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Abstract: Herein, a general and practical temperature-controlled approach for the divergent synthesis
of pyrazoles and 1-tosyl-1H-pyrazoles via electrophilic cyclization in the absence of transition-metal
catalysts and oxidants was developed. The desired products were obtained in moderate to excellent
yields from common starting materials in both ionic liquids and ethanol by simply tuning the reaction
temperature. This strategy employs easily synthesized substrates, mild reaction conditions, and
excellent functional-group tolerance.
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1. Introduction

As an impressive nitrogen-containing heterocyclic compound, pyrazole and its deriva-
tives have been widely studied owing to their diverse and potent biological activities,
including analgesic [1–3], antibacterial [4], antidepressant [5], anti-inflammatory [6], an-
tihypertensive [7], appetite suppressant [8], antihyperglycemic [9], and anti-cancer activ-
ities [10]. Thus, numerous studies have been conducted on the synthesis of pyrazoles.
Traditional methods involve the reaction of hydrazines and β-di-functional compounds
such as 1,3-dicarbonyl compounds [11–16] or the intermolecular cyclization reaction of
diazoalkanes and nitrilimines with unsaturated hydrocarbons. However, the poor regiose-
lectivity greatly limits the application scope of these methods.

Advances in the development of electrophilic cyclization strategies over the past few
decades have led to many studies on the synthesis of substituted pyrazoles under mild
reaction conditions with excellent regioselectivity [17–20]. In 2011, Zora and co-workers
developed a method for the electrophilic cyclization of α,β-alkynic hydrazones mediated
by CuI in the presence of trithylamine [21]. They also reported another study on the
preparation of 4-iodopyrazoles promoted by molecular iodine [22]. In the same year,
Liu, Xu, and co-workers declared a Au(I)-catalyzed tandem aminofluorination method to
furnish fluoropyrazoles with the addition of selectfluor [23]. In 2017, Tsui et al. achieved a
copper-mediated method for the synthesis of 4-(trifluoromethyl)pyrazoles [24]. In 2020,
Niu and Gao et al. pioneered a facile method for the synthesis of 4-chalcogenylated
pyrazoles [25]. Then, Wang and Ji’s group successfully utilized the strategy to synthesize
4-(arylselanyl)-1H-pyrazoles [26].

Despite such remarkable achievements, transition-metal catalysts and oxidants were
always indispensable. Along with the concept of green chemistry, the significance of the
green and sustainable development of chemical systems has gained increased attention; in
particular, the development of eco-friendly synthesis methods that conform to the demands
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of green chemistry is of critical importance [27,28]. Thus, considerable effort has been
devoted to the investigation of the green solvent system. Therefore, ionic liquids (ILs)
have sparked great interest among chemists because of their unique physical and chemical
properties, such as easy recyclability and high stability [29–31]. Inspired by the synthesis
potential of ILs, we sought to develop a green and economical strategy to prepare useful
pyrazoles with potential applications in various fields.

Herein, we report the solvent-switchable, metal- and oxidant-free divergent synthesis
of 1H- and 1-tosyl-1H-pyrazoles via electrophilic cyclization, affording the desired products
in moderate to excellent yields under mild conditions (Figure 1).
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2. Results and Discussion

The cyclization of 1,3-diphenylprop-2-yn-1-ylidene-4-methylbenzenesulfonohydrazide
(1a) was initially investigated by changing the solvent amount. As exhibited in Table 1,
the reaction did not proceed with conventional solvents such as CH3CN, EtOH, THF,
or DMSO (entries 1–4). To our delight, a 95% product yield of 3,5-diphenyl-1-tosyl-1H-
pyrazole (2a) was obtained when [HDBU][OAc] was screened. Encouraged by this result,
ionic liquids containing different cations and anions like [HDBU][NHS], [HTMG][NHS],
[HDBU][OAc][NHS], and [HTMG][HDBU][OAc]-[NHS] were then investigated, and ex-
cellent product yields were obtained at room temperature (entries 5–9). It was noticed
that this transformation could also be realized in EtOH with the addition of 1.0 equivalent
DBU (entry 4). Moreover, the desired product could be obtained via filtration rather than
column chromatography, thus avoiding the wastage of organic solutions and silica gel
(see Supporting Information). Since temperature is also a crucial factor in facilitating the
reaction, different temperatures were investigated. To our surprise, when the temperature
increased to 95 ◦C, no 2a was detected, but 3a was obtained in 85% yield, and further
studies showed that 3a began to be produced at 40 ◦C. This result indicates that a divergent
synthesis pathway could be achieved by regulating the reaction temperature. Further
experiments showed that the transformation could also be achieved in different solvents,
with [HDBU][OAc] demonstrating superior performance (entries 5–9). We also performed
the reaction in the presence of different additives and reaction temperatures, and the
yields decreased to varying degrees (see Supporting Information). Considering the green
synthetic properties of EtOH, both pathways were executed in the following investigations.

With the aforementioned optimized reaction protocol in hand, the scope of cyclizations
was first screened (Table 2). A wide range of substrates containing diverse substituents
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was evaluated using both optimal approaches, and the expected products were obtained in
up to 98% (2a–2u) yields. No significant difference between substrates containing electron-
donating (-Me, and -OMe) and electron-withdrawing groups (-F, -Cl, and -Br) on R1 and
R2 rings was observed. Ulteriorly, 2-naphthyl, 2-thienyl, and saturated t-butyl (2l–2n) also
gave satisfying yields of 67–83%. Furthermore, bis-pyrazoles (2o) could also be obtained
with a maximum yield of 93%. However, it is a pity that the phenylhydrazine-substituted
substrate (2q) could not take place in this transformation.

