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Abstract: Glioblastoma (GBM), the most frequent and lethal brain cancer in adults, is characterized
by short survival times and high mortality rates. Due to the resistance of GBM cells to conventional
therapeutic treatments, scientific interest is focusing on the search for alternative and efficient adjuvant
treatments. S-Adenosylmethionine (AdoMet), the well-studied physiological methyl donor, has
emerged as a promising anticancer compound and a modulator of multiple cancer-related signaling
pathways. We report here for the first time that AdoMet selectively inhibited the viability and
proliferation of U87MG, U343MG, and U251MG GBM cells. In these cell lines, AdoMet induced
S and G2/M cell cycle arrest and apoptosis and downregulated the expression and activation of
proteins involved in homologous recombination DNA repair, including RAD51, BRCA1, and Chk1.
Furthermore, AdoMet was able to maintain DNA in a damaged state, as indicated by the increased
γH2AX/H2AX ratio. AdoMet promoted mitotic catastrophe through inhibiting Aurora B kinase
expression, phosphorylation, and localization causing GBM cells to undergo mitotic catastrophe-
induced death. Finally, AdoMet inhibited DNA repair and induced cell cycle arrest, apoptosis,
and mitotic catastrophe in patient-derived GBM cells. In light of these results, AdoMet could be
considered a potential adjuvant in GBM therapy.

Keywords: S-Adenosylmethionine; glioblastoma; cell cycle arrest and apoptosis; DNA damage
response; homologous recombination repair; mitotic catastrophe

1. Introduction

Glioblastoma (GBM), previously known as glioblastoma multiforme, a grade IV as-
trocytoma, is the most aggressive and common primary brain tumor in adults and one of
the deadliest human cancers, accounting for 4% of all cancer deaths with a 5-year survival
rate of 5.1% [1,2]. Despite an aggressive, multimodal treatment including surgery followed
by radiation and chemotherapy with the alkylating agent temozolomide [3,4], the prog-
nosis for patients with GBM continues to be limited with a median survival ranging from
14 to 30 months after diagnosis, depending on the molecular subtype of the tumor [5,6].
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Therapeutic resistance in GBM is due to the ability of cancer cells to overcome DNA dam-
age caused by radiation and chemotherapeutic agents through the activation of the DNA
damage response (DDR) responsible for cancer progression and recurrence [7–9]. GBM
harbors many genetic alterations interfering with cancer-related pathways, such as cell
growth control, apoptosis, angiogenesis, and cell invasion [10]. Epigenetic alterations,
including the hypomethylation of broad regions of DNA occurring mainly at the level of
gene promoters, are also involved, alone or in combination with genetic mechanisms, in
GBM progression, leading to the activation of oncogenes and pro-metastatic genes [11].
What is noteworthy is that the hypomethylation of the O-6-methylguanine-DNA methyl-
transferase (MGMT) gene results in the increased expression of this DNA repair enzyme,
causing resistance to temozolomide [12]. Interestingly, the epigenetic silencing of MGMT
via promoter methylation has been shown to be related to prolonged survival in GBM
patients treated with alkylating agents [13]. Notably, no therapeutic drugs for DNA hy-
pomethylation are currently FDA-approved or in clinical trials. In this scenario, natural
compounds such as S-adenosylmethionine (AdoMet), the physiological methyl donor able
to regulate gene expression through epigenetic mechanisms involving modifications and
alterations occurring at transcriptional and/or posttranscriptional levels, could be exploited
as therapeutic drugs to improve the sensitivity of GBM cells to the conventional therapies.

AdoMet is a naturally occurring sulfonium compound present in all mammalian cells
where it plays a wide variety of well-documented biological functions [14–16]. AdoMet is
the most extensively used enzyme cofactor after ATP due to the large number of physiolog-
ical processes in which it is involved, being a key player in transmethylation, transsulfura-
tion, and aminopropylation pathways [14–16]. Notably, AdoMet can be freely transferred
from the cytoplasm to nucleus through nuclear pore complexes [17] and plays a regulatory
role in the nucleus, where it participates in histone methylation [18]. All AdoMet-dependent
transmethylation reactions produced, as a by-product, S-adenosylhomocysteine (AdoHcy)
(Figure 1), a sulfur-containing nucleoside which acts as a potent competitive inhibitor of
methyltransferases, thus representing an important regulatory factor. The relative lev-
els of AdoMet and AdoHcy are normally tightly regulated in cells. The intracellular
AdoMet/AdoHcy ratio, also defined as the “methylation index”, is considered a reliable
indicator of the flow of methyl groups transferred from AdoMet to methyl acceptors within
the cells and represents a potent determinant in the regulation of chromatin methyla-
tion [19]. In particular, it has been proposed that the inhibition of MGMT expression by
alterations in the AdoMet/AdoHcy ratio could be used as a novel pharmacological strategy
to improve the responsiveness of GBM cell lines to alkylating agents [20]. To date, AdoMet
is a FDA-approved therapeutic agent known to cause DNA hypermethylation and the
silencing of hypomethylated genes in cancer cells.

Although the chemical structure of AdoMet was described, for the first time, in
the 1950s by Giulio Cantoni, the promising anticancer properties of this physiological
compound have been evidenced only in the past two decades by several in vitro and in vivo
studies. The potential of AdoMet as an anticancer agent has stimulated growing scientific
interest taking advantage of its pleiotropic effects on different survival pathways known to
be important in carcinogenesis. Recently, the antiproliferative properties of AdoMet and
its involvement in multiple cellular processes including proliferation, differentiation, cell
cycle regulation, and apoptosis in various cancer cells have been widely reported in the
literature [16,21–30].
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Figure 1. Schematic representation of AdoMet-dependent transmethylation reactions. MTs: methyl-
transferases.

Epigenetic modifications are gaining strong relevance in GBM because they can be
both clinical biomarkers and potential drug targets as suggested by many preclinical studies.
In recent decades, epigenetic aberrations in GBM have become an attractive topic for the
identification and development of new therapeutic strategies since DNA methylation,
histone modifications, chromatin remodeling, and aberrant microRNA expression are
widely involved in tumorigenesis and tumor-related mechanisms. Most of the researches
regarding epigenetic alterations in GBM have drawn particular attention to the role of DNA
methylation, such as genome-wide hypomethylation, gene-specific hypomethylation, and
hypermethylation [31]. The contribution of epigenetic changes to glioblastoma pathology
has been broadly studied in terms of the aberrant promoter methylation-induced silencing
of several genes involved in key cellular functions such as the cell cycle, DNA repair,
tumor invasion, and apoptosis [32]. Interestingly, it has been recently reported that in
two different breast cancer cell lines, AdoMet treatment differentially regulated genes
implicated in cancer progression and metastasis and changed the promoter methylation
status and protein expression of prometastatic genes [24]. Moreover, as highlighted by the
analysis of methylome promoters and enhancers, AdoMet is able to hypermethylate and
downregulate genes in pathways of growth and metastasis that are upregulated in liver
cancer cells [33]. Furthermore, in MGC-803 human gastric cancer cells and in HT-29 colon
carcinoma cells, the treatment with AdoMet leads to methylation in the promoter of c-myc
and H-ras oncogenes inhibiting protein expression and resulting in reduced tumorigenesis.
Interestingly, treatment with AdoMet did not induce changes in the expression of c-myc
and H-ras in non-cancerous cells [34].

