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Abstract: The diselenide bond has attracted intense interest in redox-responsive drug delivery sys-
tems (DDSs) in tumor chemotherapy, due to its higher sensitivity than the most investigated bond,
namely the disulfide bond. Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was
designed by coupling two doxorubicin molecules with a diselenodiacetic acid (DSeDAA) molecule via
α-amidation, as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemotherapy.
The drug release profiles indicated that the D-DOXSeSe could be cleaved to release the derivatives se-
lenol (DOX-SeH) and seleninic acid (DOX-SeOOH) with the triggering of high GSH and H2O2, respec-
tively, indicating the double-edged sword effect of the lower electronegativity of the selenide atom.
The resultant solubility-controlled slow drug release performance makes it a promising candidate as a
long-acting DSDS in future tumor chemotherapy. Moreover, the interaction between the conjugations
in the design of self-immolation traceless linkers was also proposed for the first time as another key
factor for a desired precise tumor-specific chemotherapy, besides the conjugations themselves.

Keywords: tumor chemotherapy; dimeric prodrug; diselenide bond; redox triggered; combination of
conjugations; doxorubicin

1. Introduction

Although chemotherapy has been widely used in clinical tumor treatment, it is still
severely toxic and has side effects for patients receiving anticancer treatment. Due to their
nonspecificity, chemotherapeutic drugs exhibit similar cytotoxicity on both tumor cells and
normal cells. Furthermore, the clinical practice of chemotherapeutic agents is restricted
due to their poor aqueous solubility. Therefore, tumor-specific chemotherapy is desired
with nanoscaled drug delivery systems (DDSs) via different targeting strategies to improve
the antitumor efficacy and restrain any toxicity and side effects. Compared with passive
targeting via an enhanced permeability and retention (EPR) effect [1] and active targeting
via overexpressed receptors [2] on the tumor cells, smart targeting has been recognized
as a promising approach as it involves both the tumor intracellular microenvironment-
activated drug release, which is triggered by endogenous stimuli, such as higher glutathione
(GSH) and reactive oxygen species (ROS) levels than normal cells, and the extracellular
environment, as well as the specific enzymes in the tumor cells [3]. For example, in recent
decades, the disulfide bond has been intensely investigated in redox-triggered DDSs for
tumor-specific drug delivery with minimized premature drug leakage before reaching the
tumor cells [4].

Recently, selenide-containing compounds have attracted more attention in tumor
treatment, owing to their anticancer and/or chemopreventive activity [5,6]. Among them,
the diselenide bond has become a research highlight in redox-responsive DDSs for tumor
chemotherapy, because of its higher redox-responsive sensitivity than the most widely
investigated disulfide bond [7–9]. To date, various redox-responsive drug carriers have
been designed for noncovalent drug loading by crosslinking with diselenide-containing
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linkers. Besides the endogenous stimuli-responsive tumor-targeted drug release via the
reduction-responsive de-crosslinking triggered by GSH and/or oxidation-responsive de-
crosslinking triggered by ROS in the tumor intracellular microenvironment [10–19], it can
also be cleaved with exogenous stimuli, such as X-ray [20–22], γ-ray [23] and near-infrared
(NIR) laser [24,25], accelerating the drug release. Moreover, selenide-containing degraded
products can disrupt intracellular redox homeostasis and amplify oxidative stress in cancer
cells [26].

However, carrier-mediated DDSs usually possess lower drug content, besides having
problems related to the toxicity and immunogenicity of the carriers. In particular, for
DDSs using noncovalent drug loading, premature drug leakage is more significant, causing
toxic side effects on normal tissues. Owing to the higher redox-responsive sensitivity, the
premature drug leakage from diselenide-crosslinked DDSs, triggered by very low GSH
levels in the blood (~10 µM), is more severe than disulfide-crosslinked systems. Such
problems are also present in prodrugs, in which chemotherapeutic agents are conjugated
onto carriers via the diselenide bond [27], as well as their low drug content and the
cytotoxicity and immunogenicity of the carriers.

