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Abstract: Artabotrys, a pivotal genus within the Annonaceae family, is renowned for its extensive
biological significance and medicinal potential. The genus’s sesquiterpene compounds have attracted
considerable interest from the scientific community due to their structural complexity and diverse
biological activities. These compounds exhibit a range of biological activities, including antimalarial,
antibacterial, anti-inflammatory analgesic, and anti-tumor properties, positioning them as promising
candidates for medical applications. This review aims to summarize the current knowledge on the
variety, species, and structural characteristics of sesquiterpene compounds isolated from Artabotrys
plants. Furthermore, it delves into their pharmacological activities and underlying mechanisms,
offering a comprehensive foundation for future research.

Keywords: Artabotrys; Annonaceae; sesquiterpene compounds; biological activities

1. Introduction

Annonaceae, a prominent family within the tropical flora, is classified under the Ra-
nunculaceae. It contains approximately 130 genera and over 2100 species, featuring a rich
diversity of tropical trees, shrubs, and climbing plants [1]. Many species within Annonaceae
family have been widely used in ethnobotany to treat a myriad of health conditions [2].
For instance, Polyalthia, one of the largest and most famous genera within Annonaceae, has
been widely used in the treatment of rheumatic fever, peptic ulcer, and systemic pain [3].
The chemical diversity present in Annonaceae species is vast, yielding a plethora of nat-
ural compounds such as alkenes [4], terpenoids [5], alkaloids [6–10], and phenols [11].
These compounds demonstrate a broad spectrum of pharmacological activities, including
anti-mosquito [12], anti-cancer [13–15], antibacterial [16], anti-protozoal [17,18], and anti-
fungal [19]. Among them, Annonaceous acetogenins stand out for their potent anti-tumor
potential, making them one of the most promising natural product discoveries [20].

Artabotrys, belonging to the Annonaceae family, comprises about 110 species of plants
around the world, predominantly distributed in tropical and subtropical regions such as
Southeast Asia, Indonesia, and Malaysia. The plants of this genus are climbing shrubs. The
leaves of these plants are usually compound, the flowers are small and clustered on the
raceme, and the fruits are drupe-shaped. There are many traditional uses of this genus,
such as the treatment of cholera, malaria, and other diseases [21]. The plants of this genus
have a wide range of biological significance and medicinal value. An examination of data
from the Plants of the World Online database facilitated a detailed summary of Artabotrys
species and their distribution (Table 1).
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Table 1. Distribution of Artabotrys plant resources.

No. Species Distribution

1 Artabotrys aereus Ast Vietnam
2 Artabotrys antunesii Engl. & Diels Angola
3 Artabotrys arachnoides J.Sinclair New Guinea
4 Artabotrys atractocarpus I.M.Turner Borneo
5 Artabotrys aurantiacus Engl. Cameroon, Central African Repu, Congo, Gabon, Zaïre
6 Artabotrys blumei Hook.f. & Thomson China South-Central, China Southeast, Hainan, Vietnam

7 Artabotrys brachypetalus Benth. Botswana, Caprivi Strip, Malawi, Mozambique, Northern
Provinces, Tanzania, Zambia, Zaïre, Zimbabwe

8 Artabotrys brevipes Craib Laos, Thailand
9 Artabotrys burmanicus A.DC. Assam, Myanmar
10 Artabotrys byrsophyllus I.M.Turner & Utteridge Malaya, Thailand
11 Artabotrys cagayanensis Merr. Philippines
12 Artabotrys camptopetalus Diels New Guinea
13 Artabotrys carnosipetalus Jessup Queensland
14 Artabotrys caudatus Wall. ex Hook.f. & Thomson Assam, Bangladesh, East Himalaya
15 Artabotrys chitkokoi K.Z.Hein, Naive & J.Chen Myanmar
16 Artabotrys coccineus Keay Nigeria
17 Artabotrys collinus Hutch. Tanzania, Zambia
18 Artabotrys congolensis De Wild. & T.Durand Cameroon, Central African Repu, Congo, Gabon, Zaïre
19 Artabotrys costatus King Borneo, Malaya
20 Artabotrys crassifolius Hook.f. & Thomson Malaya, Myanmar, Thailand
21 Artabotrys crassipetalus Pellegr. Gabon
22 Artabotrys cumingianus S.Vidal Philippines
23 Artabotrys darainensis Deroin & L.Gaut. Madagascar
24 Artabotrys dielsianus Le Thomas Cameroon
25 Artabotrys fragrans Jovet-Ast China South-Central, China Southeast, Vietnam
26 Artabotrys gossweileri Baker f. Cabinda
27 Artabotrys gracilis King Borneo, Malaya, Sumatera
28 Artabotrys grandifolius King Malaya, Sumatera
29 Artabotrys hainanensis R.E.Fr. China Southeast, Hainan
30 Artabotrys harmandii Finet & Gagnep. Cambodia, Laos, Thailand, Vietnam
31 Artabotrys hexapetalus (L.f.) Bhandari Comoros, India, Laos, Sri Lanka
32 Artabotrys hienianus Bân Vietnam
33 Artabotrys hildebrandtii O.Hoffm. Madagascar
34 Artabotrys hirtipes Ridl. Borneo
35 Artabotrys hispidus Sprague & Hutch. Guinea, Ivory Coast, Liberia, Sierra Leone
36 Artabotrys inodorus Zipp. New Guinea

37 Artabotrys insignis Engl. & Diels Benin, Cameroon, Congo, Gabon, Ghana, Guinea, Ivory
Coast, Liberia, Sierra Leone, Zaïre

38 Artabotrys insurae Junhao Chen & Eiadthong Thailand
39 Artabotrys jacques-felicis Pellegr. Cameroon, Central African Repu, Zaïre
40 Artabotrys javanicus I.M.Turner Jawa
41 Artabotrys jollyanus Pierre Cameroon, Guinea, Ivory Coast, Liberia
42 Artabotrys kinabaluensis I.M.Turner Borneo
43 Artabotrys kurzii Hook.f. & Thomson Myanmar
44 Artabotrys lanuginosus Boerl. Borneo, Sulawesi, Sumatera
45 Artabotrys lastoursvillensis Pellegr. Gabon, Uganda
46 Artabotrys letestui Pellegr. Congo, Gabon
47 Artabotrys libericus Diels Liberia

48 Artabotrys likimensis De Wild. Burundi, Central African Repu, Kenya, Rwanda, Uganda,
Zaïre

49 Artabotrys longipetalus Junhao Chen & Eiadthong Thailand
50 Artabotrys longistigmatus Nurainas Sumatera
51 Artabotrys lowianus King Malaya
52 Artabotrys luteus Elmer Philippines
53 Artabotrys luxurians Ghesq. ex Cavaco & Keraudr. Madagascar
54 Artabotrys macrophyllus Hook.f. Gulf of Guinea Is.
55 Artabotrys macropodus I.M.Turner Borneo
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Table 1. Cont.