Many experimental findings have highlighted the therapeutical potential of AdoMet as an
effective adjuvant in conventional cancer chemotherapy to overcome drug resistance [26–29].
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Increasing evidence has also demonstrated that the epigenetic regulation of oncogenic
or tumor-suppressor microRNAs represents one of the main mechanisms underlying the
anticancer activity of AdoMet [30,35–38].

In the current study, we reported the anticancer effects of AdoMet on human GBM
U87MG, U343MG, and U251MG cells lines and on patient-derived human GBM cells, and
we explored the underlying mechanisms. We provided evidence that AdoMet inhibited
GBM cell viability and proliferation by inducing S and G2/M cell cycle arrest and apoptosis
and by targeting crucial growth and survival pathways. We also demonstrated that AdoMet
targeted DNA repair, cell cycle checkpoint activation, and spindle assembly processes
leading to mitotic catastrophe-induced cell death. Taken together, these findings suggest
that AdoMet may be a promising adjuvant to potentiate current therapies against GBM.

2. Results
2.1. AdoMet Inhibited GBM Cell Viability

To investigate the antitumor activity of AdoMet in GBM, U87MG, U251MG, and
U343MG cell lines were incubated for 24, 48, and 72 h with increasing concentrations of
AdoMet ranging from 72 µM to 1000 µM, and cell proliferation was then assessed by an
MTT assay. The results obtained evidenced that AdoMet treatment significantly reduced
cell viability in a dose- and time-dependent manner (Figure 2). It has to be noted that after
24 and 48 h, AdoMet at 1000 µM concentration exerted only a weak cytotoxic effect while a
prolonged incubation time resulted in a large loss of cell viability with an IC50 value of
about 500µM at 72 h. Parallel direct cell counting provided similar results. Based on these
findings, we selected, for further investigations, an incubation time of 72 h. Comparative
experiments carried out with NHA showed no significant inhibitory effect on cell viability
even at the highest AdoMet concentration. This evidence clearly indicates that AdoMet is
able to effectively damage GBM tumor cells, thus confirming the high safety profile of this
physiological compound in normal cells, as described in the literature [24]. For this reason,
we decided not to use human astrocytes for further investigation.

2.2. AdoMet Induced S and G2/M Cell Cycle Arrest

To identify the underlying mechanism of AdoMet-mediated growth inhibition, the
cell cycle distribution was analyzed by flow cytometry in U87MG, U251MG, and U343MG
cells treated for 72 h with 500µM AdoMet. As shown in Figure 3A, AdoMet induced
a remarkable arrest at G2/M in the three GBM cell lines, evidenced by the significant
increase in cell percentage in this phase of the cell cycle with respect to untreated cells
(from 12.7% to 21.2% in U251MG, from 11.0% to 23.0% in U87MG, and from 6.1% to
16.0% in U343MG cells). A concomitant decrease in the S population was observed in
U87MG (from 19.5% to 12.0%) and in U343MG (from 22% to 10%) cells. On the contrary, the
accumulation of cells in the S phase compared to the control (from 18.8% to 23.7%) observed
in U251MG cells indicated that AdoMet was able to delay U251MG cell cycle progression
in both S and G2/M phases. To gain further insight into the molecular mechanism of
AdoMet-induced cell cycle arrest, we analyzed the expression level of some relevant cell
proliferation and cell cycle regulators by Western blot. As shown in Figure 3B, the increase
in cyclin B1 and cyclin A2 and the decrease in cyclin E1 were observable in AdoMet-treated
GBM cells, while cyclin D1 appeared downregulated in U251MG and U87MG cells and
slightly upregulated in U343MG cells. Notably, D-type cyclins and their associated cyclin-
dependent kinase CDK4 are key components of cell cycle machinery in driving the G1 to S
phase transition via phosphorylating and inactivating the retinoblastoma (RB) protein [39].
We therefore examined the protein levels of CDK4 and RB proteins. The results obtained
showed a decrease in CDK4, to different extents, in the three GBM cell lines, associated with
reduced levels of the phosphorylated form of the RB protein in U87MG and U343MG cells,
confirming the inhibitory effect of AdoMet on cell cycle progression. We then analyzed the
cell cycle inhibitor p21. Interestingly, we found that after AdoMet treatment, p21 content
increased in U343MG and most markedly in U87MG cells, while it became downregulated
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in U251MG cells, a GBM cell line harboring a TP53 gene mutation [40], suggesting that
AdoMet-induced cell cycle arrest in U251MG cells probably involve a p53/p21-independent
process.
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2.2. AdoMet Induced S and G2/M Cell Cycle Arrest 

Figure 2. Effect of AdoMet on cell viability of GBM cells. U251MG, U87MG, U343MG, and NHA
cell lines were treated or not (control) with increasing amounts of AdoMet (72–1000 µM) (X axis
in log scale) for 24, 48, and 72 h. Cell viability was then measured by MTT assay and expressed
as a percentage of the control cells. Error bars depict the standard deviation (SD) of triplicated
measurements and are representative of three separate experiments, ** p < 0.01, **** p < 0.001 versus
untreated cells.

Finally, our results showed a substantial increase in the levels of phosphorylated cell
division cycle 25c (cdc25c) phosphatase (Figure 3B). Cdc25c is a crucial cell cycle regulatory
protein that activates the cyclin B1/CDK1 complex in cells for entering mitosis. G2/M
checkpoint is largely mediated through the phosphorylation of cdc25c that downregulates
the phosphatase activity [41].
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Figure 3. Effects of AdoMet on cell cycle distribution in GBM cells. (A) U251MG, U87MG, and
U343MG cells were cultured for 72 h in medium supplemented or not (control) with AdoMet 500 µM,
and the cell cycle was then assessed by flow cytometry. Histograms show the percentage of cells in
each phase of cell cycle. At least 2 × 104 events were analyzed for each sample. Data represent the
average of three independent experiments. Error bars depict the SDs. * p < 0.05 versus untreated
cells. (B) The levels of the main cell cycle regulatory proteins were evaluated by Western blot, and the
relative densitometric analyses performed for each protein in relation to its relative housekeeping
protein were reported as a percentage of untreated cells (100%). Uncropped images of Western blots
and their housekeeping proteins are reported in Figures S1–S3. Representative housekeeping β-actin
protein used as a loading control was shown. Error bars represent the SD. * p < 0.05, ** p < 0.01,
*** p < 0.005 versus untreated cells. The images are representative of three immunoblotting analyses
obtained from three independent experiments.
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2.3. AdoMet Induced Apoptosis

