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Abstract: Decades of research have illuminated the significant roles of gold/gold oxide clusters in
small molecule catalytic oxidation. However, many fundamental questions, such as the actual sites
to adsorb and activate O2 and the impact of charge, remain unanswered. Here, we have utilized
an improved genetic algorithm program coupled with the DFT method to systematically search for
the structures of Au1–5Ox

−/+/0 (x = 1–4) and calculated binding interactions between Au1–5Ox
−/+/0

(x = 1–2) and O2, aiming to determine the active sites and to elucidate the impact of different charge
states in gold oxide systems. The results revealed that the reactivity of all three kinds of small
gold oxide clusters toward O2 is strongly site-dependent, with clusters featuring an -O-Au site
exhibiting a preference for adsorption. The charges on small gold oxide clusters significantly impact
the interaction strength and the activation degree of adsorbed O2: in the case of anionic cluster, the
interaction between O2 and the -O-Au sites leads to a chemical reaction involving electron transfer,
thereby significantly activating O2; in neutral and cationic clusters, the adsorption of O2 on their
-O-Au sites can be viewed as an electrostatic interaction. Pointedly, for cationic clusters, the highly
concentrated positive charge on the Au atom of the -O-Au sites can strongly adsorb but hardly
activate the adsorbed O2. These results have certain reference points for understanding the gold
oxide interfaces and the improved catalytic oxidation performance of gold-based systems in the
presence of atomic oxygen species.

Keywords: gold oxide clusters; charge-dependence; oxygen activation; active sites

1. Introduction

Catalysis plays a substantial role in agricultural, industrial, and environmental fields,
serving as one of the pivotal topics within the scope of chemical research. Notably, metal-
lic nanocatalysts loaded on various oxides represent one of the most common forms of
catalysts [1–6]. Gold, perceived as an exceedingly inert metal since ancient times, was
discovered, by Haruta [7–9] and Hutchings [10,11] at the end of the last century, to exhibit
remarkable catalytic oxidation activity toward CO and other small organic molecules. This
groundbreaking discovery precipitated a surge in the amount of research related to gold
systems, gradually culminating in the establishment of an independent field of study.

Decades of research have illuminated the significant roles of gold nanoparticles, gold
clusters, and even a single gold atom in small molecule catalytic oxidation [12–17]. How-
ever, many fundamental questions, such as the location of O2 adsorption and activa-
tion [12,18–22] and the impact of charge [3,20,23–32], still remain contested. Some studies
suggest that the presence of gold at the oxide interface and gold oxides are key to O2
activation, and the introduction of these elements can improve the catalytic oxidation
performance of these systems [32–39]. However, there is still a lack of detailed explanation
at the atomic and molecular levels for specific sites and their mechanisms. In addition,
researchers have found that gold clusters carrying either positive or negative charges both
demonstrated catalytic activity in specific systems [23,26–33]. This suggests that various
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active sites with different charge states and spatial geometrical conditions might be in-
volved in real catalytic processes [40]. In experiments, X-ray photoelectron spectroscopy is
commonly utilized to assess charge transfer among nanomaterials. Nonetheless, conduct-
ing spectral analysis at such small scales poses a significant challenge and can even yield
misleading results [3,41].

By adopting the cluster model which boasts advantages such as controllable prepara-
tion, simplicity, and close linkage with DFT theoretical computations, we can comprehend
the mechanisms of heterogeneous catalysis interacting with small molecules at the atomic
and molecular level [42–45]. Insights into the activation of O2 on gold-based catalysts have
been derived from comprehensive studies on the reactions between various gold clusters
and O2, merging data from numerous experiments and calculations [18,20,46–55]. Con-
sistent findings indicate O2 functioning as a one-electron acceptor during its interactions
with gold clusters, with electron transfer from gold to its anti-bonding π*2p enhancing its
adsorption and activation. The strong chemical interactions with O2 are primarily due
to the unpaired electrons and the low electron binding energy inherent to gold clusters.
Theoretical explorations have also been conducted on gold clusters containing one or two O
atoms [53,55,56]. These O atoms tend to occupy terminal positions in clusters comprising
no more than three gold atoms, or they bridge two peripheral gold atoms [56]. It has been
generally observed that gold clusters featuring two separate O atoms maintain greater sta-
bility than their counterparts which adsorb an O2 molecule, particularly when the clusters
incorporate more than three gold atoms [51,53,55]. Furthermore, some small gold oxide
clusters, specifically AuO1-2

− and Au2,4O2
−, have been generated within the plasma of the

laser-vaporization cluster source. Combinatorial analysis using photoelectron spectrometry
experiments and calculations determined their structures [52,57]. The interactions between
AuxOy

+/− and CO have been thoroughly examined using a flow tube reactor, which illu-
minated several reaction channels [58–62]. We previously explored reactivity of AuOx

−

(x = 1–3) with O2 and found that only AuO− is active [63]. Recently, we have indicated that
-O-Au is the preferred adsorption site for O2 on small anionic gold oxide clusters through
theoretical calculations and mass spectrometry experiments, and the correlation with the
global electronic characteristics is insignificant [64].