No. Species Distribution

56 Artabotrys madagascariensis Miq. Madagascar
57 Artabotrys maingayi Hook.f. & Thomson Borneo, Malaya

58 Artabotrys manoranjanii M.V.Ramana, J.Swamy &
K.C.Mohan Andaman Is.

59 Artabotrys modestus Diels Tanzania

60 Artabotrys monteiroae Oliv.

Angola, Burundi, Ethiopia, Kenya, KwaZulu-Natal,
Madagascar, Malawi, Mozambique, Northern Provinces,
Rwanda, Sudan, Swaziland, Tanzania, Uganda, Zambia,

Zaïre, Zimbabwe

61 Artabotrys multiflorus C.E.C.Fisch. China South-Central, China Southeast, Myanmar,
Thailand

62 Artabotrys nicobarianus D.Das Andaman Is., Nicobar Is.
63 Artabotrys oblanceolatus Craib Thailand
64 Artabotrys oblongus King Cambodia, Malaya
65 Artabotrys ochropetalus I.M.Turner Borneo

66 Artabotrys oliganthus Engl. & Diels Cameroon, Central African Repu, Gabon, Guinea, Ivory
Coast, Liberia

67 Artabotrys oxycarpus King Malaya, Thailand
68 Artabotrys pachypetalus B.Xue & Junhao Chen China Southeast
69 Artabotrys pallens Ast Vietnam
70 Artabotrys palustris Louis ex Boutique Zaïre
71 Artabotrys pandanicarpus I.M.Turner Borneo
72 Artabotrys parkinsonii Chatterjee Myanmar
73 Artabotrys petelotii Merr. Laos, Vietnam
74 Artabotrys phuongianus Bân Vietnam
75 Artabotrys pierreanus Engl. & Diels Cameroon, Congo, Gabon, Zaïre
76 Artabotrys pilosus Merr. & Chun China Southeast, Hainan
77 Artabotrys pleurocarpus Maingay ex Hook.f. & Thomson Malaya, Thailand
78 Artabotrys polygynus Miq. Borneo
79 Artabotrys porphyrifolius Nurainas Sumatera
80 Artabotrys punctulatus C.Y.Wu China South-Central, Thailand
81 Artabotrys rhynchocarpus C.Y.Wu China South-Central, China Southeast
82 Artabotrys roseus Boerl. Borneo

83 Artabotrys rufus De Wild. Benin, Cameroon, Central African Repu, Congo, Gabon,
Nigeria, Togo, Zaïre

84 Artabotrys rupestris Diels Tanzania
85 Artabotrys sahyadricus Robi, K.M.P.Kumar & Hareesh India
86 Artabotrys sarawakensis I.M.Turner Borneo
87 Artabotrys scortechinii King Malaya
88 Artabotrys scytophyllus (Diels) Cavaco & Keraudren Madagascar
89 Artabotrys sericeus Sujana & Vadhyar India
90 Artabotrys siamensis Miq. Myanmar, Thailand

91 Artabotrys spathulatus Jun H.Chen, Chalermglin &
R.M.K.Saunders Thailand

92 Artabotrys speciosus Kurz ex Hook.f. & Thomson Andaman Is.
93 Artabotrys spinosus Craib Cambodia, Laos, Thailand, Vietnam

94 Artabotrys suaveolens (Blume) Blume
Borneo, Jawa, Lesser Sunda Is., Malaya, Maluku,

Myanmar, New Guinea, Nicobar Is., Philippines, Sulawesi,
Sumatera, Thailand, Bangladesh

95 Artabotrys sumatranus Miq. Borneo, Jawa, Sumatera

96 Artabotrys tanaosriensis Jun H.Chen, Chalermglin &
R.M.K.Saunders Thailand

97 Artabotrys taynguyenensis Bân Vietnam
98 Artabotrys tetramerus Bân Vietnam

99 Artabotrys thomsonii Oliv. Cabinda, Cameroon, Central African Repu, Congo, Gabon,
Liberia, Nigeria, Zaïre

100 Artabotrys tipulifer I.M.Turner & Utteridge Malaya, Thailand
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No. Species Distribution

101 Artabotrys tomentosus Nurainas Sumatera
102 Artabotrys uniflorus (Griff.) Craib Myanmar, Thailand
103 Artabotrys veldkampii I.M.Turner Borneo

104 Artabotrys velutinus Scott Elliot
Benin, Cabinda, Cameroon, Central African Repu, Congo,

Gabon, Ghana, Guinea, Guinea-Bissau, Ivory Coast,
Liberia, Nigeria, Senegal, Sierra Leone, Uganda, Zaïre

105 Artabotrys venustus King Borneo, Malaya, Sumatera, Thailand
106 Artabotrys vidalianus Elmer Philippines
107 Artabotrys vietnamensis Bân Vietnam
108 Artabotrys vinhensis Ast Vietnam
109 Artabotrys wrayi King Malaya
110 Artabotrys zeylanicus Hook.f. & Thomson India, Sri Lanka

The genus Artabotrys, within the Annonaceae family, is distinguished by its wealth of
chemical components [22]. To date, research has identified a diverse array of compounds
from these plants, including alkaloids [23,24], volatile oils [25,26], cyclohexenes [27,28],
phenylpropanoids [29], flavonoids [30], quinones [31], and sesquiterpenes [32]. Among
these, sesquiterpenes stand out as one of the principal active components, heralded for their
significant medical value and importance in research. So far, there have been many research
articles on the plants of Artabotrys; however, the majority have focused on individual
compounds or relatively extensive research overviews. Comprehensive reviews specifically
addressing the sesquiterpene compounds derived from the plants of the genus are notably
scarce. Therefore, this paper aims to fill this gap by reviewing the current research progress
of sesquiterpene compounds derived from the plants of Artabotrys in Annonaceae. It metic-
ulously summarizes the variety, species, and structural characteristics of sesquiterpene
compounds identified within these plants and explores their pharmacological activities
and underlying mechanisms, offering a comprehensive foundation for future research.

2. Chemical Constitution

Sesquiterpenes, a diverse class of natural organic compounds, are characterized by a
basic carbon skeleton comprising 15 carbon atoms arranged in three isoprene units. Based
on the number of carbon rings in the structure, sesquiterpenes can be divided into five struc-
tural types: acyclic sesquiterpenes [33], monocyclic sesquiterpenes [34], bicyclic sesquiter-
penes [35,36], tricyclic sesquiterpenes [37], and tetracyclic sesquiterpenes [38]. Acyclic
sesquiterpenes encompass linear sesquiterpenes [39] and unsaturated acyclic sesquiter-
penes [40] whereas monocyclic sesquiterpenes include germacrane [41], cyclofarnesane [42],
bisabolane [43], and elemane [44]. Bicyclic sesquiterpenes feature structures like eudes-
mane [45], isodaucane [46], guaiane [47], acorane [48], and eremophilane [49,50]. Tricyclic
sesquiterpenes include aristolane [51], and aromadendrane [52]. Tetracyclic sesquiterpenes
include camphane, labdane, and ginkgolide [53,54].