The occurrence of apoptosis in U87MG, U251MG, and U343MG cells upon treatment
with 500 µM AdoMet was assessed by flow cytometry. As shown in Figure 4A, after
72 h treatment, a significant increase in the percentage of apoptotic cells with values
approximately 24%, 20%, and 13% higher than the control was observed in U251MG,
U87MG, and U343MG cells, respectively, indicating that AdoMet effectively induced
apoptosis in GBM cells. To verify the above findings, the effect of AdoMet on the activation
of caspase 3 and PARP-1, a known target of apoptosis-associated caspase cleavage, was
analyzed by Western blot. As shown in Figure 3B, AdoMet treatment caused the decrease
in pro-caspase 3 and the PARP-1 protein while the levels of cleaved caspase 3 and cleaved
PARP-1 significantly increased in treated cells compared to the control, confirming the
AdoMet-induced activation of the apoptotic process. All the data above furnished evidence
that AdoMet could efficiently cause cell death in GBM cells by inducing apoptosis.
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Figure 4. Effects of AdoMet on apoptosis in GBM cells. (A) U251MG, U87MG, and U343MG cells
were cultured for 72 h in medium supplemented or not (control) with AdoMet 500 µM, and the
apoptotic process was then assessed by FACS analysis. Histograms show the percentage of apoptotic
cells. For each sample, at least 2 × 104 events were analyzed. Data represent the average of three
independent experiments. Error bars depict the SDs. * p < 0.05 versus untreated cells. (B) The protein
levels of uncleaved caspase-3 and PARP-1 and the corresponding cleaved forms were evaluated by
Western blot, and the relative densitometric analyses are reported as percentage of untreated control
(100%). Housekeeping proteins, used as a loading control, were reported. Error bars represent the
SDs. ** p < 0.01 ***, p < 0.005, **** p < 0.001 versus untreated cells. The images are representative of
three immunoblotting analyses obtained from three independent experiments. Uncropped images of
Western blots and their housekeeping proteins are reported in Figures S4–S6.

2.4. AdoMet Downregulated the Proteins Involved in Homologous Recombination Repair

GBM is extremely resistant to therapies due to the enhanced activity of DNA repair
systems which render DNA damaging treatments ineffective [42]. Homologous recombina-
tion (HR) is a major pathway for the repair of DNA double-strand break (DSB), the most
harmful type of DNA lesions [43]. Tumor cells with defective HR show increased sensitivity
to chemotherapeutic agents, suggesting that HR inhibition could offer great opportunities
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for designing targeted therapeutic strategies [44]. To investigate whether AdoMet was able
to target DNA damage response in GBM, we incubated U87MG, U251MG, and U343MG
cells with 500 µM AdoMet for 72 h, and then we examined via Western blot the levels of
key proteins involved in HR repair (Figure 5A). We firstly analyzed RAD51 recombinase,
the major catalyst of HR that provides an error-free repair of DSB during cell cycle phases
S and G2 [45]. We found that AdoMet treatment lowered the expression of RAD51 in the
three GBM cell lines examined compared with the untreated cells. A complex network of
hierarchically ordered and reciprocally coordinated proteins are involved in the HR path-
way to identify, signal, and repair DNA DSB [46]. Among them, we examined breast cancer
type 1 susceptibility protein (BRCA1) and the checkpoint kinase 1 (Chk1), two important
players in DNA damage response [47,48]. Western blot analysis evidenced that, following
AdoMet treatment, the ratio between the phosphorylated and not phosphorylated forms
of Chk1 and BRCA1 decreased with respect to the control cells, indicating that AdoMet
could effectively inhibit the activation of the HR pathway, thus promoting the progression
of cells with unrepaired DNA damage into mitosis.

2.5. AdoMet-Induced Downregulation of RAD51 Is Associated with Increased γH2AX Levels

To assess whether the AdoMet-induced downregulation of RAD51 expression was
related to unrepaired damaged DNA, we analyzed the levels of the histone variant H2AX
and its phosphorylated form (γ-H2AX). Notably, γH2AX is considered the most sensitive
marker for DNA DSB and is required for the formation of DNA damage foci through the
recruitment of DNA repair proteins at the sites containing damaged chromatin [49]. As re-
ported in the literature, the quantification of γH2AX levels relative to total H2AX expression
could provide a normalized value representative of the amount of DNA damage in cancer
cells [50]. Accordingly, we found that in AdoMet-treated U87MG, U251MG, and U343MG
cells, the inhibition of HR repair was associated with the increased γH2AX/H2AX ratio
compared to the control (Figure 5A) indicating the presence of damaged DNA. Confirming
the Western blot results, the immunofluorescence staining of U343MG cells showed that
the signal intensity of γH2AX, which was almost undetectable in untreated cells, became
evident in the nuclei of AdoMet-treated cells, revealing the formation of DNA damage
foci (Figure 5B). Concomitantly, the signal coming from RAD51 decreased, evidencing a
defective DNA repair (Figure 5B). These findings indicated that in GBM cells, AdoMet was
able to keep DNA in a damaged state through inhibiting its repair.

2.6. AdoMet Promoted Mitotic Catastrophe

Mitotic catastrophe is considered an onco-suppressive mechanism that directs cells
that are unable to complete mitosis to an irreversible antiproliferative fate of a delayed
mitosis-related death or permanent cell cycle arrest with subsequent senescence [51–53].