Table 1. Optimization of reaction conditions a,b.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 13 
 

 

the reaction in the presence of different additives and reaction temperatures, and the 
yields decreased to varying degrees (see Supporting Information). Considering the green 
synthetic properties of EtOH, both pathways were executed in the following investiga-
tions. 

Table 1. Optimization of reaction conditions a,b. 

 
Entry Solvent Yield of 2a [%] b Yield of 3a [%] b 

1 CH3CN N.R. N.R. 
2 DMSO N.R. N.R. 
3 THF N.R. N.R. 
4 EtOH N.R. (95) d N.R. (65) e 
5 [HDBU][OAc] 98 85 c 
6 [HDBU][NHS] 95 78 c 
7 [HTMG][NHS] 78 63 c 
8 [HDBU][OAc][NHS] 86 68 c 
9 [HTMG][HDBU][OAc][NHS] 80 58 c 

[a] Reaction conditions: 1a (0.2 mmol), solvent (2.0 mL), r.t., 0.5 h; [b] Isolated yields. [c] 95 °C, 12 h. 
[d] DBU (1.0 equiv.) additive, r.t., 0.5 h. [e] DBU (1.0 equiv.) additive, 95 °C, 12 h. [HDBU] = 2,3,4,-
6,7,8,9,10-octahydropyrimido [1,2-a]azepin-1-ium, [NHS] = 2,5-dioxopyrrolidin-1-olate, [HTMG] = 
bis(dimethylamino)-methaniminium. 

With the aforementioned optimized reaction protocol in hand, the scope of cycliza-
tions was first screened (Table 2). A wide range of substrates containing diverse substitu-
ents was evaluated using both optimal approaches, and the expected products were ob-
tained in up to 98% (2a–2u) yields. No significant difference between substrates contain-
ing electron-donating (-Me, and -OMe) and electron-withdrawing groups (-F, -Cl, and -
Br) on R1 and R2 rings was observed. Ulteriorly, 2-naphthyl, 2-thienyl, and saturated t-
butyl (2l–2n) also gave satisfying yields of 67–83%. Furthermore, bis-pyrazoles (2o) could 
also be obtained with a maximum yield of 93%. However, it is a pity that the phenylhy-
drazine-substituted substrate (2q) could not take place in this transformation. 

  

Entry Solvent Yield of 2a [%] b Yield of 3a [%] b

1 CH3CN N.R. N.R.
2 DMSO N.R. N.R.
3 THF N.R. N.R.
4 EtOH N.R. (95) d N.R. (65) e

5 [HDBU][OAc] 98 85 c

6 [HDBU][NHS] 95 78 c

7 [HTMG][NHS] 78 63 c

8 [HDBU][OAc][NHS] 86 68 c

9 [HTMG][HDBU][OAc][NHS] 80 58 c

[a] Reaction conditions: 1a (0.2 mmol), solvent (2.0 mL), r.t., 0.5 h; [b] Isolated yields. [c] 95 ◦C, 12 h. [d] DBU
(1.0 equiv.) additive, r.t., 0.5 h. [e] DBU (1.0 equiv.) additive, 95 ◦C, 12 h. [HDBU] = 2,3,4,-6,7,8,9,10-
octahydropyrimido [1,2-a]azepin-1-ium, [NHS] = 2,5-dioxopyrrolidin-1-olate, [HTMG] = bis(dimethylamino)-
methaniminium.

Table 2. Scope of cyclization substrates a,b.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   2h, 94% (A); 92% (B).

NN
Tos

OMe

 

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  



Molecules 2024, 29, 1706 4 of 13

Table 2. Cont.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

Molecules 2024, 29, x FOR PEER REVIEW 4 of 13 
 

 

Table 2. Scope of cyclization substrates a,b. 

 

    

   

    

   

  

 

 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condi-
tion B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated 
yields. 

Subsequent studies were conducted to investigate the application scope for the syn-
thesis of pyrazole derivatives under the standard reaction conditions (Table 3). Surpris-
ingly, the reaction exhibited remarkable differences from the cyclization reaction, specifi-
cally manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than 
those in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior 
reactivity to the electron-withdrawing ones, indicating that the substituent effect strongly 
influences the transformation; (3) none of corresponding products were obtained with al-
iphatic substrates and the corresponding cyclization product was retained. 

  

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condition B: 1
(0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. [b] Isolated yields.

Subsequent studies were conducted to investigate the application scope for the synthe-
sis of pyrazole derivatives under the standard reaction conditions (Table 3). Surprisingly,
the reaction exhibited remarkable differences from the cyclization reaction, specifically
manifested as follows: (1) the yields in ILs (35–88%) were significantly higher than those
in EtOH (17–76%); (2) the substrates with electron-donating groups showed inferior re-
activity to the electron-withdrawing ones, indicating that the substituent effect strongly
influences the transformation; (3) none of corresponding products were obtained with
aliphatic substrates and the corresponding cyclization product was retained.

Table 3. Scope of pyrazole substrates a,b.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 



Molecules 2024, 29, 1706 5 of 13

Table 3. Cont.