To solve such problems, dimeric prodrugs have been proposed as carrier-free drug self-
delivery systems (DSDSs) with a high drug content, almost to the level of pure drugs [28].
Thus far, the diselenide-bridged dimeric prodrugs that have been reported involve linking
two drug molecules with a diselenide-containing linker via α (β or γ) esterification on
the hydroxyl group of the drugs [29–31]. Although the parent drugs could be released by
redox cleavage and hydrolysis, a distinct premature drug leakage was found even in the
blank-releasing media without any stimulus (~8%) due to the high redox responsiveness
of the diselenide bond [29]. Such DSDSs would cause more severe drug mis-release in
normal cells with higher GSH levels (~2 mM). These results indicated that the desired
precise tumor-specific drug release could not be achieved with the DSDSs controlled by the
combination of α (β or γ)-ester and diselenide bonds.

Here, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was designed
by coupling two doxorubicin (DOX) molecules with a diselenodiacetic acid (DSeDAA)
molecule via α-amide groups (Scheme 1). Triggered by high levels of GSH or H2O2, the
derivatives of the parent drug DOX, selenol (DOX-SeH), and seleninic acid (DOX-SeOOH)
were released. Thus, a solubility-controlled slow drug release was achieved without drug
leakage and mis-release in the media with lower GSH or H2O2 levels. This meant that
the amide linker could not be induced to hydrolyze by selenol or seleninic acid in the
drug derivatives, different from those with the combination of α-ester and diselenide
bonds [26], as well as the combination of α-amide and disulfide bonds [30]. The drug
release behavior demonstrated the double-edged sword effect of the selenide atom with
lower electronegativity than the sulfur atom. Additionally, we suggest that the interaction
between conjugations be considered in the design of self-immolation traceless linkers as
another key factor, besides the conjugations themselves. Such understanding is quite
significant to the design of smarter prodrugs for tumor-specific on-demand drug release in
future tumor chemotherapy.
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2. Results
2.1. Synthesis and Characterization of Diselenide-Bridged Doxorubicin Dimeric Prodrug

The diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was developed
by designing a combination of α-amide and diselenide bonds with DOX and DSeDAA
(Scheme 1). DSeDAA was synthesized with selenide, sodium borohydride (NaBH4), and
chloroacetic acid, according to previously reported work [31]. Due to the symmetrical
structure, there was only one proton signal at δ = 3.76 ppm (Figure 1).
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Figure 1. 1H NMR spectrum of DSeDAA.

Then, the diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was synthe-
sized by coupling two DOX molecules with a DSeDAA molecule. Owing to the higher
activity of the amino group than the hydroxyl groups, the amino group on DOX was
amidated with DSeDAA to form the proposed diselenide-bridged doxorubicin dimeric
prodrug via a combination of β-amide and diselenide bonds. After purification via dialysis
with water to remove the residual reactants, D-DOXSeSe was obtained, and its purity was
revealed with thin-layer chromatography (TLC) on a silica gel plate. The C, H, and N
element contents were determined as 52.52%, 4.52%, and 2.10%, respectively, very near to
the theoretical values.

In its 1H NMR spectrum (Figure 2), the proton in the amide group (He) could be
seen at δ = 7.51 − 7.41 ppm, revealing successful amidation. The proton signals on the
benzene ring and the methyl group in DOX appeared at δ = 7.84 − 7.71 ppm (Hb + d),
δ = 7.65 − 7.54 ppm (Hc), and δ = 1.15 − 1.04 ppm (Hg). The integral area ratio between
the protons on the methyl group and the benzene ring on DOX and the formed amide
group was calculated as 3.00:2.94:0.97, near its theoretical value of 3:3:1, demonstrating the
successful synthesis of the dimeric prodrug via the β-amide conjugation, as illustrated in
Scheme 1. The proton signal of the -CH2- between the amide and diselenide (Hf ) bonds
overlapped with those of the -OCH3 in DOX (Ha) at δ = 3.96 − 3.70 ppm [32], which could
not be used for molecular structure identification directly. However, compared with the
ratio between the protons of benzene ring in DOX (Hb + d at δ = 7.84 − 7.71 and Hc at
δ = 7.65 − 7.54) and Ha (δ = 3.96 − 3.70 ppm) at 3:3, the integral area ratio between the
signals was calculated as 5.06:2.94 in the product, also indicating the successful synthesis
of the dimeric prodrug D-DOXSeSe, as illustrated in Scheme 1.
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Figure 2. 1H NMR spectrum of D-DOXSeSe.