Sesquiterpenes represent a distinguished class of natural organic compounds, notable
for their widespread natural sources. These compounds are predominantly derived from a
range of plants [55,56], especially those known for their aromatic properties, as well as from
fungi [57–59], and marine organisms [60,61]. Sesquiterpenes have a variety of biological
activities, encompassing antimalarial [62], antioxidant [63], anti-inflammatory [64,65], an-
tibacterial [66,67], and anti-tumor effects [68,69]. Therefore, sesquiterpenes have displayed
significant therapeutic potential in the pharmaceutical sector, while their unique properties
also make them invaluable to the perfume industry.

Extensive research into the sesquiterpenes extracted from Artabotrys plants reveals
a remarkable diversity within this genus. To date, investigations have identified over
80 distinct sesquiterpene types isolated from Artabotrys, underscoring the genus’s rich
contribution to the pool of naturally occurring sesquiterpenes. A detailed breakdown
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of these sesquiterpenes reveals a wide array of structural types, including 19 bisabolane-
type, 15 eudesmane-type, 8 norbisabolane-type, 6 guaiane-type, 4 aromadendrane-type,
aristolane-type, and cadinane-type, 3 eremophilane-type, 2 isodaucane-type and acorane-
type, 1 germacrane-type, alongside a multitude of other sesquiterpene variants.

These findings further attest to the extraordinary potential of the plant as a ‘natural
drug bank’, such as for the development of innovative anti-tumor and anti-inflammatory
drugs. Each sesquiterpene identified offers unique insights into potential pharmacological
applications and holds the promise of playing a pivotal role in devising novel therapeutic
strategies.

2.1. Bisabolane-Type Sesquiterpenes

Bisabolane-type sesquiterpenes, a subclass of monocyclic sesquiterpenes, are char-
acterized by their six-membered carbon rings and side chains. These compounds boast
a plethora of natural sources, including marine invertebrates, terrestrial plants, and mi-
croorganisms. Notably, bisabolane-type sesquiterpenes exhibit a wide range of biological
activities, such as anti-inflammatory and antibacterial [70,71]. To date, more than 350 kinds
of bisabolane-type sesquiterpenes have been isolated from various plant families, including
Compositae and Zingiberaceae [72]. In the context of the Artabotrys genus, several bisabolane-
type sesquiterpenes have also been successfully extracted (Table 2).

Table 2. Bisabolane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

1 Yingzhaosu A A. uncinatus [73]

2 Yingzhaosu B A. uncinatus [74]

3 Yingzhaosu C A. uncinatus [75]

4 Yingzhaosu D A. uncinatus [75]

5 (4R,10S,11E)-Yingzhaosu F A. hexapetalus [76]

6 (4S,10S,11E)-Yingzhaosu F A. hexapetalus [76]

7 (1R,2S,3S,4E)-Yingzhaosu G A. hexapetalus [76]

8 (1S,2R,3R,4E)-Yingzhaosu G A. hexapetalus [76]

9 (4R,8E,11S,12S)-Yingzhaosu H A. hexapetalus [76]

10 (4R,8E,11R,12R)-Yingzhaosu H A. hexapetalus [76]

11 (4S,8S,10S,11S)-Yingzhaosu I A. hexapetalus [76]

12 (4R,8S,10S,11S)-Yingzhaosu I A. hexapetalus [76]

13 (4R,8E,11R,12S)-Yingzhaosu J A. hexapetalus [76]

14 (4S,8E,11S,12R)-Yingzhaosu J A. hexapetalus [76]

15 (4R,8Z,11S,12S)-Yingzhaosu K A. hexapetalus [76]

16 (4S,8Z,11R,12R)-Yingzhaosu K A. hexapetalus [76]

17 (1S,2R,4R,8S,10E)-Yingzhaosu L A. hexapetalus [76]

18 Chlospicate E A. pilosus [77]

19 Arbisabol-9-en-7,11-diol A. pilosus [77]

Among the isolated compounds, compounds 1 and 2 were extracted from the roots
of Artabotrys uncinatus in 1979; their structures were elucidated by spectroscopic meth-
ods [73,74]. Compounds 3 and 4 were also derived from A. uncinatus [75]. Subsequently,
researchers isolated 13 bisabolane-type sesquiterpenes (5–17 in Table 2) from the roots of A.
hexapetalus in 2017 [76]. Moreover, 25 monomeric compounds, including two bisabolane-
type sesquiterpenes chlospicate E (18) and arbisabol-9-en-7,11-diol (19) [77], were isolated
from Artabotrys pilosus by a combination of chromatographic separation methods and spec-
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tral identification techniques. The structural details of the related compounds are shown in
Figure 1.
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2.2. Norbisabolane-Type Sesquiterpenes

Norbisabolane-type sesquiterpenes, another subset of monocyclic sesquiterpenes,
known for their spiroketal structures, have primarily been isolated from Phyllanthus spp.
within the Euphorbiaceae [78]. From the extracts of Artabotrys plants, several norbisabolane-
type sesquiterpenes (Table 3) were successfully purified by a series of chromatographic
techniques, and the structures were elucidated via comprehensive analysis of nuclear
magnetic resonance (NMR), mass spectrometry (MS) and other technical means. Among
them, compound 20 was isolated from A. hexapetalus [76], while compounds 21–27 were
isolated from the branches and leaves of A. hongkongensis in 2017 [79]. The detailed
structures of the compounds are shown in Figure 2.
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Table 3. Norbisabolane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

20 (1R,2S,4R,8R,10E)-Yingzhaosu M A. hexapetalus [77]

21 Blumenol A A. hongkongensis [79]

22 4,5-Dihydroblumenol A A. hongkongensis [79]

23 (6R,9S)-3-Oxo-α-ionol A. hongkongensis [79]

24 3-Hydroxy-β-ionone A. hongkongensis [79]

25 Dehydrovomifoliol A. hongkongensis [79]

26 (3R,6R,7E)-3-Hydroxy-4,7-
Megastigmadien-9-one A. hongkongensis [79]

27 Sarmentol F A. hongkongensis [79]
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2.3. Eudesmane-Type Sesquiterpenes

Eudesmane-type sesquiterpenes, classified as bicyclic sesquiterpenes, are notable for
their widespread distribution in nature. Eudesmane-type sesquiterpenes are characterized
by a core structure comprising two six-membered rings and four substituents with a total
of 15 carbon atoms, leading to a considerable structural diversity primarily attributed to
variations in the substituents’ positioning and the double bonds within the rings. Studies
have shown that these compounds displayed anti-inflammatory [80], anti-fungal [81], anti-
cancer [82], anti-diabetic nephropathy [83], and the ability to inhibit the proliferation of
leukemia cell lines [84].