The ability of AdoMet to arrest cell cycle in S and G2/M phases and to maintain
DNA in a damaged state by inhibiting DDR prompted us to investigate the effects of
the sulfonium compound on mitotic catastrophe-related cell death, an antitumor role not
yet reported so far for AdoMet. Mitotic catastrophe is described as an aberrant form of
mitosis associated with the presence of cells with an abnormal configuration and spatial
rearrangements of chromosomes. These features can be used as morphological markers for
identification. On this basis, to obtain direct evidence of AdoMet-induced mitotic catastro-
phe we examined the morphology of tumor cells after AdoMet treatment by performing
immunofluorescence staining of U87MG cells with α- and γ-tubulin antibodies to analyze
microtubules and the mitotic spindle, while chromosomes were stained with Hoechst
33258. Interestingly, as shown by the fluorescent images reported in Figure 6A, control
cells in division showed well-organized bipolar mitotic spindles with the chromosomes
(blue) aligned on the equatorial plate, while the AdoMet-treated cells in division showed
disorganized chromosomes (blue) and the absence of mitotic spindle (α-tubulin, green)
and centrosome (γ-tubulin, red) (Figure 6A). This finding provided evidence that AdoMet
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induced morphological changes in U87MG cells, indicative of cells that had undergone
mitotic catastrophe.
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Figure 5. Effects of AdoMet on DNA damage response in GBM cells. (A) U251MG, U87MG, and
U343MG cells were cultured for 72 h in medium supplemented or not (control) with AdoMet 500 µM.
The levels of the main proteins involved in DNA repair and DNA damage response were then
evaluated by Western blot, and the relative densitometric analyses, performed for each protein
in relation to its relative housekeeping included in the Supplementary Figures S7–S9 (showing
the uncropped images of Western blots), are reported as a percentage of untreated cells (100%).
Representative housekeeping β-actin protein, used as a loading control, was reported. Error bars
represent the SD. * p < 0.05, ** p < 0.01, *** p < 0.005 versus untreated cells. (B) Effect of AdoMet
on γH2AX and RAD51 foci formation. Representative images of immunofluorescence staining for
phosphorylated γH2AX (red) and RAD51 (green) in U343MG cells treated or not (control) with
AdoMet. The overlapping of the two signals (merge panel) in AdoMet-treated cells evidenced the
reduced expression of RAD51 and the concomitant increase in γH2AX foci. Hoechst 33258 was
used for nuclear staining (blue). Scale bar: 20 µm. About 100 nuclei for each group were scored
in each experiment, and a threshold of five foci per cell was considered positive and reported
in the histograms as a mean of γH2AX and RAD51 foci. Values represent the means of three
experiments ± SD (* p < 0.05, ** p < 0.01).
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Figure 6. Effect of AdoMet on mitotic microtubule and spindle organization and Aurora B kinase
inhibition in GBM cells. (A) Representative immunofluorescence images of U87MG cells treated
or not (control) with 500 µM AdoMet. Mitotic tubulins were immunostained with antibodies anti
γ-tubulin (red) and α-tubulin (green). Hoechst 33258 was used for nuclear staining (blue). Images
are representative of three independent experiments. Scale bar 20 µm. As shown, AdoMet-treated
cells exhibited missegregated chromosomes, decondensed chromatin, and the absence of the spindle
(α-tubulin, green) and centrosome (γ-tubulin, red), indicative of mitotic catastrophe. Histogram
shows the percentages of abnormal spindle formation from three separate experiments (represented
as mean ± S.D.). Per experiment, 100 mitotic cells were counted from the control samples and the
AdoMet-treated samples. AdoMet-treated samples showed mitotic cells that contained significantly
more abnormal spindles than the control samples (* p < 0.05). (B) Aurora B and phospho-Aurora
B levels were evaluated by Western blot, and the relative densitometric analyses performed for
each protein in relation to its relative housekeeping protein were reported as a percentage of un-
treated cells (100%). Uncropped images of Western blots and their housekeeping proteins are
reported in Figure S10. Error bars represent the SD. * p < 0.05, *** p < 0.005 versus untreated cells.
(C) Representative confocal images showing the localization of phospho-Aurora during cell division.
U87MG cells treated or not (control) with 500 µM AdoMet for 72 h were stained with antibodies
anti-pospho-Aurora (green) and anti α-tubulin (red). Hoechst 33258 was used for nuclear staining. As
shown, in AdoMet-treated cells, the fluorescence signal of phospho-Aurora appears largely diffused
without concentrated localizing to the kinetochore with altered mitotic spindles, deranged chromatin
condensation (blue), and microtubule disorganization (red). Scale bar: 5 µm, zoom factor 1.4.

2.7. AdoMet Targeted the Expression, Activation, and Subcellular Localization of Aurora B

Aurora B is a mitotic serine/threonine protein kinase belonging to the Aurora kinase
family whose activity is essential for the precise and accurate chromosome segregation and
execution of cytokinesis [54]. To perform these critical functions, Aurora B needs to be in
the active phosphorylated status, allowing its dynamic localization at different subcellular
positions where it is involved in key mitotic events such as the correction of erroneous
kinetochore–microtubule attachment, the activation of the mitotic spindle assembly check-
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point until accurate bipolar spindle attachment is achieved, and cytokinesis [55]. To assess
whether AdoMet-induced mitotic catastrophe could be ascribed to the inhibition of Aurora
B, we firstly analyzed the levels of the total protein and its phosphorylated form after treat-
ment of U251MG, U87MG, and U343MG cells with 500 µM AdoMet for 72 h. As evidenced
by Western blot analysis, both Aurora B and phospho-Aurora B were resultingly downregu-
lated in AdoMet-treated cells compared with the control (Figure 6B). To confirm this result
and to obtain more direct evidence on the effect exerted by AdoMet on Aurora B activation
and function, we performed an immunofluorescent analysis with confocal microscopy to
detect the expression and subcellular localization of phospho-Aurora B (Figure 6C). We
found that in control cells, phospho-Aurora B (green signal) was localized mainly at the
mitotic spindle poles and partly in the packed chromosomes, while in AdoMet-treated cells,
the protein signal appeared weaker and largely diffused without concentrated localization
at the kinetochore. Altogether, these data provided evidence indicating that AdoMet was
able to target the expression and activation of Aurora B kinase, resulting in impairment of
its subcellular localization and normal spindle microtubules assembly.

2.8. AdoMet Suppressed Cell Proliferation and Survival in Patient-Derived GBM Cells

Several research studies have demonstrated that established GBM cell lines accumulate
mutations that can produce changes in cell genotypes and phenotypes compared to the
original tumors from which they are derived. Conversely, it has been proposed that low-
passage primary cultures may represent much more relevant models for in vitro studies [56].
Currently, primary GBM cells isolated from native body tissue represent the gold standard
for in vitro drug screening. Accordingly, to provide physiological relevance to our findings
and to gain insight into the ex vivo effect of AdoMet, we performed a detailed analysis
of the antitumor potential of this compound in two primary cell lines, GBM3 and GBM4,
derived from fresh tumoral masses of two selected GBM patients. Primary GBM cells were
characterized for the wild-type IDH1/IDH2 status, which helps with prognosis, MGMT
methylation status, which indicates the efficacy of current standard of care, and finally, the
epigenetic subclass of the samples used, as reported in a previous paper [57].

We demonstrated that, in analogy to that observed in U87MG, U251MG, and U343MG
cells, AdoMet induced cell cycle arrest in primary GBM cell lines, as evidenced by the
increase in G2/M cell population from 19.8% to 29.9% and from 27.8% to 37%, with respect
to the control, in GBM3 and in GBM4 cells (Figure 7A). We found that AdoMet was also
able to induce apoptosis as detected by Annexin V/PI staining that revealed an increase in
apoptotic cells of about 15% in both GBM3 and GBM4 cells (Figure 7B).