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 

Molecules 2024, 29, x FOR PEER REVIEW 5 of 13 
 

 

Table 3. Scope of pyrazole substrates a,b. 

[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 °C, under air, 12 h. 
Condition B: 1 (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 °C, under air, 12 h. [b] 
Isolated yields. 

Subsequently, a Gram-scale reaction was conducted under standard conditions, and 
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-par-
azole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a 
range of control experiments were carried out to research the reaction mechanism. Ini-
tially, the cyclization was conducted in IL at room temperature for 12 h, and there was no 
3a produced, revealing that the reaction temperature is the key to triggering subsequent 
reactions (Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as 
the starting material under 95 °C, in IL for 12 h (Scheme 1c). Finally, none of the expected 
products were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fon-
ohydrazide were selected as initial materials (Scheme 1d). 

 

    

  

    

 3n, 77% (A); 62% (B).

NHN

S

 
[a] Reaction condition A: 1 (0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 ◦C, under air, 12 h. Condition B: 1
(0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 ◦C, under air, 12 h. [b] Isolated yields.

Subsequently, a Gram-scale reaction was conducted under standard conditions, and
the cyclization product 2a was obtained in 93% and 85% yields. Additionally, the 1H-
parazole (3a) could be furnished in 75% and 53% yields, respectively (Scheme 1a). Next, a
range of control experiments were carried out to research the reaction mechanism. Initially,
the cyclization was conducted in IL at room temperature for 12 h, and there was no 3a pro-
duced, revealing that the reaction temperature is the key to triggering subsequent reactions
(Scheme 1b). Then, 3a was obtained at a 90% yield when 2a was employed as the starting
material under 95 ◦C, in IL for 12 h (Scheme 1c). Finally, none of the expected products
were detected when 1,3-diphenylprop-2-yn-1-one and 4-methylbenzenesul-fonohydrazide
were selected as initial materials (Scheme 1d).
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Finally, the recyclable experiment was further studied in order to assess the recycla-
bility of IL (Figure 2). After the reaction was completed, the reaction mixture was poured
into water and extracted with ethyl acetate. The organic layer containing the product was
kept for purification, and the aqueous phase was placed in a drying cabinet to remove the
excess water. Satisfactorily, only a minimal decline in activity was noted during five runs.
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Figure 2. Recyclability test.

Based on the aforementioned experiments and previous related reports, a plausible
mechanism for this reaction was proposed (Scheme 2). Primarily, in the presence of DBU,
1a initiated electrophilic cyclization via nucleophilic attack of the secondary nitrogen atom
to furnish protonated product 2a, which ulteriorly underwent the nucleophilic attack of
DBU triggered by thermal energy to obtain intermediates B and C. Eventually, B despoiled
the hydrogen proton from the solvent to provide 3a.
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3. Experimental Section

All the chemicals were obtained commercially and used without any prior purification.
1H NMR and 13C NMR spectra were recorded on Bruker Avance II 400 or 500 spectrometers
(See Supplementary Materials). All products were isolated by short chromatography on a
silica gel (200–300 mesh) column using petroleum ether (60–90 ◦C) and ethyl acetate, unless
otherwise noted. All compounds were characterized by 1H NMR and 13C NMR, which are
consistent with those reported in the literature.