A significant number of eudesmane-type sesquiterpenes have been isolated from
Artabotrys (Table 4), with compounds 28–42 representing this variety. Among them,
compounds 28–34, a series of seven eudesmane-type sesquiterpenes, were isolated from
Artabotrys hongkongensis Hance in 2020 [85]. The compound 7-trinoreudesma-4(15),8-dien-
1β-ol-7-one (45) was isolated from the ethyl acetate extract of the 90% ethanol extract
of the branches and leaves of A. pilosus by various modern chromatographic separation
techniques. Its identification as colorless oil soluble in chloroform was identified by struc-
tural identification, affirming its classification as an eudesmane-type sesquiterpene [77].
Additionally, the other eight eudesmane-type sesquiterpenes (35–42) were isolated from
Artabotrys hainanensis [86], A. hongkongensis [79], and A. pilosus [77] by various separa-
tion techniques. The distinctive structures of eudesmane-type sesquiterpenes from the
Artabotrys genus plants are depicted in Figure 3.
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Table 4. Eudesmane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

28 1α-Hydroxy-5,11-eudesmadiene A. hongkongensis [85]

29 5-Eudesmene-1β,4α-diol A. hongkongensis [85]

30 1β,11-Dihydroxy-5-eudesmene A. hongkongensis [85]

31 1β-Hydroxy-11-methoxy-5-eudesmene A. hongkongensis [85]

32 2α-Hydroxy pterodontic acid A. hongkongensis [85]

33 1β,9β-Dihydroxy-4aH-eudesma-5,11(13)-
Dien-12-oic acid A. hongkongensis [85]

34 1β,3α-Dihydroxyeudesma-5,11(13)-Dien-12-
oic acid A. hongkongensis [85]

35 Cryptomeridiol A. hainanensis [86]

36 4,10-Epi-5β-hydroxydihydroeiidesmol A. hainanensis [86]

37 Eudesm-4(14)-ene-3α,11-diol A. hainanensis [86]

38 Oplodiol A. hainanensis [86]

39 β-Eudesmol A. hainanensis
A. hongkongensis

[86]
[79]

40 Trans-3β-(1-hydroxy-1-methylethyl)-8αβ-
methyl-5-methylenedecalin-2-one A. hongkongensis [79]

41 1β,6α-Dihydroxy-4α (15)-Epoxyeudesmane A. pilosus [77]

42 7-Trinoreudesma-4(15),8-dien-1β-ol-7-one A. pilosus [77]
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2.4. Guaiane-Type Sesquiterpenes

Guaiane-type sesquiterpenes, a subclass of bicyclic sesquiterpenes, are distinguished
by their unique structural framework, which features a seven-membered ring fused with a
five-membered lactone ring, augmented by two methyl groups and one isopropyl group.
These compounds are prevalent across more than 30 families of plants, demonstrating a
broad spectrum of biological activities, including anti-tumor, anti-inflammatory, antibac-
terial, and antioxidant [87,88]. The genus Artabotrys plants, known for its rich chemical
diversity, also harbors guaiane-type sesquiterpenes. Compounds 43–48 represent guaiane-
type sesquiterpenes isolated from various Artabotrys species (Table 5). Guaiane pogostol
O-methyl ether (46) from Artabotrys stenopetalus in 1997 marked the beginning of the
identification of such compounds within the genus [89]. Compounds 43 and 44 are two
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sesquiterpenes isolated from the 90% ethanol extract of the branches and leaves of A.
hainanensis, both identified as guaiane-type sesquiterpenes [86]. Compound 45, a colorless
oily substance isolated from A. pilosus [77], was confirmed as guaianediol through NMR
data analysis and comparison with existing literature [90]. Additionally, alismol (47) and
alismoxide (48) were derived from the stem [91] and flower of A. hainanensis [86], respec-
tively, with the latter previously identified in Alisma orientalis [92]. The structures of these
guaiane-type sesquiterpenes are depicted in Figure 4.

Table 5. Guaiane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

43 Liguducin A A. hainanensis [86]

44 Alpinenone A. hainanensis [86]

45 Guaianediol A. pilosus [77]

46 Guaiane pogostol O-methyl ether A. stenopetalus [89]

47 Alismol A. hainanensis [91]

48 Alismoxide A. hainanensis [86]
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2.5. Eremophilane-Type Sesquiterpenes

Eremophilane-type sesquiterpenes, derived from the biosynthetic precursor farnesyl
diphosphate (FPP), represent a distinct group within the bicyclic sesquiterpene compound
family. These compounds are characterized by their unique irregular bicyclic structures,
with structural variations primarily arising from various oxidations on the bicyclic skeleton
and the isopropyl side chain [93]. Related studies have shown that these compounds
displayed anti-inflammatory effects and can inhibit the NO produced by lipopolysaccharide
(LPS)-induced RAW 264.7 macrophages [94]. In studying the chemical constituents of
the Artabotrys genus, researchers have successfully isolated several eremophilane-type
sesquiterpenes (Table 6). Among them, compounds 49 and 50 are two eremophilane-type
sesquiterpenes obtained from the branches and leaves of A. hongkongensis in the same
research process [79], while compound 51 was obtained from the branches and leaves of
A. hainanensis in another study one year later [86]. The chemical structures of these three
eremophilane-type sesquiterpenes with serial numbers 49–51 are shown in Figure 5.



Molecules 2024, 29, 1648 10 of 25

Table 6. Eremophilane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

49 Fukinone A. hongkongensis [79]

50 Petasitolone A. hongkongensis [79]

51 11-Hydroxy-valenc-1(10)-en-2-one A. hainanensis [86]
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2.6. Isodaucane-Type Sesquiterpenes

Isodaucane-type sesquiterpenes, which belong to bicyclic sesquiterpenes, are dis-
tinguished by their distinctive structural configuration, featuring a five-membered ring
coupled with a seven-membered ring. Despite their relatively scarce occurrence in nature
compared with other common types of sesquiterpenes, dedicated research efforts have
led to the successful isolation of two isodaucane-type sesquiterpenes from the Artabotrys
genus (Table 7). Compounds 52 and 53 were isolated from the branches and leaves of A.
hongkongensis and the stem bark of A. stenopetalus, respectively [79,89]. The structures of
the two compounds are shown in Figure 6.