The proposed dimeric prodrug exhibited identical UV–Vis absorption in its dimethyl-
sulfoxide (DMSO) solution as that of DOX solution at the same equivalent DOX molar
concentration, meaning that dimerization did not affect its UV–Vis absorption. So, the
DOX content of the D-DOXSeSe could be determined by measuring the absorption of its
DMSO solution at 480 nm with the UV–Vis technique and calculating it with the calibration
curve of DOX in the DMSO solution. The DOX content of the D-DOXSeSe was calculated as
1.54 × 10−3 mmol/g, very near to the theoretical value of 1.51 × 10−3 mmol/g. This result
also demonstrated the successful synthesis of D-DOXSeSe.

2.2. The Fabrication and Characterization of Diselenide-Bridged Dimeric Prodrug Nanoparticles

The D-DOXSeSe nanoparticles were fabricated by dialyzing its DMSO solution at
different concentrations against water (molecular weight cutoff (MWCO) of 1000). The
hydrodynamic diameter of the D-DOXSeSe nanoparticles increased with an increase in
its concentration in the DMSO solution (Figure 3a). During the dialysis, the D-DOXSeSe
solution in a good solvent (DMSO) slowly transformed into a bad solvent (H2O), leading to
the self-assembly of the D-DOXSeSe via π–π stacking, hydrogen bonding, and hydrophobic
interaction. Aiming to provide more efficient passive targeting via the EPR effect with a
smaller diameter, the dimeric prodrug nanoparticles fabricated at 1.0 mg/mL were selected
for further investigation.
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Figure 3. Hydrodynamic diameters of D-DOXSeSe nanoparticles fabricated at different concentrations
(a) and TEM image of D-DOXSeSe nanoparticles fabricated at 1.0 mg/mL (b).
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The optimized D-DOXSeSe nanoparticles exhibited a nearly spherical shape with a
mean particle size of approximately 150 nm in the transmission electron microscopy (TEM)
observation (Figure 3b). The value was near the mean hydrodynamic diameter of 155 nm
from the dynamic light scattering (DLS) analysis, because they could hardly be swollen in
an aqueous system due to high hydrophobicity.

2.3. Redox-Triggered Drug Release from Diselenide-Bridged Dimeric Prodrug Nanoparticles

The redox-triggered drug release from the proposed D-DOXSeSe nanoparticles was
evaluated in different releasing media, with pH 7.4 phosphate-buffered saline (PBS) and pH
5.0 acetate-buffered solution (ABS) mimicking the acidity of the blood and the intracellular
microenvironment with or without different GSH or H2O2 levels. As shown in Figure 4,
there was no obvious drug release within the first 48 h in the acidic-releasing media
with higher GSH or H2O2 levels, mimicking the tumor intracellular microenvironment
(pH 5.0/10 mM GSH or pH5.0/0.1 mM H2O2). This demonstrates the safety of the proposed
dimeric prodrug-based DSDS, avoiding both the drug leakage in the extracellular media
and the mis-release in normal cells with lower GSH or H2O2 levels. After 96 h, the
cumulative release was only <9% and <2%, respectively. The results indicated that the
proposed D-DOXSeSe nanoparticles could hardly release the drug in the in vitro-simulated
tumor intracellular microenvironment. Increasing the H2O2 concentration to 0.5 mM, a
cumulative release of 32% was achieved, due to the higher solubility of the released drug
(seleninic acid (DOX-SeOOH)) owing to its higher polarity and hydrophilicity.
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However, much higher cumulative release was obtained in such releasing media in the
presence of surfactant (Tween-80 (T), 0.1%), indicating that the drug release was controlled
by the solubility of the released drug [33,34], which was not the parent drug DOX but its
derivates. It has been well reported that the diselenide bond possesses a higher redox-
responsive sensitivity and can be cleaved with high GSH and ROS levels by transforming
to selenol and seleninic acid [7], respectively. However, the aqueous solubility of such
derivates was much lower than the parent drug DOX, due to their derivation from the
amino group in DOX, which could be protonated and could enhance its aqueous solubility
in the acidic media.