Preparation of the Starting Materials

A mixture of acyl chloride (1a–1n, 1.3 equiv.; 1o 2.6 equiv.), PdCl2(PPh3)2 (1a–1n,
2 mol %; 1o 4 mol %), and Et3N (1a–1n, 1.5 equiv.; 1o 3.0 equiv.) in anhydrous THF were
stirred for 10 min at room temperature under nitrogen. CuI (1a–1n, 4 mol %; 1o 8 mol
%) was then added and stirred for another 10 min. Terminal alkyne (10 mmol) was then
added and stirred at room temperature for 15 h. The resulting solution was extracted
with EA and washed with 0.1N HCl. Next, the organic phase was dried over Na2SO4 and
evaporated to give the crude product, which was purified by column chromatography
using PE/EA as the eluent to give the desired α,β-alkynic ketones. Concentrated sulfuric
acid (1a–1n, 1.1 equiv.; 1o 2.2 equiv.) was added dropwise to a slurry of α,β-alkynic ketone
and hydrazine (1a–1n, 1.3 equiv.; 1o 2.6 equiv.) in EtOH at room temperature and stirred
overnight. After the reaction was complete, the mixture was concentrated and the crude
product was purified by column chromatography using PE/EA as the eluent to produce
the α,β-alkynic hydrazone (Scheme 3).
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General procedure for synthesis of 2a: Reaction conditions A: A mixture of the 1a
(0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at r.t., under air, 0.5 h. Condition B: 1a (0.2 mmol),
DBU (1.0 equiv.), EtOH (2.0 mL), stirred at r.t., under air, 0.5 h. The product 2a was purified
by silica gel column flash chromatography using PE/AcOEt as an eluent.
Procedure for Gram-scale synthesis of 2a: Reaction conditions A: A mixture of the 1a
(3 mmol), [HDBU][OAc] (30.0 mL), r.t., under air, 0.5 h. Conditions B: A mixture of the
1a (3 mmol), DBU (1.0 equiv.), EtOH (30.0 mL), r.t., under air, 0.5 h. The product 2a was
purified by silica gel column flash chromatography using PE/AcOEt as an eluent.
Procedure for Gram-scale synthesis of 3a: Reaction conditions A: A mixture of the 1a
(3 mmol), [HDBU][OAc] (30.0 mL), 95 ◦C, under air, 12 h. Conditions B: A mixture of the
1a (3 mmol), DBU (1.0 equiv.), EtOH (30.0 mL), 95 ◦C, under air, 12 h. The product 3a was
purified by silica gel column flash chromatography using PE/AcOEt as an eluent.
3,5-diphenyl-1-tosyl-1H-pyrazole (2a): White solid, (A: 95%, 71.1 mg; B: 93%, 69.6 mg); 1H
NMR (400 MHz, CDCl3) δ 7.87 (dd, J = 8.0, 1.4 Hz, 2H), 7.65 (d, J = 8.4 Hz, 2H), 7.53–7.39
(m, 8H), 7.22 (d, J = 8.2 Hz, 2H), 6.63 (s, 1H), 2.38 (s, 3H). 13C NMR (100 MHz, CDCl3) δ
155.19, 149.47, 145.33, 134.90, 131.38, 130.02, 129.66, 129.63, 129.48, 129.32, 128.72, 128.05,
127.83, 126.48, 109.52, 21.68. HRMS (ESI): Calculated for C22H19N2O2S: [M+H]+ 375.1162,
Found 375.1165.
5-phenyl-3-(p-tolyl)-1-tosyl-1H-pyrazole (2b): White solid, (A: 98%, 76.0 mg; B: 95%,
73.7 mg); 1H NMR (400 MHz, CDCl3) δ 7.75 (d, J = 8.1 Hz, 2H), 7.63 (d, J = 8.4 Hz, 2H),
7.50–7.43 (m, 5H), 7.23–7.19 (m, 4H), 6.59 (s, 1H), 2.38 (s, 3H), 2.37 (s, 3H). 13C NMR
(100 MHz, CDCl3) δ 155.34, 149.48, 145.22, 139.36, 134.93, 130.00, 129.70, 129.60, 129.42,
129.40, 128.56, 128.02, 127.80, 126.38, 109.53, 21.67, 21.40. HRMS (ESI): Calculated for
C23H21N2O2S: [M+H]+ 389.1318, Found 389.1310.
3-(4-chlorophenyl)-5-phenyl-1-tosyl-1H-pyrazole (2c): White solid, (A: 92%, 75.1 mg;
B: 90%, 73.4 mg) 1H NMR (400 MHz, CDCl3) δ 7.82–7.75 (m, 2H), 7.63 (d, J = 8.4 Hz, 2H),
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7.52–7.42 (m, 5H), 7.41–7.34 (m, 2H), 7.22 (d, J = 8.1 Hz, 2H), 6.58 (s, 1H), 2.38 (s, 3H).
13C NMR (100 MHz, CDCl3) δ 153.94, 149.52, 145.47, 135.20, 134.79, 130.00, 129.92, 129.70,
129.56, 129.42, 128.93, 128.07, 127.85, 127.72, 109.25, 21.70. HRMS (ESI): Calculated for
C22H18ClN2O2S: [M+H]+ 409.0772, Found 409.0775.
3-(4-bromophenyl)-5-phenyl-1-tosyl-1H-pyrazole (2d): White solid, (A: 93%, 84.1 mg;
B: 89%, 80.4 mg); 1H NMR (400 MHz, CDCl3) δ 7.71 (d, J = 8.5 Hz, 2H), 7.62 (d, J = 8.3 Hz,