Table 7. Isodaucane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

52 10-Oxo-isodauc-3-en-15-oic acid A. hongkongensis [79]

53 Artabotrol A. stenopetalus [89]
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2.7. Acorane-Type Sesquiterpenes

Acorane-type sesquiterpenes are distinguished by their spiro [4.5] decane skeleton,
featuring an isopropyl unit at C-1 and a dimethyl substitution at C-4 and C-8 [95]. This
unique natural product category falls within the bicyclic sesquiterpene compound, known
for its wide range of pharmacological activities, such as antiviral activity [96] and anti-
inflammatory activity [97,98]. Despite their notable bioactivity, acorane-type sesquiter-
penes are exceedingly rare in both plants and microorganisms. In a significant discovery,
two acorane-type sesquiterpenes were successfully isolated from the genus of Artabotrys
(Table 8). Compounds 54 and 55 were isolated from the roots of A. hexapetalus in 2017
alongside 13 bisabolane-type sesquiterpenes (5–17 in Table 2) [76]. The structures of the
two compounds are shown in Figure 7.
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Table 8. Acorane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

54 (3R,4S,8R,12R)-Yingzhaosu E A. hexapetalus [76]

55 (3S,4R,8S,12S)-Yingzhaosu E A. hexapetalus [76]
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2.8. Cadinane-Type Sesquiterpenes

Cadinane-type sesquiterpenes, a class of bicyclic sesquiterpenes, are synthesized
through the catalytic action of sesquiterpene synthase (STS) on FPP [99]. These compounds
have complex stereochemistry and a wide range of pharmacological activities, such as
hypoglycemic [100], antifungal [101], and anti-inflammatory [102]. To date, a consid-
erable diversity of cadinane-type sesquiterpenes with diverse structures and biological
activities have been isolated and identified from a variety of plants and microorganisms.
Furthermore, with the continuous advancement of modern biotechnology, the biosynthetic
pathways of representative cadinene-type sesquiterpenes have been substantially eluci-
dated [103]. The following compounds are cadinene-type sesquiterpenes obtained from
the genus of Artabotrys (Table 9). Notably, 10β, 15-hydroxy-α-cadinol (56) was isolated
from both A. pilosus [77] and A. hainanensis [86]. Additionally, amorph-4-en-10α-ol (57) was
isolated from the branches and leaves of A. hainanensis [86]. Compounds 58 and 59, further
enriching the variety of cadinene-type sesquiterpenes, were derived from the branches
and leaves of A. pilosus [77]. The detailed structures of these compounds are depicted in
Figure 8.

Table 9. Cadinane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

56 10β,15-Hydroxy-α-cadinol A. pilosus
A. hainanensis

[77]
[86]

57 Amorph-4-en-10α-ol A. hainanensis [86]

58 15-Hydroxy-t-muurolol A. pilosus [77]

59 10α-Hydroxycadin-4-en-15-al A. pilosus [77]
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2.9. Aristolane-Type Sesquiterpenes

Aristolane-type sesquiterpenes are naturally occurring sesquiterpenes, primarily ob-
tained from Nardostachys, Axinyssa, and Russula [104]. Aristolane-type sesquiterpenes
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usually contain a gem-dimethyl cyclopropane structure [105], which belongs to the tricyclic
sesquiterpenes. These compounds play a pivotal role in regulating serotonin transporter
(SERT) to enhance or inhibit SERT [106], which offers therapeutic potential for the treat-
ment of neuropsychiatric and digestive diseases. Advances in research and technology
have enabled the isolation of several aristolane-type sesquiterpenes from Artabotrys plants
(Table 10). 10-hydroxyaristolan-9-one (60), initially isolated from the stems of A. uncinatus in
2007, has also been found in the branches and leaves of A. hongkongensis in another study a
few years later [79,107], alongside compounds 61–63 [79]. The structures of aristolane-type
sesquiterpenes involved are shown in Figure 9.

Table 10. Aristolane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

60 10-Hydroxyaristolan-9-one A. uncinatus
A. hongkongensis

[107]
[79]

61 Aristol-8-en-1-one A. hongkongensis [79]

62 Aristolan-9-en-1-one A. hongkongensis [79]

63 Aristolan-1,9-diene A. hongkongensis [79]

Molecules 2024, 29, 1648 12 of 24 
 

 

(SERT) to enhance or inhibit SERT [106], which offers therapeutic potential for the treat-
ment of neuropsychiatric and digestive diseases. Advances in research and technology 
have enabled the isolation of several aristolane-type sesquiterpenes from Artabotrys plants 
(Table 10). 10-hydroxyaristolan-9-one (60), initially isolated from the stems of A. uncinatus 
in 2007, has also been found in the branches and leaves of A. hongkongensis in another 
study a few years later [79,107], alongside compounds 61–63 [79]. The structures of aris-
tolane-type sesquiterpenes involved are shown in Figure 9. 

Table 10. Aristolane-type sesquiterpenes from Artabotrys. 

No. Name of Compound Source Reference 

60 10-Hydroxyaristolan-9-one A. uncinatus 
A. hongkongensis 

[107] 
[79] 

61 Aristol-8-en-1-one A. hongkongensis [79] 
62 Aristolan-9-en-1-one A. hongkongensis [79] 
63 Aristolan-1,9-diene A. hongkongensis [79] 

 
Figure 9. The structures of aristolane-type sesquiterpenes from Artabotrys. 

2.10. Aromadendrane-Type Sesquiterpenes 
Aromadendrane-type sesquiterpenes, akin to the aristolane-type sesquiterpenes 

mentioned earlier, belong to the tricyclic sesquiterpenes family, noted for their anti-in-
flammatory [108]. Studies have found that certain aromadendrane-type sesquiterpenes 
compounds can interact with benzoquinone to form heterodimers, offering cytoprotective 
effects on glutamate-induced neurological deficits [109]. The following three compounds 
(64–65) are classified as aromadendrane-type sesquiterpenes obtained from Artabotrys (Ta-
ble 11). Compound 64 was obtained from branches and leaves of A. hainanensis [86]. The 
remaining compound (-)-ent-4β-hydroxy-10α-methoxyaromadendrane(65) was obtained 
from the stem of A. uncinatus by numerous efforts of researchers in 2007 [107]. Com-
pounds 66 and 67 are two sesquiterpenes obtained from the flowers of A. hexapetalus [110]. 
Figure 10 shows the detailed structures of the five aromadendrane-type sesquiterpenes. 

Table 11. Aromadendrane-type sesquiterpenes from Artabotrys. 

No. Name of Compound Source Reference 
64 Spathulenol A. hainanensis [86] 
65 (-)-Ent-4β-hydroxy-10α-Methoxyaromadendrane A. uncinatus [107] 
66 Globulol A. hexapetalus [110] 
67 β-Gurjunene A. hexapetalus [110] 

  

Figure 9. The structures of aristolane-type sesquiterpenes from Artabotrys.

2.10. Aromadendrane-Type Sesquiterpenes

Aromadendrane-type sesquiterpenes, akin to the aristolane-type sesquiterpenes men-
tioned earlier, belong to the tricyclic sesquiterpenes family, noted for their anti-
inflammatory [108]. Studies have found that certain aromadendrane-type sesquiterpenes
compounds can interact with benzoquinone to form heterodimers, offering cytoprotective
effects on glutamate-induced neurological deficits [109]. The following three compounds
(64–65) are classified as aromadendrane-type sesquiterpenes obtained from Artabotrys
(Table 11). Compound 64 was obtained from branches and leaves of A. hainanensis [86]. The
remaining compound (-)-ent-4β-hydroxy-10α-methoxyaromadendrane (65) was obtained
from the stem of A. uncinatus by numerous efforts of researchers in 2007 [107]. Compounds
66 and 67 are two sesquiterpenes obtained from the flowers of A. hexapetalus [110]. Figure 10
shows the detailed structures of the five aromadendrane-type sesquiterpenes.