To further reveal the cleavage of the diselenide bond in the proposed dimeric prodrug,
the D-DOXSeSe nanoparticles were treated with 10 mM GSH or 0.5 mM H2O2 in methanol–
water (vol: 3/7) at 37 ◦C for 24 h. The solution was analyzed by the HPLC technique with
a flow phase of acetonitrile–water (vol: 3/7) containing 0.1% acetic acid, after filtration.
A new signal emerged at 8.8 min after treating with GSH and 4.6 min after treating with
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H2O2 (Figure 5), indicating that the derivatives selenol (DOX-SeH) and seleninic acid
(DOX-SeOOH) were released after cleaving with GSH and H2O2, respectively (Scheme 2).
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Due to amidation, the D-DOXSeSe became more hydrophobic than DOX. Furthermore,
it formed compact self-assemblers via π–π stacking, hydrogen bonding, and hydrophobic
interaction, which restricted the diffusion of the stimuli into the D-DOXSeSe nanoparticles.
Thus, only the diselenide bond on the surface of the D-DOXSeSe nanoparticles could be
cleaved. However, triggered by the reduction of 10 mM GSH, the selenol derivative (DOX-
SeH) was produced. It exhibited lower aqueous solubility but could be adsorbed onto the
surface of the D-DOXSeSe nanoparticles via the above weak interactions, shielding against
the attacking of GSH on the dimeric prodrug. As a result, no obvious drug release could be
achieved. However, with the help of the solubilization effect of Tween-80, the produced
selenol derivative (DOX-SeH) could be emulsified into the releasing media, facilitating
the exposure and reduction-triggered cleavage of the dimeric prodrug molecules. Thus,
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a sustained drug release was obtained. Although the dimeric prodrug might also be
emulsified with Tween-80 as the selenol derivative (DOX-SeH), it could not penetrate
through the dialysis bag (MWCO of 1000) due to its higher molecular weight.

Distinct from the reduction-triggered drug release with a high GSH level, the cumu-
lative release was also negligible in the releasing medium of pH5.0/0.1 mM H2O2 even
with 0.1% Tween-80. This demonstrated that the diselenide bond could easily be broken
by the reduction of 10 mM GSH, while it was stable with the oxidation of 0.1 mM H2O2
in the simulated tumor intracellular microenvironment. However, the intracellular ROS
level could be upregulated because of the consumption of GSH during the reduction-
triggered cleavage of the diselenide-bridged doxorubicin dimeric prodrug, accelerating the
oxidation-triggered drug release in the real tumor intracellular microenvironment.

2.4. Cellular Uptake and Tumor-Selective Cytotoxicity of Diselenide-Bridged Dimeric
Prodrug Nanoparticles

After co-incubation with the D-DOXSeSe nanoparticles (15 µg/mL) for 24 h, a human
liver cancer cell line (HepG2 hepatocellular carcinoma) was analyzed with confocal laser
scanning microscopy. As shown in Figure 6, the red fluorescence of DOX could be seen in
both the cytoplasm and the nuclei, which were stained with 4, 6-diaminyl-2-phenylindole
dihydrochloride (DAPI) and emitted blue fluorescence. The results indicated that the
D-DOXSeSe nanoparticles could be internalized into the HepG2 cells, and they released the
DOX derivatives in the cytoplasm with the GSH/ROS dual-triggering.
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Figure 6. CLSM images of HepG2 cells after incubation with the D-DOXSeSe nanoparticles (15 µg/mL)
for 24 h: (a) nuclei stained with DAPI, (b) DOX, and (c) the merged image.