We then assessed the effect of AdoMet on DNA repair and DNA damage response in
patient-derived GBM cells. As shown in Figure 8A, Western blot analysis evidenced, in
the treated cells, a decreased level of the expression and activation of HR-relevant proteins,
including RAD51, Chk1, and BRCA1, indicating that AdoMet inhibited the process of DNA
repair in GBM3 and GBM4 cells. We also demonstrated that AdoMet treatment increased
the γH2AX/H2AX protein ratio compared with the control. Concomitantly, as shown by
immunofluorescence staining experiments, the intensity of the γH2AX signal, indicative of
the formation of DNA damage foci, increased in the nuclei of AdoMet-treated cells, while
the signal coming from RAD51 decreased (Figure 8B), furnishing evidence that AdoMet was
able to target DNA damage response in primary GMB cells. Similar to what was previously
observed in stabilized GBM cells, confocal microscopy images of AdoMet-treated GBM3
cells highlighted morphological alterations of mitotic spindle, associated with deranged
chromatin condensation and microtubule disorganization (Figure 8C). Finally, AdoMet
treatment resulted in a decrease in the intensity of the phospho-Aurora B signal and its
delocalization from the centromeres/kinetochores (Figure 8D), confirming the ability of the
sulfonium compound to inhibit Aurora B kinase and to induce mitotic catastrophe.
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Figure 7. Effects of AdoMet on cell cycle distribution and apoptotic process in primary GBM cells.
GBM3 and GBM4 cells were cultured for 72 h in medium supplemented or not (control) with AdoMet
500 µM, and the cell cycle (A) and apoptotic process (B) were assessed by FACS analysis. For each
sample, at least 2 × 104 events were analyzed. Data represent the average of three independent
experiments. (A,B) Histograms show the percentage of cells in each phase of cell cycle and the
percentage of apoptotic cells. Error bars depict the SDs. * p < 0.05, ** p < 0.01, *** p < 0.005 versus
untreated cells.
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in medium supplemented or not (control) with 500 µM AdoMet. The levels of the main proteins
involved in DNA repair and DNA damage response were then evaluated by Western blot, and the
relative densitometric analyses performed for each protein in relation to its relative housekeeping
protein were reported as a percentage of untreated cells (100%). Uncropped images of Western blots
and their housekeeping proteins are reported in Figures S11 and S12. Representative housekeeping
β-actin protein, used as a loading control, was shown. Error bars represent the SD. * p < 0.05,
** p < 0.01, *** p < 0.005 versus untreated cells. (B) Representative images of immunofluorescence
staining for γH2AX (red) and RAD51 (green) in GBM3 cells treated or not (control) with AdoMet.
The overlapping of the two signals (merge panel) in AdoMet-treated cells highlighted the reduced
expression of RAD51 and the concomitant increase in γH2AX foci. γH2AX foci and RAD51 foci
were counted and plotted as histograms. Hoechst 33258 was used for nuclear staining (blue). Scale
bar: 20 µm. About 100 nuclei for each group were scored in each experiment, and a threshold of
5 foci per cell was considered positive and reported in the histograms as a mean of γH2AX and
RAD51 foci. Values represent the means of three experiments ± SD (* p < 0.05). (C) Representative
immunofluorescence images of GBM3 cells treated or not (control) with AdoMet. Mitotic tubulins
were immunostained with antibodies anti γ-tubulin (red) and α-tubulin (green). Hoechst 33258 was
used for nuclear staining (blue). Images are representative of three independent experiments. Scale
bar: 20 µm. Per experiment, 100 mitotic cells were counted from the control and the AdoMet-treated
samples. AdoMet-treated samples showed mitotic cells that contained significantly more abnormal
spindles than the control samples. (D) Representative confocal images showing the localization of
α-tubulin (red) and phospho-Aurora (green) during cell division. Hoechst 33258 was used for nuclear
staining (blue). Images are representative of three independent experiments. Scale bar: 5 µm, zoom
factor: 1.4.

All together, these data demonstrated that the mechanisms operated by AdoMet to
inhibit growth and survival in stabilized GBM cell lines were preserved in primary cell
models that better reproduce the features of the original tumor.

3. Discussion

GBM is the most prevalent malignant tumor of the central nervous system whose
features of heterogeneity, infiltration of surrounding brain tissue, and multidrug resistance,
mainly due to the innate upregulation of DNA repair mechanisms, are responsible for
the extremely poor survival rate of patients [1,2]. This points up the need for novel and
improved therapeutic approaches.

In the last few years, natural products or plant-based drugs acquired much interest
as a potential and effective tool to treat many pathological conditions or as alternatives
to modern medicines. Recent findings have documented that natural compounds exhibit
antitumor effects by interfering with the initiation, development, and progression of cancer
through acting as epigenetic regulators and modulators of several tumorigenic signaling
pathways [58]. Natural compounds have therefore been evaluated for their potential
as agents in GBM treatment [59]. Although the beneficial effects of natural compounds
are promising, their efficacy in GBM is limited by their poor bioavailability and blood–
brain barrier permeability which prevent them from reaching the brain parenchyma and
consequently exerting their therapeutic effects. Several strategies have been set up to
overcome these obstacles, among which nanotechnologies hold great promise for the
treatment of GBM [60].

Much evidence, in recent years, has highlighted AdoMet, the physiological methyl
donor and epigenetic regulator, as a modulator of multiple cancer-related signaling path-
ways and a promising chemosensitizing agent in various cancer types [16,21–30].

In the current study, we explored the anticancer activity of AdoMet in both stabilized
and primary human GBM cell lines and provided the first evidence that AdoMet was able
to inhibit DNA repair and to induce mitotic catastrophe through downmodulating the
expression and activity of Aurora B kinase.
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The peculiar feature of natural compounds, including AdoMet, as chemotherapeutic
drugs is their ability to efficiently kill tumor cells without exerting, under the same experi-
mental conditions, any significant cytotoxic effect in normal cells. Accordingly, to evaluate
the cytotoxicity of AdoMet in GBM cells and its selectivity towards tumor cells, we carried
out comparative MTT assays which represent an experimental strategy generally utilized
to test the selective drug cytotoxicity. We found that AdoMet selectively and efficiently
caused a time- and dose-dependent inhibition of U87MG, U251MG, and U343MG cell via-
bility without exerting any detectable cytotoxicity in non-tumorigenic NHA. A conceivable
explanation for this behavior could be that although AdoMet is a general methyl donor
that acts on both normal and cancer cells, the transcriptional landscape on which it acts is
different, resulting in different phenotypic effects of AdoMet on cancer and normal cells.

It is interesting to note, in this regard, that AdoMet, currently used as a preventive
agent for mood disorders, fibromyalgia, and joint pain, is a safe and FDA-approved dietary
supplement that at pharmacological doses shows a low incidence of side-effects with an
excellent record of tolerability [21,61,62]. Notably, the observation that the peripheral
administration of AdoMet results in the increase in AdoMet levels in cerebrospinal fluid
and the evidence that AdoMet is effective in treating a number of neurological disorders
suggest that this molecule crosses the blood–brain barrier [21,63]. In vitro studies em-
ploying the immortalized rat brain endothelial cell line RBE4, an established model of
the blood–brain barrier, evidenced a significant interaction of AdoMet with the adeno-
sine carrier, strongly suggesting that AdoMet may enter the central nervous system via
Na+-independent nucleoside carrier systems at the brain capillary endothelium [63].

The cell cycle is a complex process in which a well-ordered sequence of irreversible
transitions from one phase to the next is able to allow precise and accurate DNA replication,
resulting in the final generation of two identical daughter cells. In cancer, cell cycle arrest,
particularly at G2/M, might be a useful strategy to prevent cell proliferation or to trigger
apoptotic cell death, and it has been reported that many anticancer agents reduce malignant
growth by arresting cell cycles at G1/S or G2/M phases [64].