Table 11. Aromadendrane-type sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

64 Spathulenol A. hainanensis [86]

65 (-)-Ent-4β-hydroxy-10α-
Methoxyaromadendrane A. uncinatus [107]

66 Globulol A. hexapetalus [110]

67 β-Gurjunene A. hexapetalus [110]
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2.11. Other Types of Sesquiterpenes

Beyond the previously mentioned sesquiterpenes, many other types of sesquiterpenes
have also been obtained from the plants of Artabotrys, as detailed in Table 12.

Table 12. Other types of sesquiterpenes from Artabotrys.

No. Name of Compound Source Reference

68 β-Caryophyllene oxide A. stenopetalus [89]

69 4-Hydroxy-4,7-dimethyl-1-tetralone A. pilosus
A. hainanensis

[77]
[86]

70 Oxyphyllone D A. pilosus [77]

71 1β-Hydroxy-4(15),5E,10(14)-
germacratriene A.hainanensis [86]

72 Artahongkongol A A. hongkongensis [85]

73 Clovane-2β,9α-diol A. hainanensis [91]

74 Tricyclohumuladiol A. hainanensis [91]

75 1-Methoxy-9-caryolanol A. uncinatus [107]

76 Caryolane-1,9β-diol A. uncinatus [107]

77 Litseachromolaevane A A. hainanensis [86]

78 Dihydroactinidiolide A. hainanensis [86]

79 10β-Hydroxyisodauc-6-en-14-al A. pilosus
A. hainanensis

[77]
[86]

80 Homalomenol C A. hainanensis [86]

81 (4R,5R,7R)-1(10)-spirovetiven-11-ol-2-
one A. hainanensis [86]

82 (2R,4S,8S,10R)-Artaboterpenoid A A. hexapetalus [32]

83 (−)-8R-Artaboterpenoid B A. hexapetalus [32]

84 (+)-8S-Artaboterpenoid B A. hexapetalus [32]

85 Junipediol A. hainanensis [91]

Notably, β-caryophyllene oxide (68), caryophyllene-type sesquiterpenes with a unique
polycyclic structure, were isolated from the stem bark of A. stenopetalus [89]. Compounds 74
and 76 in Table 12 also belong to this class of sesquiterpenes. Compounds 69 and 70, derived
by reducing some carbon atoms in cadinane-type sesquiterpenes, represent a class of
bicyclic sesquiterpene. 4-hydroxy-4,7-dimethyl-1-tetralone (69), reduced by 3 carbons, and
oxyphyllone D (70), reduced by 1 carbon, have been isolated from the branches and leaves of
A. pilosus [77] and A. hainanensis [86], respectively. Additionally, 1β-hydroxy-4(15),5E,10(14)-
germacratriene (71), a germacrane-type sesquiterpene, was isolated from the branches and
leaves of A. hainanensis [86] and belongs to monocyclic sesquiterpenes. artahongkongol A
(72), a unique trinoreudesmane sesquiterpene derived from the corresponding eudesmane-
type sesquiterpenes by removing a propyl group, was obtained from the stems and leaves
of A. hongkongensis [85]. (4R,5R,7R)-1(10)-spirovetiven-11-ol-2-one (81), a rare natural
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spirovetivane-type sesquiterpene, was first isolated from the flower of A. hainanensis [86].
Compounds 82, 83, and 84 are three bisabolene-type sesquiterpenes isolated from the roots
of A. hexapetalus, with compounds 83 and 84 identified as a pair of enantiomers [32]. The
remaining compounds listed in Table 12, not described in detail here, represent unique
sesquiterpenes with special structural types rare in nature isolated from Artabotrys plants.
The specific structures of the related compounds are illustrated as follows (Figure 11).
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3. Pharmacological Activities

Sesquiterpenes, with their distinct carbon skeletons and roles in diverse biochemical
processes, play a pivotal role in drug discovery and development. Their unique structures
enable a wide array of biological and pharmacological actions, making them invaluable
in modern medicinal research. In particular, sesquiterpenes from the plants of the genus
Artabotrys have shown significant activity across numerous pharmacological studies. The
following are some key pharmacological activities attributed to sesquiterpenes isolated
from Artabotrys plants.

3.1. Antimalarial Activity

Malaria is one of the oldest diseases in humans. It is a disease caused by parasites [111]
mainly transmitted to humans through mosquito bites [112]. Malaria is an infectious disease
caused by malaria parasites [113–115]. Predominantly prevalent in tropical and subtrop-
ical regions, especially in Africa, South Asia, Southeast Asia, and Central America [116],
malaria accounts for more than 200 million cases worldwide each year [117]. The devel-
opment of effective antimalarial drugs can reduce the spread and infection of malaria
and accelerate the early recovery of patients [118]. Therefore, it is of great significance
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to find more effective antimalarial drugs. In the process of studying antimalarial drugs,
researchers have found that some sesquiterpenes and some other natural components
derived from Artabotrys plants have shown antimalarial activity. Notably, yingzhaosu A (1)
is the first antimalarial drug with a clear structure containing an endoperoxide structure
in history [119]. This discovery has spurred further research and the synthesis of new
antimalarial drugs, although the exact mechanism of yingzhaosu A’s antimalarial action
remains partially understood. Current research suggests that yingzhaosu A’s mechanism
of action may involve two primary processes. Firstly, in the presence of oxygen and iron
(II), yingzhaosu A will undergo a degradation reaction due to the induction of iron (II),
forming unsaturated ketones and cyclohexyl radicals, respectively. The active substances
produced in this process may be the reason for its antimalarial effect [120].

Secondly, a recent study found that when yingzhaosu A plays a role in the body, it is
attacked by heme, which destroys its peroxide structure, produces tertiary oxygen-centered
radicals, and rearranges to remove the side chain. Therefore, the yingzhaosu A is split into
two parts. Heme is an important marker of malaria parasites. Based on the above findings,
a heme-activatable probe has been successfully developed, which will play an important
role in the field of antimalarial [121].

Beyond yingzhaosu A (1), related compounds such as yingzhaosu B (2), yingzhaosu C
(3), and yingzhaosu C (4) have also demonstrated antimalarial effect, expanding the library
of potential antimalarial agents derived from natural sources [122–124].

3.2. Antibacterial and Antifungal Activity

Bacterial infections significantly impact global health, causing widespread morbidity
and mortality, and placing a significant burden on health care systems [125,126]. At present,
many bacteria are resistant to antibiotics, which has become an extremely important public
health problem [127–129]. However, due to the increase in global antimicrobial resistance,
the efficacy of some treatments for bacterial infections is reduced or even ineffective.
Therefore, it is particularly important to find new therapeutic drugs and design new
treatment strategies in the field of antibacterial [130,131].