Compared with common cluster models, actual heterogeneous catalytic sites tend
to be neutral or carry a small amount of charge due to charge transfer [30,65]. Therefore,
revealing the relationships between cluster reactivity and the polarity and amount of
charge on the clusters is crucial to scrutinize reaction mechanisms on actual catalysts based
on cluster reaction results. This study aims to elucidate the impact of different charge
states of gold oxide systems on O2 adsorption and activation, which is the rate-limiting
step in many catalytic oxidation processes [32,66–68]. In this paper, we have carried out
extensive theoretical calculations on the structures of Au1–5O1,2

−/+/0 and the adsorption
and activation of O2 on them. The results indicate that, no matter what the charge state of
the cluster is, the -O-Au site is the preferred adsorption site for O2, with the largest binding
energy. However, due to the different valence bond interactions formed on clusters’ various
charge states, only the -O-Au sites in the anionic gold oxide clusters can significantly
activate O2.

2. Results and Discussion
2.1. Geometric Structures of Au1–5O1,2

− and Their Products with an O2

The low-lying structures of Au1–5O1,2
− have been reported in our previous work [64],

and Figure 1 shows the lowest-lying ones. For references to other low-lying structures,
please refer to Figures S1–S4 in the Supplementary Materials. In Figure 1, the O atoms
in Au1–5O− are coordinated to one or two Au atoms, which is consistent with previous
results [56]; for Au1–5O2

−, when the number of Au atoms is odd, the energy of the oxide
formation is energetically favorable (with O atoms dissociated), whereas when the number
of Au atoms is even, the formation with an absorbed O2 becomes the most energetically
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favorable structure. The most energetically advantageous adsorption site for the O2 in
Au2,4O2

− is consistent with previous theoretical results [49–51,55,69,70].
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Figure 1. The lowest-lying structures of Au1–5Ox
− (x = 1 and 2) and their most stable products after

adsorbing one O2 according to calculations at the B3LYP level with the basis sets of def2-SVP for Au,
and def2-TZVP for O. In the labels of the structures, the first two numerals indicate the number of
gold atoms and the number of oxygen atoms, respectively; the third part “G/a/b. . .” means that
this structure is the lowest-lying, the second lowest-lying, or the third lowest-lying one among all
structural candidates; the fourth part indicates the spin-multiplicity, in which “S”, “D”, “T”, “Q”,
and “Quint” stand for singlet, doublet, triplet, quartet, and quintet, respectively. The numerals in the
parentheses following the labels of the structures containing adsorbed O2 unit(s) show the adsorption
energies (Ea, in eV) of the second O2.

For the structures of Au1–5O1,2
−, illustrated in the left two columns of Figure 1, only

1-1-G-S and 3-1-G-S have an -O-Au site, and adsorption of O2 on these two structures
forms 1-3-G-T and 3-3-G-T with the largest two adsorption energies of 1.45 eV and 0.77 eV,
respectively (in the right two columns of Figure 1). Similar situations can also be repeatedly
confirmed in the Supplementary Materials, such as the O2 adsorption products of 1-4-G-T
(Ea: 1.05 eV), 2-3-b-D (Ea: 1.35 eV), and 2-4-G-D (Ea: 1.05 eV) in Figure S1. Also, for clusters
with a slightly larger number of gold atoms in Figures S2–S4, we can find 3-4-b-T (Ea:
1.15 eV), 3-4-c-T (Ea: 0.87 eV), and 5-4-g-T (Ea: 0.89 eV) and many other structures that
comply with the adsorption rules. Namely, if the -O-Au site is present, the adsorption
energy of O2 on it is the largest (approx. 0.5–1.5 eV). However, if there is no such site, the
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adsorption of O2 is extremely weak, as demonstrated by 3-4-d-Quint (Ea: 0.01 eV), 4-3-b-Q
(Ea: 0.00 eV), and 5-4-n-Quint (Ea: 0.01 eV) in Figure 1. Additional examples for this weak
interaction can be found in the Supplementary Materials (Figures S1–S4).