2H), 7.53 (d, J = 8.5 Hz, 2H), 7.47 (d, J = 3.3 Hz, 1H), 7.46–7.41 (m, 4H), 7.21 (d, J = 8.3 Hz,
2H), 6.57 (s, 1H), 2.37 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 153.99, 149.53, 145.51, 134.72,
131.88, 130.34, 130.00, 129.72, 129.58, 129.37, 128.06, 127.98, 127.86, 123.48, 109.25, 21.72.
HRMS (ESI): Calculated for C22H18BrN2O2S: [M+H]+ 453.0267, Found 453.0260.
5-phenyl-3-(m-tolyl)-1-tosyl-1H-pyrazole (2e): White solid, (A: 95%, 73.7 mg; B: 91%,
70.6 mg); 1H NMR (500 MHz, CDCl3) δ 7.71 (s, 1H), 7.61 (d, J = 8.2 Hz, 3H), 7.49–7.44
(m, 5H), 7.29 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 8.2 Hz, 3H), 6.60 (s, 1H), 2.39 (s, 3H), 2.35 (s,
3H). 13C NMR (125 MHz, CDCl3) δ 155.41, 149.44, 145.28, 138.44, 134.88, 131.23, 130.13,
130.03, 129.64, 129.46, 128.60, 127.99, 127.81, 127.08, 123.64, 109.72, 21.69, 21.44. HRMS (ESI):
Calculated for C23H21N2O2S: [M+H]+ 389.1318, Found 389.1317.
3-(3-methoxyphenyl)-5-phenyl-1-tosyl-1H-pyrazole (2f): White solid, (A: 97%, 78.3 mg;
B: 93%, 75.1 mg); 1H NMR (400 MHz, CDCl3) δ 7.63 (d, J = 8.4 Hz, 2H), 7.51–7.43 (m, 5H),
7.41 (t, J = 4.9 Hz, 2H), 7.32 (t, J = 7.9 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 6.96–6.89 (m, 1H),
6.60 (s, 1H), 3.86 (s, 3H), 2.37 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 159.89, 155.08, 149.44,
145.35, 134.83, 132.71, 130.01, 129.75, 129.66, 129.58, 129.48, 128.05, 127.82, 119.03, 115.17,
111.65, 109.70, 55.44, 21.70. HRMS (ESI): Calculated for C23H21N2O3S: [M+H]+ 405.1267,
Found 405.1265.
3-(3-fluorophenyl)-5-phenyl-1-tosyl-1H-pyrazole (2g): White solid, (A: 93%, 72.9 mg;
B: 91%, 71.3 mg); 1H NMR (400 MHz, CDCl3) δ 7.64 (d, J = 8.4 Hz, 2H), 7.62–7.55 (m, 2H),
7.52–7.43 (m, 5H), 7.40–7.35 (m, 1H), 7.23 (d, J = 8.2 Hz, 2H), 7.09–7.04 (m, 1H), 6.59 (s, 1H),
2.38 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 164.26 (d, J = 245.0 Hz), 153.85, 149.45, 145.50,
134.75, 133.63 (d, J = 8.0 Hz), 130.31 (d, J = 8.0 Hz), 129.99, 129.70, 129.56, 129.38, 128.10,
127.84, 122.11 (d, J = 2.0 Hz), 116.21 (d, J = 21.0 Hz), 113.43 (d, J = 21.0 Hz), 109.31, 21.69.
HRMS (ESI): Calculated for C22H18FN2O2S: [M+H]+ 393.1068, Found 393.1066.
5-(4-methoxyphenyl)-3-phenyl-1-tosyl-1H-pyrazole (2h): White solid, (A: 94%, 76.0 mg;
B: 92%, 74.3 mg); 1H NMR (400 MHz, CDCl3) δ 7.89–7.82 (m, 2H), 7.62 (d, J = 8.4 Hz, 2H),
7.45–7.35 (m, 5H), 7.20 (d, J = 8.2 Hz, 2H), 7.02–6.92 (m, 2H), 6.57 (s, 1H), 3.88 (s, 3H),
2.36 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 160.56, 155.27, 149.56, 145.26, 134.88, 131.43,
131.38, 129.63, 129.29, 128.70, 127.99, 126.47, 121.72, 113.29, 109.29, 55.38, 21.69. HRMS (ESI):
Calculated for C23H21N2O3S: [M+H]+ 405.1267, Found 405.1260.
5-(3-fluorophenyl)-3-phenyl-1-tosyl-1H-pyrazole (2i): White solid, (A: 91%, 71.3 mg;
B: 88%, 69.0 mg); 1H NMR (500 MHz, CDCl3) δ 7.77–7.75 (m, 2H), 7.58 (d, J = 8.4 Hz,
2H), 7.37–7.29 (m, 4H), 7.19–7.14 (m, 3H), 7.13–7.06 (m, 2H), 6.55 (s, 1H), 2.30 (s, 3H). 13C
NMR (125 MHz, CDCl3) δ 161.89 (d, J = 245.0 Hz), 154.15, 146.80 (d, J = 2.5 Hz), 144.50,
133.63, 130.45 (d, J = 7.5 Hz), 130.09, 128.69, 128.41, 128.36 (d, J = 2.5 Hz), 127.69, 126.99,
125.39, 124.88, 124.86, 116.09 (d, J = 22.5 Hz), 115.47 (d, J = 20.0 Hz), 108.69, 20.64. HRMS
(ESI): Calculated for C22H18FN2O2S: [M+H]+ 393.1068, Found 393.1064.
5-(3,4-dichlorophenyl)-3-phenyl-1-tosyl-1H-pyrazole (2j): White solid, (A: 92%, 81.3 mg;
B: 87%, 76.9 mg); 1H NMR (500 MHz, CDCl3) δ 7.76–7.74 (m, 2H), 7.59 (d, J = 8.4 Hz,
2H), 7.46 (d, J = 8.3 Hz, 1H), 7.41 (d, J = 2.0 Hz, 1H), 7.37–7.31 (m, 3H), 7.27 (dd, J = 8.3,
2.0 Hz, 1H), 7.20–7.16 (m, 2H), 6.55 (s, 1H), 2.32 (s, 3H). 13C NMR (125 MHz, CDCl3) δ
154.22, 145.55, 144.70, 133.52, 132.86, 131.10, 130.40, 129.93, 128.88, 128.79, 128.46, 128.39,
127.72, 127.01, 125.39, 108.81, 20.68. HRMS (ESI): Calculated for C22H17Cl2N2O2S: [M+H]+