Finally, the tumor-selective toxicity of the D-DOXSeSe nanoparticles on the HepG2 cells
and human normal liver cell line (L02 hepatocytes) was assessed in vitro with MTT assays,
in comparison with free DOX. For the human normal liver cell line, free DOX showed
dose-dependent cytotoxicity, while the D-DOXSeSe nanoparticles did not show obvious
cytotoxicity with a cell viability rate of >95% at an equivalent DOX dose of 20 µg/mL
(Figure 7a). As for the human liver cancer cell line, both systems showed dose-dependent
cytotoxicity (Figure 7b). The cell viability was higher after incubation with the D-DOXSeSe
nanoparticles in comparison with free DOX at the same DOX dose due to the slow release
of derivatives selenol (DOX-SeH) and seleninic acid (DOX-SeOOH) in the tumor cells in
which the GSH and ROS levels were higher than those in normal cells. Furthermore, the
derivatization from the amino group in DOX decreased its antitumor efficacy by declining
the insertion in DNA [35]. Therefore, the proposed D-DOXSeSe nanoparticles are expected to
serve as a long-acting sustained-release system to eradicate any residual or latent cancerous
cells, which might lead to the recurrence of tumors [36].
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Figure 7. Cell viability assay in L02 (a) and HepG2 (b) cells of D-DOXSeSe nanoparticles and free
DOX with different concentrations for 48 h, respectively. Values are expressed as mean ± SD (n = 6);
* denotes significant difference p < 0.05.

Generally, the antitumor efficacy of DOX derivatives is usually determined by their
solubility, which controls their release and their insertion in DNA. Although the diselenide
bond could hardly be cleaved in the presence of ROS in tumor cells, the reduction-triggered
cleavage would cause GSH consumption, therefore disrupting the redox balance and
upregulating the ROS level in the tumor cells. An accelerated oxidation-triggered drug
release was expected by exogenous irradiation [20–25], which could produce more ROS.
Thus, a personalized chemotherapy regimen can be proposed with a fast drug release in
the early stage with the help of exogenous irradiation and a slow sustained drug release in
the late stage to eradicate any residual or latent cancerous cells.

3. Discussion

The proposed diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was
revealed to be stable in both the extracellular environment and the intracellular microenvi-
ronment in normal cells but was triggered to release DOX-SeH in the tumor intracellular
microenvironment, which was controlled by its solubility. Although the selenide bond
has higher redox-responsive sensitivity than the disulfide bond, the oxidation-triggered
cleavage of the diselenide bond needs a much higher H2O2 level than in the tumor intracel-
lular microenvironment, especially when diselenide bonds are combined with α-amide, as
revealed in the present work. A slow solubility-controlled drug release was achieved with
the proposed diselenide-bridged dimeric prodrug, indicating a promising application as a
safe long-acting sustained-release system in tumor treatment.

However, it was found that the α-amide derivatives selenol (DOX-SeH) and seleninic
acid (DOX-SeOOH) could hardly transform into the parent drug DOX by the hydrolysis of
the amide group induced by the selenol and seleninic acid groups, although the selenol
and seleninic acid groups have been revealed to induce the hydrolysis of α-ester [30],
γ-carbonate, and γ-carbamate groups [30,37–40]. On the other hand, the thiol group has
also been reported to induce the acid-promoted hydrolysis of α-amide conjugation for
the redox-triggered DOX release from the polymer prodrug conjugated with thiodiacetic
acid [31].

This may be due to the lower electronegativity of the selenide atom, which endows
a higher level of redox-responsive sensitivity for the cleavage of the diselenide bond
but a lower inducing effect for the hydrolysis of the released drug derivatives. It could
only induce the hydrolysis of α-ester, γ-carbonate, and γ-carbamate groups with lower
hydrolysis stability but could not induce the hydrolysis of the α-amide group with higher
hydrolysis stability owing to a “partial” π-bond between nitrogen and carbonyl carbon. A
combination of conjugations should be considered in designing a self-immolation traceless
conjugation in prodrugs, besides the length of diselenide bond-containing linkages [41].



Molecules 2024, 29, 1709 9 of 12

Such understanding is helpful in the future design of diselenide-containing prodrugs for
better tumor-specific chemotherapy.