The Cdc25 family encompasses three highly conserved members of dual-specificity
phosphatases that through removing inhibitory phosphate groups from cyclin-dependent
kinases regulate cell cycle progression in the S phase and mitosis. Specifically, Cdc25C
causes the full activation of CDK1 at mitotic entry [41]. Following DNA damage, the
inactivation of Cdc25C by phosphorylation functions as a checkpoint regulatory mechanism
that prevents the cells from entering mitosis in order to allow DNA damage repair or
alternatively to initiate cell apoptosis [65]. Cdc25 phosphatase is therefore considered an
attractive target for anticancer drug discovery [66]. It has to be pointed out that Cdc25
inactivation is a major mechanism of p53-independent checkpoints and could therefore
play a particularly relevant role for DNA damage response in cancer cells characterized by
high levels of mutant p53, such as GBM [67].

Interestingly, we found that AdoMet induced cell cycle arrest in GBM cells and that
AdoMet treatment resulted in the increase in phosho-cdc25c protein, suggesting that
AdoMet could retard GBM cell proliferation via phospho-cdc25c upregulation to arrest cell
cycle progression at the G2/M phase.

The ability of GBM cells to escape from programmed cell death due to the intrinsic
dysregulation of mechanisms involved in the control of cell cycles and apoptosis not only
promotes tumorigenesis but also plays a critical role in providing resistance to current treat-
ments. In this context, the identification of bioactive molecules able to enhance apoptosis
without causing significant toxic side effects represents a major clinical challenge. Consis-
tent with this view, our data highlighted the ability of AdoMet to trigger apoptotic cell
death in GBM cells as evidenced by the activation of caspase 3 and the cleavage of PARP-1.

DSBs are the most damaging DNA lesions that, if not repaired, can cause insertions,
deletions, or chromosomal rearrangements. The detection, signaling, and repair of DSBs
involve a complex network of cellular events collectively referred to as DNA damage
response. A large fraction of the DSBs is repaired by the HR system which exchanges
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equivalent regions of DNA between homologous or sister chromosomes and therefore is
most active in late-S/G2 phases of the cell cycle when DNA has been replicated and each
cell disposes two copies of each DNA strand. HR provides an error-free adjustment of
DSBs, contributing to the safeguarding of genomic integrity and ensuring a high-fidelity
transmission of genetic information [43].

RAD51, BRCA1, and Chk1 are key proteins involved in the HR pathway. RAD51 is an
ATPase that forms a nucleoprotein strand on single-stranded DNA and has the function
of finding and invading homologous DNA sequences to enable accurate and timely DNA
repair [68,69]. Notably, RAD51 is expressed at high levels in GBM and is associated with a
poor outcome and reduced response to cytotoxic treatments such as chemotherapy and
radiotherapy [70]. Thus, downregulating RAD51 expression and/or interfering with its
function could be of great therapeutic value [47,71]. BRCA1 is a large multi-domain protein
that maintains genome stability by promoting HR-mediated DSB repair [47,71] and is
required for the efficient loading of RAD51 at DNA damage sites and its stabilization
for HR processes [72]. Chk1 is an important transducer of DNA damage signals, and its
activation leads to cell cycle arrest at S and G2 checkpoints to promote DNA repair before
cell division [48]. Chk1 is activated by phosphorylation in response to DNA damage and in
turn phosphorylates a variety of intracellular substrate proteins, including the recombinase
RAD51, allowing its recruitment to DNA damage sites [73]. Notably, we found that
(i) AdoMet was able to downregulate the expression of RAD51 and the activation of BRCA1
and Chk1, as evidenced by the decreased protein ratio between the phosphorylated and
unphosphorylated forms of these proteins; (ii) as highlighted by the increase in the γ-
H2AX/H2AX ratio, AdoMet treatment resulted in the activation of H2AX, the highly
conserved histone H2AX variant that in response to DSBs becomes phosphorylated to form
γ-H2AX and participates to the recruitment of DDR-related factors to the lesion sites, further
propagating the DNA damage signal; and (iii) AdoMet treatment resulted in the decrease
in RAD51 foci formation associated with the increase in the immunofluorescence signal of
γ-H2AX foci, indicating the AdoMet induced downregulation of DDR with the consequent
increase in damaged DNA. All together, these findings provided the first evidence of the
ability of AdoMet to exert anticancer activity in GBM cells through inhibiting HR repair,
thus maintaining DNA in a persistent damaged state, a condition that can lead to different
death-associated consequences, including mitotic catastrophe [74]. Accordingly, it has been
reported that in HeLa cells after irradiation, mitotic DNA damage delays mitotic exit and
prevents cytokinesis, resulting in mitotic catastrophe [75]. Since the standard therapy for
GBM consists of a combinatory treatment of ionizing radiation and alkylating drugs which
both damage DNA, the use of natural molecules, such as AdoMet, which are able to target
DDR could represent a promising beneficial adjuvant strategy to sensitize tumor cells to
treatment through triggering mitotic catastrophe-induced cell death.

To protect the integrity of the genome during cell cycle progression, in response to
genotoxic stress, the cells activate three major checkpoints; the first occurring near the end
of the G1 phase, the second at the G2/M phase transition, and the third, also called spindle
assembly checkpoint, at the metaphase-to-anaphase transition. This temporally and spa-
tially controlled checkpoint activation results in the arrest of cell cycle and in the induction
of DNA repair processes in order to prevent the damaged DNA from being duplicated or
passed on to the next generation. In cancer, several reasons such as the dysregulation of the
G2 checkpoint responsible for the premature transition of cells into mitosis before DNA has
been completely repaired; the dysfunction of mitotic apparatus and feedback control sys-
tems that manage cell division; the utilization of antimitotic drugs targeting microtubules;
and/or compounds interfering with proper spindle formation, chromosome segregation,
and mitotic exit can lead to mitotic catastrophe and subsequent mitotic catastrophe-induced
cell death [51]. Mitotic catastrophe could be therefore considered an onco-suppressive
mechanism, and promoting mitotic catastrophe could be a promising strategy in cancer
treatment. Accordingly, drugs inducing mitotic catastrophe have been recently explored as
a new efficient alternative to the existing treatment in GBM [53]. In this context, the ability
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of AdoMet to promote mitotic catastrophe in GBM cells, as suggested by the morphological
changes typical of this process induced by AdoMet treatment, highlighted the potential of
this compound for drug development against GBM.

Aurora kinases, a closely related family of serine/threonine kinases, including Aurora
A, B, and C are highly conserved mitotic kinases that act synergistically with several other
proteins to control chromosome alignment and its equal distribution to daughter cells in
mitosis and meiosis [55]. The deregulation of Aurora kinase genes has been reported in
GBM, and the development of small molecules targeting these proteins is considered a
promising strategy for the treatment of this tumor [76].

Due to its deregulation and overexpression in various tumors, Aurora B has emerged
as an important therapeutic target. Small-molecule inhibitors of Aurora B have been
reported to suppress the spindle assembly checkpoint causing premature mitotic exit and
consequent chromosome missegregation, cytokinesis failure, and nuclear fragmentation
resulting in mitotic catastrophe and cell death [77]. Notably, we found that AdoMet was
able to downregulate the expression and activation of Aurora B in GBM cells and to impair
its proper localization, an important prerequisite for the kinase to properly perform its
functions.