2.2. Geometric Structures of Au1–5O1,2
+ and Their Products with an O2

The lowest-lying structures of Au1–5O1,2
+ are shown in the left two columns of Figure 2.

In the geometric structures of Au2–5O+, the O atom connects three gold atoms when the
number of Au atoms is odd, and it connects two gold atoms when the number of Au
atoms is even. Our computational work remains consistent with previous work [56]. For
Au1–5O2

+, the lowest-lying structures can be interpreted as the lowest-lying cationic pure
gold cluster adsorbed an O2 [71–73]. The adsorption energies of O2 clearly show that, with
the exception of AuO2

+ (Ea: 0.50 eV), the adsorption interaction here is relatively low, which
is consistent with the results of Ding et al. [70]. Additionally, there is a decreasing trend in
adsorption energies as the number of gold atoms increases, which may be related to what
we will discuss later: for cationic gold oxide clusters and neutral gold oxide clusters, the
adsorption energy of O2 on them is proportional to the amount of positive charge on the
Au atom of the -O-Au sites.
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+ (x = 1 and 2) and their most stable products after
adsorbing one O2 according to calculations at the B3LYP level with the basis sets of def2-SVP for Au,
and def2-TZVP for O. The meanings of the labels and the numerals are the same as those in Figure 1.
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As shown in the right two columns of Figure 2, the adsorption energies of O2 on the
-O-Au sites of 1-1-G-T and 2-1-G-D remain high, at approximately 0.78 eV (1-3-G-Quint)
and 0.64 eV (2-3-G-D), respectively. The adsorption energies of O2 on the -O-Au sites of
3-1-G-S, 4-1-G-D and 5-1-G-S are 0.56 eV (3-3-G-T), 0.53 eV (4-3-G-Q), and 0.51 eV (5-3-G-T),
respectively. This observed preference is similar to our prior findings regarding anionic
gold oxide clusters [64]. Apart from the ones shown in Figure 2, Figures S5–S8 in the
Supplementary Materials provide other examples to repeatedly confirm this preference
(such as the adsorbed O2 in 2-4-G-Q, 2-4-c-D, 3-3-b-Quint, 3-4-a-Quint and 5-4-a-Quint). In
a word, the adsorption energy of O2 on the -O-Au site is higher than that on other sites,
with the majority of clusters’ adsorption energies around 0.5 eV.

In the absence of the -O-Au site, the adsorption will be weak. As portrayed in Figure 2,
the structures 2-4-a-Q, 3-4-G-Quint, 4-4-G-Q, and 5-4-G-Quint exhibit adsorption energies
of merely 0.25 eV, 0.24 eV, 0.19 eV, and 0.16 eV, respectively. In Figure 2, the Au1–5O4

+

clusters can be regarded as pure gold clusters adsorbing two molecular oxygen. The values
of adsorption energies in this study align well with those reported by Ding et al., with only
minor discrepancies observed in the adsorption sites of 4-4-G-Q and 5-4-G-Quint [70]. As
shown in Figure S6, the 3-2-b-T encompasses both an -O-Au site and an -O-Au-Au site,
and the adsorption energy at the active site is 0.51 eV (3-4-b-Quint), whereas that on the
-O-Au-Au site is only 0.10 eV (3-4-c-Quint). In Figure S7, 4-1-b-D has a gold triangle and an
-O-Au site, and the adsorption energy of O2 on its gold triangle and -O-Au site is calculated
to be 0.17 eV (4-3-g-D) and 0.50 eV (4-3-d-Q), respectively. An analogous weak adsorption
scenario can be observed in many other adsorption structures like 3-3-g-Quint, 5-3-a-T, and
5-4-c-Quint in Figures S6 and S8.

2.3. Geometric Structures of Au1–5O1,2
0 and Their Products with an O2

The lowest-lying structures of Au1–5O1,2 are shown in the left two columns of Figure 3.
For the clusters with one or three gold atoms, the O is mono-coordinated, whereas when the
number of gold atoms is equal to 2, 4, or 5, the O atom is di-coordinated. The lowest-lying
structures obtained by our calculations are consistent with previously reported results [56].
For Au1–5O2, the lowest-lying structures are those with molecular oxygen adsorbed onto
pure gold clusters. It is noteworthy that when the number of gold atoms is three or five,
peroxide adsorption forms, with adsorption energies of 0.49 eV and 0.64 eV being found.
These two peroxide structures are consistent with previous results [70], and their O2 units
are highly activated: the O-O bond length, O-O vibration frequency, and NPA charge on
O2 are 1.281 Å, 1199.00 cm−1, and −0.427 a.u. for Au3O2, and 1.316 Å, 1161.80 cm−1, and
−0.540 a. u. for Au5O2.