4. Materials and Methods
4.1. Materials and Reagents

Selenium (Se, ≥99.99%), chloroacetic acid (ClCH2COOH, 99%), and glutathione (GSH,
97%) were purchased from Shanghai Aladdin Bio-Chem Technology Co., Ltd. (Shanghai,
China). Sodium borohydride (NaBH4, 96%) was purchased from Sinopharm Chemical
Reagent Co., Ltd. (Shanghai, China). Hydrogen peroxide (H2O2, 30%) and sodium car-
bonate (Na2CO3,99.5%) were purchased from Damao Chemical Reagent Factory (Tianjin,
China). 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl, 99%)
and N-hydroxysuccinimide (NHS, 98%) were provided from JK Scientific, Ltd. (San Jose,
CA, USA). Doxorubicin hydrochloride (DOX·HCl, 99.4%) was bought from Beijing Huafeng
United Technology Co., Ltd. (Beijing, China). All other reagents and solvents were of
analytical grade and used directly as received. Deionized water was used throughout
the experiments.

4.2. Analysis and Characterization

The molecular analysis of DSeDAA and the proposed diselenide-bridged doxorubicin
dimeric prodrug (D-DOXSeSe) was conducted with 400 MHz 1H NMR (JNM-ECS 400 M,
JEOL, Tokyo, Japan) in DMSO-d6. C, N, and H elemental analyses were performed on
an Elementar vario EL instrument. The reduction and oxidation-triggered cleavage of
the diselenide-bridged dimeric prodrug were studied on a Waters 2690D HPLC system,
equipped with a Waters model 510 HPLC pump (Waters, Milford, MA, USA), a UV–Vis
detector, and a Symmetry C18 column. The morphology and particle size of the D-DOXSeSe
nanoparticles were observed with transmission electron microscopy (TEM, JEM-2100,
Tokyo, Japan) sampling with aqueous dispersion. The hydrodynamic diameter and distri-
bution of the D-DOXSeSe nanoparticles were measured using dynamic light scattering (DLS,
BI-200SM, Brookhaven, NY, USA) in aqueous dispersion. A TU-1901 UV–Vis spectrometer
(Beijing Purkinje General Instrument Co., Ltd., Beijing, China) was used to measure the
DOX concentrations in different media at 480 nm, which were calculated with the cali-
bration curves of DOX in the different media as follows: DMSO: absorbance = 10,400 ×
concentration (mmol/mL) − 0.00183 (R2 = 0.9984); pH 7.4 PBS: absorbance = 10,357 ×
concentration (mmol/mL) + 0.00427 (R2 = 0.9968); pH 5.0 ABS: absorbance = 12,132 ×
concentration (mmol/mL) + 0.00367 (R2 = 0.9980); pH 7.4 PBS + 10 mM GSH: absorbance =
11,416 × concentration (mmol/mL) + 0.00500 (R2 = 0.9947); pH 5.0 ABS + 10 mM GSH:
absorbance = 12,283 × concentration (mmol/mL) + 0.00490 (R2 = 0.9963); pH 5.0 ABS +
0.1 mM H2O2: absorbance = 11,648 × concentration (mmol/mL) + 0.00428 (R2 = 0.9971);
pH 5.0 ABS + 0.5 mM H2O2: absorbance = 11,356 × concentration (mmol/mL) + 0.00273
(R2 = 0.9987).

4.3. Synthesis Procedure

Diselenodiacetic acid (DSeDAA) was synthesized according to the reported procedure
with minor modifications [31]. Typically, Se (1.6 g, 0.02 mol, 1.0 eq) was dispersed in 20 mL
of water in an ice-water bath under an Ar atmosphere. A NaBH4 (1.5 g, 0.04 mol, 2.0 eq)
aqueous solution was added to the Se dispersion. After the solution became colorless, Se
(1.6 g, 0.02 mol, 1.0 eq) was added, and the mixture was stirred at 60 ◦C until the Se powder
was completely dissolved. Then, 20 mL of the chloroacetic acid aqueous solution (3.8 g,
0.04 mol, 2.0 eq) at pH 9~10, which was adjusted with the Na2CO3 saturated solution, was
added, and the reaction was conducted for 6 h. After cooling to room temperature, the
resultant solution was adjusted to pH 3~4 and extracted with ethyl acetate. After drying
with anhydrous Na2SO4, the crude product was obtained by vaporization under reduced
vacuum. Finally, DSeDAA was obtained as yellowish crystals with a yield of 35.8%, after
recrystallization in ethyl acetate/n-hexane (v/v of 1:1).
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DOX·HCl (100.0 mg, 0.172 mmol, 2.0 eq) and triethylamine (30 µL, 2.4 eq) were
dissolved in 20 mL DMF for 1 h to produce free DOX. After DSeDAA (24.0 mg, 0.086 mmol,
1.0 eq), EDC·HCl (50.0 mg, 0.259 mmol 3.0 eq), and NHS (30.0 mg, 0.259 mmol, 3.0 eq)
were added, the reaction was conducted by stirring for 24 h at room temperature in the
dark. The proposed diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was
purified by dialyzing the resultant solution with DMF for a day and then with water for
3 days (MWCO of 1000) by changing the dialysate every 8 h, collected by centrifugation
(10,000 rpm, 5 min) and finally dried in vacuum at 40 ◦C (Yield: 61%). Its purity was
revealed with TLC on a silica gel plate.