Among the promising candidates, sesquiterpenes derived from Artabotrys plants
have demonstrated antibacterial effects through different mechanisms, showing potential
against a variety of bacterial and fungal pathogens. Notably, isodaucane-type sesquiterpene
artabotrol (53), isolated from the stem bark of A. stenopetalus, a plant belonging to the genus
Artabotrys, exhibits a specific inhibitory effect on Cryptococcus neoformans [132].

Furthermore, globulol (66), isolated from the flowers of A. hexapetalus and the fruit
of Eucalyptus globulus Labill, has been shown to inhibit several fungi, including Alternaria
solani, Fusarium oxysporum, Fusarium graminearum, Rhizoctonia solani, and Venturia pirina,
with a half maximal inhibitory concentration (IC50) values of 47.1 µM, 114.3 µM, 53.4 µM,
56.9 µM, 32.1 µM, and 21.8 µM, respectively. In addition, the 3-(4,5-dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) assay results showed that globulol (66) also
had inhibitory effects on Xanthomonas vesicatoria and Bacillus subtilis, with IC50 values of
158.0 µM and 737.2 µM, respectively [133]. Another compound, dihydroactinidiolide (78)
showed antibacterial activity against Bacillus cereus and Vibrio parahaemolyticus in related
studies [134].

3.3. Antitumor Activity

Some sesquiterpenoids have been shown to have antitumor activity [135]. A notable
example is the sesquiterpene (−)-8R-Artaboterpenoids B (83) isolated from the root of A.
hexapetalus, which exhibited cytotoxicity against five tumor cells including HCT-116, Hep
G2, A2780, NCI-H1650, and BGC-823 with IC50 values of 1.38, 3.30, 6.51, 8.19 and 2.14 µM,
indicating its potential as an anticancer agent [32]. Similarly, another study identified
seven sesquiterpenoids, chlospicate E (18), 1β, 6α-dihydroxy-4α (15)-epoxyeudesmane
(41), guaianediol (45), 10β,15-hydroxy-α-cadinol (56), 15-hydroxy-t-muurolol (58), 10α-
hydroxycadin-4-en-15-al (59), and 10β-hydroxyisodauc-6-en-14-al (79) from A. pilosus
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showed significant inhibitory activity against HL-60, SMMC-7721, A-549, MCF-7, and
SW480 human tumor cells. These compounds have the potential to develop new anti-
tumor drugs as lead compounds. According to the relevant experimental results, the IC50
values of chlospicate E (18) were 14.25, 21.32, 25.34, 16.23, 10.21 µM, the IC50 values of
1β, 6α-dihydroxy-4α (15)-epoxyeudesmane (41) were 18.25, 9.65, 8.27, 4.63, 8.64 µM, the
IC50 values of guaianediol (45) were 10.23, 8.64, 9.23, 10.42, 15.22 µM, the IC50 values
of 10β,15-hydroxy-α-cadinol (56) were 10.11, 5.14, 4.38, 6.32, 3.28 µM, the IC50 values of
15-hydroxy-t-muurolol (58) were 2.36, 4.02, 7.32, 6.41, 5.23 µM, the IC50 values of 10α-
hydroxycadin-4-en-15-al (59) were 5.23, 6.87, 4.96, 5.86, 4.20 µM and the IC50 values of 10β-
hydroxyisodauc-6-en-14-al (79) were 15.23, 6.26, 10.23, 9.32, 5.49 µM, respectively. Among
these compounds, 10β, 15-hydroxy-α-cadinol (56) had the strongest inhibitory effect on
SW480 cells with an IC50 value of 3.28 µM, and 1β, 6α-dihydroxy-4α (15)-epoxyeudesmane
(41) had the strongest inhibitory effect on MCF-7 cells with an IC50 value of 4.63 µM [77].

Further research in 2018 unveiled seven eudesmane-type sesquiterpenes (28–34) and
one trinoreudesmane-type sesquiterpene (72) from the genus Artabotrys, showing cytotoxi-
city and inhibitory effects on five human tumor cell lines (IC50 values of 0.57 to 15.68 µM),
with some compounds outperforming the antitumor drug doxorubicin [85]. In addition,
yingzhaosu C (3) also demonstrated tumor inhibitory effects on HCT-116, HepG 2, and
A 2780 cell lines, with IC50 values of 3.24, 3.23, and 3.14 µM, respectively [76]. In related
studies, compound 24 was found to have a general inhibitory effect on A-549, MCF-7,
HT-29, A-498, Pc-3, and PACA-2 human tumor cells, but its effect was not significant, and
its IC50 values were 11.3, 12.3, 14.5, 16.6, 24.3, and 19.6 µM, respectively [136].

Dihydroactinidiolide (78) also has significant anti-tumor activity against four hu-
man tumor cell lines, epithelial cell carcinoma (Hela), human prostate cancer (PC-3),
breast cancer (MCF-7), and hepatocellular carcinoma (HePG-2) [137]. Additionally, β-
caryophyllene oxide (68) has been studied for its antitumor mechanism. It is well known
that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of ra-
pamycin (mTOR)/ribosomal protein S6 kinase 1 (S6K1) and mitogen-activated protein
kinase (MAPK) signaling cascades play an important role in many physiological processes
of tumor cells, including cell proliferation, survival, angiogenesis, and metastasis of tu-
mor cells. Through Western blot analysis, MTT assay, and other research methods, it was
found that β-caryophyllene oxide (68) not only inhibited the constitutive activation of
PI3K/AKT/mTOR/S6K1 signaling cascade in human prostate cancer PC-3 and breast
cancer MCF-7 cells; it also causes the activation of extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK in tumor cells, and down-regulates
various gene products related to cell proliferation, anti-apoptosis, and metastasis. In
addition, in different tumor cells, β-caryophyllene oxide (68) can simultaneously target
PI3K/AKT/mTOR/S6K1 and MAPK signaling pathways, inhibit the proliferation of re-
lated tumor cells and induce the apoptosis of tumor cells by activating caspase-3 and
releasing cytochrome c. These results suggest that β-caryophyllene oxide (68) is a potential
candidate drug for the prevention and treatment of cancer [138–140].

3.4. Anti-Inflammatory and Analgesic Activity

Inflammation is a complex immune response, which is the body’s defense mecha-
nism against injury and infection [141,142]. The five main symptoms of inflammation
are pain, fever, redness, swelling, and loss of function. Inflammation can be divided into
acute and chronic inflammation [143]. If inflammation is left unchecked, it may lead to
autoimmune diseases, neurodegenerative diseases, etc. [144]. At present, there are many
effective anti-inflammatory drugs, which are also the most common clinical treatment
drugs. However, the commonly used anti-inflammatory drugs will have some side effects
during the treatment [145,146]. Therefore, in addition to using traditional non-steroidal
anti-inflammatory drugs to treat inflammation, some compounds isolated from natural
sources are also considered new options for treating inflammatory diseases [147–150].
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Among these, some natural sesquiterpenes obtained from the Artabotrys genus have
demonstrated promising anti-inflammatory and analgesic activities. For instance, caryolane-
1,9β-diol (76), which was found in A.uncinatus in 2007, exhibits significant anti-inflammatory
activity in a dose-dependent manner [107,151]. Similarly, spathulenol (64), isolated from
the twigs and leaves of A. hainanensis and previously found in other species such as Psidium
guineense Sw. has shown notable inhibitory effect on the related pathological symptoms of
the Cg-induced paw edema and pleurisy model in mice established in the experiment [152].