4. Materials and Methods
4.1. Materials

Propidium iodide (PI) (Catalog No. P4864), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) (Catalog No M2003), and radioimmunoprecipitation assay
buffer (RIPA buffer) (Catalog No. R0278) were obtained from Sigma-Aldrich (St. Louis,
MO, USA). Bovine serum albumin (BSA), Dulbecco’s modified Eagle’s medium (DMEM),
DMEM/Ham’s F-12, fetal bovine serum (FBS), phosphate-buffered saline (PBS), and
trypsin–EDTA were acquired from Gibco (Thermo Fisher Scientific, Monza, Italy). Non-
essential amino acids, astrocyte basal medium (ABMTM), and astrocyte growth medium
(AGMTM) were bought from Lonza (Rome, Italy). AdoMet (Catalog No. B9003S) was pur-
chased from New England Biolabs (dissolved in 5 mM H2SO4 and 10% ethanol and filtered).
The annexin V-fluorescein isothiocyanate (V-FITC) apoptosis detection kit (Catalog No.
556547) was obtained from eBioscience (San Diego, CA, USA). Protein analysis dye reagent
concentrate (Catalog No. 5000006) and Trans-Blot Turbo (Catalog No. 1704158) were
bought from Bio-Rad (Hercules, CA, USA). Monoclonal antibodies (mAb) to poly(ADP
ribose)polymerase (PARP-1) (46D11 #9532), p21 (12D1 #2947), cyclin D1 (92G2 #2978),
CDK4 (#12790), cyclin E1 (HE12 #4129), cyclin A2 (BF683 #4656), cdc25c (#4688), RAD51
(D4B10), pBRCA1 (Ser1524 #9009), pChk1 (Ser345 #2341), phospho-Rb (Ser795 #9301),
phospho-Aurora B (Thr232) (#2914), β-actin (8H10D10 #3700), α-tubulin (11H10 #2125 and
DM1A #3873), and polyclonal antibodies (polyAb) to caspase 3 (#9662), cyclin B1 (#4138),
and phospho-cdc25c (#9528) were acquired from Cell Signaling Technology (Danvers, MA,
USA). Monoclonal antibodies (mAb) to Chk1 (sc-8408), BRCA1 (sc-1021), histone H2AX
(sc-517336), p-Histone H2AX (sc-517348) and β-actin (sc-47778) were acquired from Santa
Cruz Biotechnology (Dallas, TX, USA). PolyAb to Aurora B (36-5200), Rb (A302-432A), and
Hoechst 33258 pentahydrate (bis-Benzimide) (Catalog No. H3569) for nuclei staining were
purchased from Invitrogen (Thermo Fisher Scientific, Monza, Italy). Monoclonal antibody
to γ-tubulin (t6557) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Horseradish
peroxidase (HRP)-conjugated goat anti-mouse (GxMu-003-DHRPX) and HRP-conjugated
goat anti-rabbit (GtxRb-003-DHRPX) secondary antibodies were purchased from Jackson
ImmunoResearch Laboratories Inc. (Raleigh, NC, USA). All buffers and solutions were
prepared with ultrahigh quality water. All reagents were of the purest commercial grade.

4.2. Cell Cultures

U87MG of unknown origin (https://web.expasy.org/cellosaurus/CVCL_0022, (ac-
cessed on 28 August 2020) and U251MG stabilized cell lines were obtained from Elabscience
(Houston, TX, USA; Catalog No. EP-CL-0238 and Catalog No. EP-CL-0237, respectively).

https://web.expasy.org/cellosaurus/CVCL_0022
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The authentication statement used was the genotyping of STR and amelogenin locus of
the U87MG cell line. U343MG stabilized cell line was purchased from CLS Cell Lines
Service GmbH (Eppelheim, Germany, Catalog No. 300365). All cell lines were cultured
in tissue culture dishes (Corning, NY, USA), in DMEM supplemented with 10% heat in-
activated FBS, 1% non-essential amino acids, 1% sodium pyruvate, 1% L-glutamine, and
0.1% PlasmocinTM prophylactic (InvivoGen, San Diego, CA, USA), and maintained at
37 ◦C in a humidified atmosphere containing 5% CO2. Normal human astrocytes (NHA)
(Lonza, Rome, Italy, Catalog No. CC-25659) were cultured in ABMTM supplemented with
AGMTM Single Quots Kit. Glioblastoma primary cell lines GBM3 and GBM4 were cultured
in DMEM/Ham’s F-12 supplemented with 15% heat in activated FBS, 2% L-glutamine, 1%
sodium pyruvate, 1% non-essential amino acids, and 1.5% D-glucose and grown under the
same conditions. In the section “Preparation of GBM primary cell lines”, we describe the
protocol for preparing and culturing the primary cell lines used in this work.

4.3. Preparation of GBM Primary Cell Lines

Primary cultures were set up from fresh tumor resections obtained after surgery
at the Neurosurgery Service of “Antonio Cardarelli” Medical Hospital (Naples, Italy).
Briefly, the tumor tissues were minced using the gentleMACS™ Dissociator following
the instructions contained in the human tumor dissociation kit, (MiltenyiBiotec, Cologne,
Germany. Cod#130-095-929), strained through a MACS SmartStrainer (mesh size 70 µm),
and then cultured in DMEM/Ham’s F-12 supplemented as described in the “Cell Cultures”
section. Tissue samples were collected according to the ethical standards of the Institutional
Committee (DEL. N◦897 13 August 2020). Clinical diagnosis and molecular characterization
of tumor specimens were performed on a second sample that originated from each patient,
following the same procedure as explained before [57].

4.4. Cell Viability Assay

The effect of AdoMet on cell viability was assessed by an MTT assay according to
the manufacturer’s instruction. Briefly, U87MG, U251MG, U343MG, and NHA cells were
plated in serum-enriched media in 96-well plates at the proper density and treated with 10%
FBS fresh medium containing increasing concentrations of AdoMet (from 72 to 1000 µM)
for 24, 48, and 72 h. The incubation medium was then removed, and MTT solution was
added in PBS to a final concentration of 0.5 mg/mL. The cells were then incubated at 37 ◦C
for 4 h, and the MTT-formazan crystals were solubilized in 1N isopropanol/hydrochloric
acid 10% solution at 37 ◦C on a shaker for 20 min. The absorbance values of the solution in
each well were detected at 570 nm by using a Bio-Rad IMark microplate reader (Bio-Rad
Laboratories, Milan, Italy). All experiments were performed in quadruplicate. Cell viability
was expressed as the percentage of absorbance values of treated samples compared to the
control (100%). The IC50 values were calculated by using linear regression analysis.