4.4. Redox-Triggered Drug Release

The D-DOXSeSe nanoparticles (1.0 mg) were dispersed in 10 mL of release media with
different pH values, GSH levels, and H2O2 levels with or without 0.1% Tween-80. The
dispersion was dialyzed (MWCO = 1000) in 100 mL of the corresponding releasing medium
in an IS-RSD3 incubation shaker at 37 ◦C. At certain time intervals, 5.0 mL of the dialysate
was taken out to measure the DOX concentration on the UV–Vis spectrometer at 480 nm,
and 5.0 mL of the fresh buffer solution was added to maintain a constant volume.

4.5. Redox-Triggered Drug Release

The DOX content in the proposed diselenide-bridged doxorubicin dimeric prodrug
(D-DOXSeSe) was determined by measuring the UV–Vis absorption of its DMSO solution
at 480 nm on a TU-1901 UV–Vis spectrometer and calculated with the calibration curve of
DOX in the DMSO solution.

4.6. In Vitro Cellular Uptake and Cytotoxicity

The L02 and HepG2 cells were incubated in a 96-well plate with a concentration of
1 × 105 per well at 37 ◦C for 48 h.

For cellular uptake, the HepG2 cells were incubated with 15 µg/mL of D-DOXSeSe
nanoparticles for 24 h. After being fixed with paraformaldehyde solution, washed twice
using PBS, stained with DAPI, and then washed twice using PBS, the HepG2 cells were
analyzed with an inverted fluorescence microscope (OLYMPUS, IX71) (DAPI at 405 nm
and DOX at 480 nm).

For cytotoxicity, different concentrations of the D-DOXSeSe nanoparticles or free DOX
were added to perform co-incubation for 48 h. The cell viability was assessed with MTT
assays, using the Enzyme-Linked Immunosorbent Assay Appliance at 490 nm.

5. Conclusions

In summary, a diselenide-bridged doxorubicin dimeric prodrug (D-DOXSeSe) was de-
signed as a redox-triggered drug self-delivery system (DSDS) for tumor-specific chemother-
apy. By combining with the α-amide group, it showed redox-triggered cleavage at higher
GSH and ROS levels but only a slow solubility-controlled reduction-triggered drug release
in the in vitro drug release profiles in the simulated tumor intracellular microenvironment,
holding promise as a safe long-acting GSH-triggered slow sustained-release system in
tumor treatment, as revealed by the in vitro cellular experiment results.

By comparing with the reported works on the redox-responsive disulfide or diselenide-
containing prodrugs, the interaction between the redox-responsive conjugation and neigh-
boring ester or amide groups was also explored, which was suggested as an important
concern in the future design of self-immolation traceless conjugations in prodrugs. Despite
the higher redox-responsive sensitivity of the diselenide bond compared to the disulfide
bond, which facilitates its cleavage with the reduction of GSH or oxidation with ROS, it was
concluded that a self-immolation traceless conjugation could be designed by integrating
the disulfide bond with the ester or amide group or the diselenide bond with the ester
group, but not the combination of the diselenide bond and the α-amide group due to the
double-edged sword effect of the selenide atom with lower electronegativity in comparison
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with the sulfur atom. This finding has not been reported in previous works; thus, this study
presents a theoretical foundation for precise tumor-specific chemotherapy.
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