443.0382, Found 443.0381.
5-(3,5-dimethoxyphenyl)-3-phenyl-1-tosyl-1H-pyrazole (2k): White solid, (A: 98%, 85.0 mg;
B: 96%, 83.3 mg); 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 7.0 Hz, 2H), 7.59 (d, J = 8.1 Hz,
2H), 7.46–7.32 (m, 5H), 7.11 (s, 1H), 6.61–6.57 (m, 3H), 3.75 (s, 6H), 2.29 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 160.50, 159.78, 154.74, 149.12, 145.92, 134.01, 130.86, 130.72, 130.17,
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129.64, 128.99, 127.54, 126.16, 110.14, 108.06, 101.35, 55.45, 21.16. HRMS (ESI): Calculated
for C24H23N2O4S: [M+H]+ 435.1373, Found 435.1377.
3-(naphthalen-2-yl)-5-phenyl-1-tosyl-1H-pyrazole (2l): White solid, (A: 98%, 83.1 mg;
B: 95%, 80.5 mg); 1H NMR (500 MHz, CDCl3) δ 8.30 (s, 1H), 8.04 (dd, J = 8.6, 1.5 Hz, 1H),
7.89 (d, J = 8.6 Hz, 2H), 7.85 (dd, J = 6.6, 2.7 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.54–7.46 (m,
7H), 7.22 (d, J = 8.3 Hz, 2H), 6.76 (s, 1H), 2.36 (s, 3H). 13C NMR (125 MHz, CDCl3) δ 154.14,
148.51, 144.29, 133.77, 132.68, 132.18, 128.97, 128.60, 128.52, 128.45, 127.67, 127.39, 127.34,
126.96, 126.77, 126.73, 125.58, 125.43, 124.75, 122.98, 108.71, 20.61. HRMS (ESI): Calculated
for C26H21N2O2S: [M+H]+ 425.1318, Found 425.1311.
5-phenyl-3-(thiophen-2-yl)-1-tosyl-1H-pyrazole (2m): White solid, (A: 95%, 71.0 mg;
B: 86%, 64.3 mg); 1H NMR (400 MHz, DMSO-d6) δ 7.61–7.58 (m, 2H), 7.52–7.46 (m, 7H), 7.36
(d, J = 7.3 Hz, 2H), 7.11 (t, J = 4.9 Hz, 1H), 7.04 (s, 1H), 2.31 (s, 3H). 13C NMR (100 MHz,
DMSO-d6) δ 150.76, 149.67, 145.92, 133.83, 133.35, 130.17, 129.77, 128.95, 128.04, 127.95,
127.39, 110.16, 21.14. HRMS (ESI): Calculated for C22H19N2O2S: [M+H]+ 375.1089, Found
375.1082.
3-(tert-butyl)-5-phenyl-1-tosyl-1H-pyrazole (2n): White solid, (A: 90%, 63.7 mg; B: 85%,
60.2 mg); 1H NMR (500 MHz, CDCl3) δ 7.55 (d, J = 8.3 Hz, 2H), 7.44–7.40 (m, 5H), 7.19 (d,
J = 8.2 Hz, 2H), 6.19 (s, 1H), 2.38 (s, 3H), 1.26 (s, 9H). 13C NMR (125 MHz, CDCl3) δ 166.01,
148.46, 143.78, 133.74, 128.92, 128.77, 128.23, 128.15, 126.82, 126.65, 108.86, 31.60, 28.73, 20.60.
HRMS (ESI): Calculated for C20H23N2O2S: [M+H]+ 355.1475, Found 355.1479.
1,3-bis(5-phenyl-1-tosyl-1H-pyrazol-3-yl)benzene (2o): White solid, (A: 93%, 124.6 mg;
B: 84%, 112.5 mg); 1H NMR (400 MHz, CDCl3) δ 8.24 (s, 1H), 7.89 (d, J = 7.6 Hz, 2H), 7.62
(d, J = 8.1 Hz, 4H), 7.49–7.46 (m, 11H), 7.21 (d, J = 8.1 Hz, 4H), 6.69 (s, 2H), 2.37 (s, 6H).
13C NMR (100 MHz, CDCl3) δ 154.77, 149.55, 145.44, 134.77, 131.92, 130.04, 129.70, 129.54,
129.48, 129.15, 128.03, 127.85, 127.34, 124.49, 109.78, 21.71. HRMS (ESI): Calculated for
C38H31N4O4S2: [M+H]+ 671.1781, Found 671.1788.
3,5-diphenyl-1-(phenylsulfonyl)-1H-pyrazole (2p): White solid, (A: 93%, 66.9 mg; B: 85%,
61.2 mg); 1H NMR (400 MHz, CDCl3) δ 7.86 (dd, J = 7.9, 1.4 Hz, 2H), 7.77–7.73 (m, 2H),
7.58–7.55 (m, 1H), 7.51–7.48 (m, 1H), 7.57–7.45 (m, 5H), 7.43–7.39 (m, 4H), 6.63 (s, 1H). 13C
NMR (100 MHz, CDCl3) δ 155.35, 149.56, 137.80, 134.12, 131.25, 130.00, 129.53, 129.47, 129.38,
129.01, 128.72, 127.97, 127.85, 126.47, 109.63. HRMS (ESI): Calculated for C21H17N2O2S:
[M+H]+ 361.1005, Found 361.1008.
General procedure for synthesis of 3a: Reaction conditions A: A mixture of the 1a
(0.2 mmol), [HDBU][OAc] (2.0 mL), stirred at 95 ◦C, under air, 12 h. Reaction conditions A
for 3a: A mixture of the 1a (0.2 mmol), DBU (1.0 equiv.), EtOH (2.0 mL), stirred at 95 ◦C,
under air, 12 h. The product 3a was purified by silica gel column flash chromatography
using PE/AcOEt as an eluent.
