 0.46 g of boric acid was added to the catalyst, dissolved in the
appropriate amount of deionized water. The solution was then placed in an oil bath at
95 ◦C for 2 h, afterwards removed and dried in an oven at 110 ◦C for 12 h. Subsequently,
it was subjected to an inert atmosphere (N2) and calcined at 400 ◦C for 2 h to obtain a
4% B-Ni-Co/Ca catalyst. By adjusting the quantity of boric acid introduced and using
a consistent methodology, catalysts with varying boron content ranging from 0% to 10%
could be synthesized.

3.2. Catalyst Characterization

The crystal structure of the catalyst was examined using a Rigaku Smart Lab SE
instrument with Cu-Kα radiation, scanning from 5◦ to 90◦ at a rate of 5◦/min, under
working conditions of 40 kV and 40 mA.

A ASAP 2460 instrument (Micromeritics, Norcross, GA, USA) was used to assess the
specific surface area, pore volume, and average pore size of the catalysts. The samples
were first degassed under vacuum at 120 ◦C for 6 h before the N2 adsorption–desorption
isotherms were recorded at 77 K. The calculations for the specific surface area and the
pore size distribution of the samples were performed using the BET and BJH methods,
respectively.

The sample surface topography was determined in a ZEISS Gemini 300 instrument.
Trace samples were directly applied to electrically conductive adhesive and then coated
with gold at 10 mA using an SC7620 sputter coater (Oxford Quorum, East Sussex, UK). The
specimen was subsequently imaged at 3 kV using a Gemini SEM300 (ZEISS, Oberkochen,
Germany). At the time of spectrum mapping, the acceleration voltage was 15 kV, and the
detector was an SE2 electron detector.

The programmed temperature rise reduction (TPR) technique was utilized to ascertain
the reduction temperatures for various metal phases within the catalysts. These tests were
conducted using a BELCAT II system (Microtrac, Osaka, Japan). For the pre-treatment
process, each catalyst sample, weighing between 30 and 40 mg, was gradually heated from
ambient temperature to 300 ◦C at a rate of 10 ◦C/min, followed by purging with He gas
(50 mL/min) for 1 h. After cooling to 50 ◦C, the samples were exposed to a 10% H2/Ar
mixture (50 mL/min) for 0.5 h, and then the temperature was increased to 800 ◦C at a rate
of 10 ◦C/min for desorption. The presence of reducing gas was monitored using a thermal
conductivity detector (TCD).

3.3. Catalytic Pyrolysis

The experiments were conducted in a BTF-1200C fixed-bed pyrolysis furnace, where
the straw and catalyst were placed in separate quartz boats, with a mass ratio of 2 g:1 g [53].
Before the investigation began, N2 (100 mL/min) was introduced into the tube furnace
for 30 min to create an inert environment and prevent biomass combustion. Subsequently,
the furnace temperature was increased to the set temperature of 800 ◦C at a heating rate
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of 10 ◦C/min. After a specified reaction time, the gas generated in the tube furnace was
expelled into a gas collection bag using N2. The collected gas was then analyzed using a
Gasboard-3100 infrared gas analyzer, which determined the concentrations of CH4, H2,
CO, and CO2.

4. Conclusions

A comprehensive array of Ni-Co/Ca catalysts was synthesized using the sol–gel
method to evaluate the influence of various parameters on hydrogen production during rice
straw pyrolysis. These parameters encompassed calcination temperatures, residence times,
Ni-Co ratios, and boron (B) addition. Catalysts designated as 4% B-Ni-Co/Ca, characterized
by their fluffy and porous morphology and smaller particle size, were synthesized under
specific conditions, including a calcination temperature of 400 ◦C, a Ni-Co ratio of 1:1,
and a 4% boron addition. These catalysts achieved an exceptional total syngas yield of
436.2 mL/g, comprising 227.6 mL/g of H2 and 208.6 mL/g of CO, at a pyrolysis temperature
of 800 ◦C and a biomass-to-catalyst ratio of 2:1. The results highlighted a synergistic
interaction between nickel and cobalt in facilitating biomass pyrolysis for syngas production.
Furthermore, the addition of boron not only improved the distribution of active metals
on the carrier surface but also contributed to reducing the size of active metal particles.
During catalyst lifetime assessments, the inclusion of boron was found to retard catalyst
deactivation, thereby exhibiting its anti-deactivation properties.
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