4.5. Flow Cytometry Analysis of Cell Cycle

GBM cells were seeded in 6-well plates at a density of 10 × 104 cells/well and treated
with 500 µM AdoMet. After 72 h, the cells were recovered with trypsin–EDTA, washed
twice with PBS, and incubated with nuclei-PI staining solution (50 µg/mL PI, 0.1% sodium
citrate, 25 µg/mL RNase A, 0.1% triton in PBS) for 1 h at 4 ◦C in the dark [78]. Cell
cycle distribution was measured by flow cytometry using a BD FACS Aria III (Becton &
Dickinson, Mountain View, CA, USA). To evaluate cell cycle progression, PI fluorescence
was detected as FL3-A (linear scale) using ModFIT LT RRID:SCR_016106 software (Verity
Software House, Topsham, ME, USA). For each sample, 20,000 events were analyzed in at
least three separate experiments, giving a standard deviation (SD) < 5%.

4.6. Flow Cytometry Analysis of Apoptosis

Apoptosis was evaluated by flow cytometry by using Annexin V-FITC in conjunction
with a vital dye PI to distinguish apoptotic (Annexin V-FITC-positive, PI positive) from
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necrotic (Annexin V-FITC negative, PI positive) cells. GBM cells were seeded in 6-well
plates at a density of 10 × 104 cells/well and incubated in the presence of AdoMet 500
µM. After 72 h, cells were harvested by incubation with trypsin–EDTA, washed with
PBS twice, and collected by centrifugation. The cells were then resuspended in 200 µL of
Binding Buffer 1X and incubated with 5 µL Annexin V-FITC and 10 µL PI (20 µg/mL) for
30 min at room temperature, as recommended by the manufacturers. The determination
of viable cells and early apoptotic, late apoptotic, and necrotic cells was carried out with
a BD FACS Aria III (Becton & Dickinson, Mountain View, CA, USA). For each sample,
20,000 events were recorded. Analysis was carried out by triplicate determination on at
least three separate experiments.

4.7. Protein Extraction and Western Blot Analysis

GBM cells were cultured in 6-well plates at a density of 10 × 104 cells/well incubated
in the presence of AdoMet 500 µM for 72 h and then processed for Western blot analysis.
Briefly, after treatment, the cells were harvested, lysed on ice for 30 min, centrifuged at
18,000× g in an Eppendorf microcentrifuge for 30 min at 4 ◦C, and the supernatant was
collected. Protein concentration was determined and compared with the BSA standard
curve as reported in [79]. Equal amounts of sample proteins were separated by sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-PAGE) and electrotransferred
onto nitrocellulose membranes by Trans-Blot Turbo (BIO-RAD). The membranes were
washed in 10 mM Tris-HCl, pH 8.0, 150 mM NaCl, and 0.05% Tween 20 (TBST), blocked
with TBST supplemented with 5% nonfat dry milk, and incubated first with specific
primary antibodies overnight at 4 ◦C in TBST and 5% non-fat dry milk and then with HRP-
conjugated secondary antibodies. All primary antibodies were used at a dilution of 1:1000
and 1:500; all secondary antibodies were used at a dilution of 1:5000. The immunoblots were
then developed using enhanced chemiluminescence detection reagents ECL (Cyanagen,
Bologna, Italy) and exposed to X-ray film or detected using a Bio-Rad ChemiDoc MP image
sensor. All films were scanned and analyzed with Image J software 1.48 (National Institutes
of Health, Bethesda, MD, USA).

4.8. Immunofluorescence Analysis

To perform immunofluorescence analysis, 2 × 104 cells/cm2 of GBM cells were grown
on glass cover slips placed in 24-well culture plates. After treatment with AdoMet 500 µM
for 72 h, cells were fixed with 4% parformaldehyde, permeabilized with 0.2% Triton X-100,
and blocked using PBS-BSA 0.4%. Cells were incubated with specific primary antibodies
(anti-RAD51, anti-p-Histone-H2AX, anti-α-tubulin, anti-γ-tubulin) at a dilution of 1:200
overnight at 4 ◦C. Cells were then rinsed three times with PBS 1x and hybridized with a
secondary antibody coupled to Alexa Fluor 488 (Jackson ImmunoResearch, Cambridge, UK)
or Dylight 594 (Abcam, Cambridge, UK) for 1 h at room temperature. Cellular nuclei were
counterstained using 2.5 µg/mL Hoechst-33258 for ~5 min. Coverslips were then mounted
on glass slides. The images were acquired using the THUNDER Imaging system (Leica
Microsystems Srl, Buccinasco, Italy). The quantification of γH2AX foci and RAD51 foci
was performed by using Image J software 1.48 National Institutes of Health, Bethesda, MD,
USA). Approximately 100 nuclei for each treatment group were scored in each experiment,
and a threshold of 5 foci per cell was considered positive.

4.9. Confocal Laser Scanning Microscopy

GBM cells 2 × 104 cells/cm2 were grown on glass cover slips placed in 24-well
culture plates. After treatment with AdoMet 500 µM for 72 h, cells were fixed with 4%
paraformaldehyde, permeabilized with 0.2% Triton X-100, and blocked using PBS-BSA
0.4%. Cells were incubated with specific primary antibodies (anti-α-tubulin and anti-p-
Aurora B) at a dilution of 1:200 overnight at 4 ◦C. Cells were then rinsed three times with
PBS 1x and hybridized with a secondary antibody coupled to Alexa Fluor 488 (Jackson
ImmunoResearch, Cambridge, UK) or Dylight 594 (Abcam, Cambridge, UK) for 1h at
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room temperature. Cellular nuclei were counterstained using 2.5 µg/mL Hoechst-33258
for ~5 min. Coverslips were then mounted on glass slides. Microscopy images were
obtained using a Zeiss LSM 700 laser scanning confocal microscope equipped with a plan
apochromat 63× (NA 1.4) oil immersion objective. About 100 mitotic cells were counted
from the control samples and the AdoMet-treated samples.

4.10. Statistical Analysis

Statistical analysis was carried out with the GraphPad Prism 7.0 software for Windows
(GraphPad Software, Inc., San Diego, CA, USA). Data are expressed as mean ± standard
deviation (SD) and analyzed for statistical significance using the two-tailed Student’s t-test.
For multiple comparisons, ANOVA analysis was used, followed by Bonferroni correction.
The p-values * p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001 were considered
statistically significant. All experiments were repeated at least 3 times and performed
in triplicate.

5. Conclusions

New advances in anticancer drug discovery using natural compounds have been
made in the last few years, and AdoMet, the physiological methyl donor, has emerged as a
promising molecule capable of acting as a selective cytotoxic agent leading to tumor cell
death. The present study demonstrated, for the first time, that AdoMet exhibited antitu-
moral effects in both stabilized and primary GBM cell lines and provided experimental
evidence on the underlying mechanisms. As schematically represented in Figure 9 where
the anticancer activities of AdoMet and its molecular targets are summarized, AdoMet was
able to kill tumor cells through inhibiting DNA repair, cell cycle progression, and Aurora
B kinase expression and activity, ultimately causing cell death following the activation of
apoptosis and mitotic catastrophe. The ability of AdoMet to affect cancer cells at multiple
levels and thus potentially circumvent the development of resistance, together with its
capability to kill tumor cells while minimally affecting normal cells, highlights the great
potential of this natural compound, allowing us to propose AdoMet as a promising tar-
get for further investigations finalized to the design of innovative adjuvant therapies in
GBM treatments.
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