3,5-diphenyl-1H-pyrazole (3a): White solid, (A: 85%, 37.4 mg; B: 65%, 28.6 mg); 1H NMR
(400 MHz, DMSO-d6) δ 13.33 (s, 1H), 7.81 (d, J = 7.4 Hz, 2H), 7.74 (d, J = 7.5 Hz, 2H),
7.41–7.33 (m, 4H), 7.29–7.21 (m, 2H), 7.12 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ 151.34,
143.39, 133.69, 129.36, 129.06, 128.67, 128.17, 127.49, 125.14, 99.66. HRMS (ESI): Calculated
for C15H13N2: [M+H]+ 221.1073, Found 221.1079.
5-phenyl-3-(p-tolyl)-1H-pyrazole (3b): White solid, (A: 70%, 32.7 mg; B: 53%, 24.8 mg); 1H
NMR (400 MHz, DMSO-d6) δ 13.24 (s, 1H), 7.79 (d, J = 7.5 Hz, 2H), 7.68 (d, J = 7.9 Hz, 2H),
7.40 (t, J = 7.6 Hz, 2H), 7.28 (t, J = 7.3 Hz, 1H), 7.21 (d, J = 7.9 Hz, 2H), 7.08 (s, 1H), 2.28 (s,
3H). 13C NMR (100 MHz, DMSO-d6) δ 137.12, 129.40, 128.91, 128.82, 127.71, 125.10, 125.05,
99.29, 20.86. HRMS (ESI): Calculated for C16H15N2: [M+H]+ 235.1230, Found 235.1233.
3-(4-chlorophenyl)-5-phenyl-1H-pyrazole (3c): White solid, (A: 83%, 42.1 mg; B: 61%,
30.9 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.44 (s, 1H), 7.89–7.78 (m, 4H), 7.65–7.62 (m,
2H), 7.49–7.47 (m, 2H), 7.35 (s, 1H), 7.22 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ 131.64,
128.99, 127.09, 125.12, 99.86. HRMS (ESI): Calculated for C15H12ClN2: [M+H]+ 255.0684,
Found 255.0689.
5-phenyl-3-(m-tolyl)-1H-pyrazole (3d): White solid, (A: 74%, 34.6 mg; B: 58%, 27.1 mg);
1H NMR (400 MHz, DMSO-d6) δ 13.25 (s, 1H), 7.71 (d, J = 7.1 Hz, 2H), 7.55 (s, 1H), 7.50
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(d, J = 7.1 Hz, 1H), 7.29 (t, J = 7.5 Hz, 2H), 7.17 (t, J = 7.3 Hz, 2H), 7.03 (s, 1H), 6.98 (d,
J = 7.3 Hz, 1H), 2.20 (s, 3H). 13C NMR (100 MHz, DMSO-d6) δ 138.02, 128.91, 127.84, 125.79,
125.18, 122.38, 99.67, 21.21. HRMS (ESI): Calculated for C16H15N2: [M+H]+ 235.1230, Found
235.1234.
3-(3-methoxyphenyl)-5-phenyl-1H-pyrazole (3e): White solid, (A: 69%, 34.5 mg; B: 49%,
24.5 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.30 (s, 1H), 7.77 (d, J = 7.4 Hz, 2H), 7.39–7.35
(m, 4H), 7.30–7.23 (m, 2H), 7.14 (s, 1H), 6.83 (d, J = 7.6 Hz, 1H), 3.74 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 159.70, 129.96, 128.84, 127.79, 125.14, 117.56, 113.44, 110.53, 99.91,
55.17. HRMS (ESI): Calculated for C16H15N2O: [M+H]+ 251.1179, Found 251.1171.
3-(3-chlorophenyl)-5-phenyl-1H-pyrazole (3f): White solid, (A: 80%, 40.6 mg; B: 70%,
35.5 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.33 (s, 1H), 7.78–7.35 (m, 4H), 7.40 (d, J = 8.3 Hz,
2H), 7.35 (t, J = 7.6 Hz, 2H), 7.24 (t, J = 7.4 Hz, 1H), 7.10 (s, 1H). 13C NMR (100 MHz,
DMSO-d6) δ 132.23, 129.40, 128.90, 128.85, 127.97, 126.82, 125.16, 125.07, 99.90. HRMS (ESI):
Calculated for C15H12ClN2: [M+H]+ 255.0684, Found 255.0679.
3-(3-fluorophenyl)-5-phenyl-1H-pyrazole (3g): White solid, (A: 88%, 41.8 mg; B: 75%,
35.7 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.38 (s, 1H), 7.74 (d, J = 7.2 Hz, 2H), 7.62–7.57
(m, 2H), 7.41–7.34 (m, 3H), 7.24 (t, J = 7.3 Hz, 1H), 7.17 (s, 1H), 7.06 (t, J = 7.7 Hz, 1H). 13C
NMR (100 MHz, DMSO-d6) δ 163.87 (d, J = 240.0 Hz), 130.84, 128.93, 128.02, 125.17, 121.21 (d,
J = 3.0 Hz), 114.49 (d, J = 20.0 Hz), 111.82 (d, J = 23.0 Hz), 100.24. HRMS (ESI): Calculated
for C15H12FN2: [M+H]+ 239.0979, Found 239.0977.
5-(4-methoxyphenyl)-3-phenyl-1H-pyrazole (3h): White solid, (A: 70%, 35.0 mg; B: 55%,
27.5 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.16 (s, 1H), 7.81–7.60 (m, 4H), 7.32 (t, J = 7.3 Hz,
2H), 7.20 (t, J = 7.0 Hz, 1H), 6.95 (s, 1H), 6.90 (d, J = 8.1 Hz, 2H), 3.66 (s, 3H). 13C NMR