Additionally, alismol (47) also has anti-inflammatory effects, reducing the levels of NO
and prostaglandin E2 in cells and inhibiting the expression of inducible nitric oxide synthase
(iNOS) and cyclooxygenase-2 (COX-2) stimulated by lipopolysaccharide in the body. It
also inhibits the messenger RNA (mRNA) and protein expression of pro-inflammatory
cytokines including interleukin and tumor necrosis factor α (TNF-α) [153].

3.5. Antiviral Activity

The ongoing threat of viral infections, such as influenza virus [154], coronavirus disease
2019 (COVID-19) virus [155], and severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) virus [156], underscores the importance of effective antiviral therapies in preventing
disease spread, mitigating viral damage, and facilitating patient recovery. Antiviral drugs
not only help control outbreaks and improve treatment outcomes but also minimize the risk
of viral mutations and drug resistance. In this context, sesquiterpenes, a class of compounds
derived from natural products, hold significant promise for antiviral drug development.
Their potential for inhibiting viral activity, supporting drug development, and boosting
immunity offers valuable insights for future antiviral strategies.

Research indicates that sesquiterpene compounds 3, 11, 12, 17, 54, and 55 have in-
hibitory effects on Coxsackievirus B3 and influenza A virus. Specifically, compounds 3,
54, and 55 have moderate antiviral activity against Coxsackievirus B3, with IC50 values
ranging from 6.41 to 33.33 µM. Meanwhile, compounds 12 and 17 showed weak inhibitory
activity against the influenza A virus with IC50 values ranging from 19.24 to 33.33 µM [76].
Furthermore, guaianediol (45) obtained from A. pilosus in 2016 displayed anti-human
immunodeficiency virus type 1 (anti-HIV-1) virus activity. In previous related studies,
a variety of research methods have been used to explore its anti-HIV-1 activity, such as
human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) assay, syncytium
assay, and other research methods. In addition to its significant anti-HIV-1 activity in
syncytium assay, the results suggest that Guaianediol may inhibit HIV-1 RT, though its
exact IC50 value requires further investigation [157].

3.6. Antioxidant Activity

Studies have shown that some sesquiterpene compounds have significant antioxidant
activity [158,159]. These compounds can exhibit antioxidant properties in vivo through a
variety of mechanisms, including scavenging free radicals, increasing antioxidant enzyme
activity, and regulating oxidation-reduction balance. Among these, spathulenol (64) not
only exhibits an anti-inflammatory effect but also demonstrates a significant antioxidant
effect, with its IC50 value ranging from 26.13 to 85.60 µM [152]. Furthermore, studies
on the dichloromethane extract of dihydroactinidiolide (78) have revealed its free radical
scavenging activity, underscoring the antioxidant potential of sesquiterpenes [137].

3.7. Discussion on Structure-Activity Relationships

In general, compounds with the same skeleton structure are often possessed of similar
biological activities and pharmacological effects. Through comparison and analysis of
some compounds with the same skeleton structure, as well as known activities, the possible
structure-activity relationship of some sesquiterpene compounds with the same skeleton
structure is discussed.

Compounds 56, 58, and 59 are cadinane-type sesquiterpenes, with the same skeleton
structure. They are all possessed of anti-tumor activities, but the inhibitory effect on the
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same tumor cells is different. The difference in the structure of compounds 56 and 58
structure is only the difference in the hydrogen atom configuration at the C-1 position.
The hydrogen atom at the C-1 position of compound 56 is the R configuration, and the
hydrogen atom at the C-1 position of 58 is the S configuration. It is speculated that it may
be the main factor affecting the pharmacological activity of the two. When the hydrogen
atom at the C-1 position of the two is the R configuration, this may have a better inhibitory
effect on the tumor cells of A-549, MCF-7, and SW480.

4. Conclusions

Artabotrys, a prominent genus within the Annonaceae family, is renowned for its vast
global presence and rich chemical diversity, including flavonoids, alkaloids, and terpenoids.
Many of the chemical components have shown good pharmacological activity and have
high research value.

This paper presents a comprehensive review of the sesquiterpene compounds iden-
tified in plants and their pharmacological activities, aiming to provide a solid scientific
foundation for further exploring and utilizing this genus. It also seeks to deepen the
understanding of sesquiterpene compounds’ pharmacological actions and mechanisms.
An extensive review of research literature has cataloged approximately 85 sesquiterpene
compounds and their sources from Artabotrys plants, categorizing them according to their
structural characteristics. In addition to the common types of sesquiterpenes, such as
bisabolane-type sesquiterpenes and eudesmane-type sesquiterpenes, which are rich in
plant and microbial sources, this genus also harbors sesquiterpenes with special structures
that are relatively rare. Pharmacological research reveals that these compounds exhibit
a broad spectrum of activities, including antimalarial, anti-inflammatory, antiviral, and
antitumor effects, underscoring their significant medicinal potential and positioning them
as potential leads for drug development.

Despite the promising pharmacological activity, the mechanism behind the activities
of sesquiterpenes from Artabotrys plants remains insufficiently explored, posing challenges
to their clinical application of the related sesquiterpenes. Furthermore, many sesquiterpene
components in the genus of Artabotrys remain undiscovered, suggesting vast opportunities
for future research. It is anticipated that ongoing studies will uncover new sesquiterpene
compounds and elucidate their mechanisms of action, enhancing the therapeutic value of
Artabotrys sesquiterpenes.
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Abbreviations

NMR Nuclear magnetic resonance
FPP Farnesyl diphosphate
LPS Lipopolysaccharide
STS Sesquiterpene synthase
SERT Regulating serotonin transporter
IC50 Half maximal inhibitory concentration
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
PI3K Phosphoinositide 3-kinase
AKT Protein kinase B
mTOR Mammalian target of rapamycin
S6K1 Ribosomal protein S6 kinase 1
MAPK Mitogen-activated protein kinase
ERK Extracellular signal-regulated kinase
JNK c-Jun N-terminal kinase
iNOS Inducible nitric oxide synthase
COX-2 Cyclooxygenase-2
mRNA Messenger RNA
TNF-α Tumor necrosis factor α
COVID-19 Coronavirus disease 2019
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
anti-HIV-1 Anti-human immunodeficiency virus type 1
HIV-1 RT Human immunodeficiency virus type 1 reverse transcriptase
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