(100 MHz, DMSO-d6) δ 159.06, 151.20, 143.36, 133.72, 128.81, 127.65, 126.52, 125.13, 114.28,
98.87, 55.16. HRMS (ESI): Calculated for C16H15N2O: [M+H]+ 251.1179, Found 251.1173.
5-(4-ethylphenyl)-3-phenyl-1H-pyrazole (3i): White solid, (A: 78%, 38.6 mg; B: 58%,
28.7 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.22 (s, 1H), 7.71 (d, J = 7.1 Hz, 2H), 7.60
(d, J = 7.5 Hz, 2H), 7.28 (t, J = 7.5 Hz, 2H), 7.16 (t, J = 7.3 Hz, 1H), 7.10 (d, J = 7.8 Hz, 2H),
6.97 (s, 1H), 2.43 (q, J = 7.6 Hz, 2H), 1.01 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, DMSO-d6)
δ 143.53, 128.88, 128.30, 127.77, 125.21, 125.18, 99.35, 28.07, 15.63. HRMS (ESI): Calculated
for C17H17N2: [M+H]+ 249.1386, Found 249.1388.
5-(3-fluorophenyl)-3-phenyl-1H-pyrazole (3j): White solid, (A: 87%, 41.4 mg; B: 66%,
31.4 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.41 (s, 1H), 7.85–7.55 (m, 4H), 7.39–7.30 (m,
3H), 7.23 (d, J = 24.2 Hz, 2H), 7.07 (s, 1H). 13C NMR (100 MHz, DMSO-d6) δ 163.96, (d,
J = 242.0 Hz), 130.92 (d, J = 3.0 Hz), 128.99, 128.06, 125.25, 121.26, 114.36 (d, J = 21.0 Hz),
111.91 (d, J = 23.0 Hz), 100.27. HRMS (ESI): Calculated for C15H12FN2: [M+H]+ 239.0979,
Found 239.0982.
5-(3,4-dichlorophenyl)-3-phenyl-1H-pyrazole (3k): White solid, (A: 87%, 50.1 mg; B: 71%,
40.8 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.23 (s, 1H), 7.73 (d, J = 7.6 Hz, 2H), 7.39–7.35 (m,
4H), 7.26 (t, J = 7.3 Hz, 1H), 7.04–7.02 (m, 1H), 6.96 (s, 1H). 13C NMR (100 MHz, DMSO-d6)
δ 128.95, 128.12, 127.77, 125.20, 123.95, 99.57. HRMS (ESI): Calculated for C15H12Cl2N2:
[M+H]+ 289.0298, Found 289.0295.
5-(3,5-dimethoxyphenyl)-3-phenyl-1H-pyrazole (3l): White solid, (A: 35%, 19.6 mg; B: 17%,
9.5 mg); 1H NMR (400 MHz, DMSO-d6) δ 7.90–7.87 (m, 2H), 7.48–7.44 (m, 2H), 7.36–7.32
(m, 1H), 7.26 (s, 1H), 7.09 (d, J = 2.3 Hz, 2H), 6.51 (t, J = 2.2 Hz, 1H), 3.83 (s, 6H). 13C NMR
(100 MHz, DMSO-d6) δ 160.89, 147.40, 133.27, 131.75, 128.82, 127.76, 125.15, 103.27, 100.08,
99.80, 55.32. HRMS (ESI): Calculated for C17H17N2O2: [M+H]+ 281.1285, Found 281.1280.
3-(naphthalen-2-yl)-5-phenyl-1H-pyrazole (3m): White solid, (A: 83%, 44.8 mg; B: 72%,
38.8 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.43 (s, 1H), 8.32 (s, 1H), 8.08–7.66 (m, 6H),
7.53–7.35 (m, 4H), 7.29 (s, 2H). 13C NMR (100 MHz, DMSO-d6) δ 133.22, 132.56, 128.98,
128.42, 128.03, 127.77, 126.67, 126.12, 125.18, 123.72, 123.50, 100.11. HRMS (ESI): Calculated
for C19H15N2: [M+H]+ 271.1230, Found 271.1239.
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5-phenyl-3-(thiophen-2-yl)-1H-pyrazole (3n): White solid, (A: 77%, 34.8 mg; B: 62%,
28.0 mg); 1H NMR (400 MHz, DMSO-d6) δ 13.43 (s, 1H), 7.90 (d, J = 7.5 Hz, 2H), 7.56–7.53
(m, 4H), 7.43 (t, J = 7.3 Hz, 1H), 7.25–7.17 (m, 1H), 7.14 (s, 1H). 13C NMR (100 MHz, DMSO-
d6) δ 129.03, 128.20, 127.84, 125.23, 124.00, 99.61. HRMS (ESI): Calculated for C13H11N2S:
[M+H]+ 227.0637, Found 227.0630.

4. Conclusions

This report depicted a novel solvent-switchable and thermodynamic-controlled diver-
gent synthesis reaction for the synthesis of 1H- and 1-sulfonyl pyrazoles under transition-
metal-catalyst and oxidant conditions. As demonstrated, various substrates could take
place during the transformation smoothly, and provided the corresponding products in
moderate to good yields through the model systems. Control experiments showed that
reaction temperature was a pivotal trigger process for the electrophilic cyclization reaction.
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