As shown in the right two columns of Figure 3, the corresponding adsorption struc-
tures of 1-1-G-D, 2-1-G-S, and 4-1-G-S are 1-3-G-Q, 2-3-G-T, and 4-3-a-T, respectively. The
original structures all have active -O-Au sites, and the adsorption energies of O2 on these
sites are 0.39 eV, 0.38 eV, and 0.36 eV, respectively. Aside from those shown in Figure 3,
there are other examples in the Supplementary Materials. As can be seen in Figure S9, the
corresponding adsorption structure of 2-2-a-T is 2-4-b-Quint, and the adsorption energy
on its -O-Au site is 0.40 eV. Some additional examples include 3-4-b-Q and 3-4-e-Q from
Figure S10; 4-3-e-T, 4-3-h-T and 4-4-j-Quint from Figure S11; and 5-4-i-Q from Figure S12. In
a word, if there is an -O-Au site, the adsorption energy of O2 is maximal (relative to other
sites), and the adsorption energies on these sites are typically slightly less than 0.4 eV.

If there is no -O-Au site, adsorption of O2 is extremely weak. As depicted in Figure 3,
the corresponding adsorption structures of 3-1-G-D and 5-1-G-D are 3-3-a-Q and 5-3-c-Q
with the adsorption energies of 0.10 eV and 0.01 eV, respectively. There are other examples
in the Supplementary Materials (Figures S9–S12), which are not all enumerated. The
adsorption energies of the second O2 on Au1-5O2 are nearly identical to the previous
theoretical results predicted by Ding et al. [70].
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2.4. Charge-Dependent Bonding Strengths and Activation Degrees

To summarize and compare the adsorption energies and the activation degree of O2
on the -O-Au sites in the structures depicted in Figures 1–3, we present related calculated
parameters of the adsorbed O2 in Table 1. Anionic gold oxide clusters exhibit the largest
binding energies for O2 among the three series, along with the longest O-O bond lengths
(above 1.32 Å). The calculated bond length of a free O2 stands at 1.204 Å (1.208 Å as reported
in an experiment by [74]), so anionic gold oxide clusters show a significant stretching of the
O-O bond. Simultaneously, the O2 units on anionic gold oxide clusters accumulate more
than 0.6 a.u. negative charges, and their spins are close to 1.0. All these parameters indicate
that the adsorbed O2 on the -O-Au sites of these anionic gold oxide clusters gain an electron
onto its π* anti-bonding orbital, which significantly activates the O-O bond. For cationic
gold oxide clusters, apart from 1-3-G-Quint and 2-3-G-D, which have adsorption energies of
0.78 eV and 0.64 eV, respectively, the rest of the structures tend to have adsorption energies
slightly higher than 0.50 eV. The O-O bond lengths of the adsorbed O2 on these cationic
gold oxide clusters are around 1.21 Å, which is very close to that of a free O2; the adsorbed
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O2 units are slightly positively charged, and their spins are close to that of free O2. All these
parameters indicate that the O2 units on the -O-Au sites of the cationic gold oxide clusters
are almost not activated. Neutral gold oxide clusters show adsorption energies slightly
lower than 0.4 eV, with corresponding O-O bond lengths distributed around 1.225 Å, which
is between those of the aforementioned anionic and cationic ones. Their O2 units carry a
slight negative charge. Compared to free O2, the spins of the adsorbed O2 on these neutral
gold oxide clusters decrease a little, implying the weak activation of O2 on the neutral
species despite its relatively weak binding.

Table 1. The adsorption energies (Ea), the bond lengths (BLO-O), the NPA charges (ChargeO-O),
and the spins (SpinO-O) of the O2 units adsorbed on the -O-Au sites of the AunO−/+/0 shown in
Figures 1–3.

AunO−/+/0 + O2
Corresponding Pro Ea (eV) BLO-O (Å) ChargeO-O (a.u.) SpinO-O (a.u.) (a.u.)

Anions 1-3-G-T 1.45 1.329 −0.720 0.986
3-3-G-T 0.77 1.321 −0.626 1.038

Cations 1-3-G-Quint 0.78 1.207 +0.129 1.937
2-3-G-D 0.64 1.207 +0.101 1.984
3-3-G-T 0.56 1.211 +0.080 1.888
4-3-G-Q 0.53 1.210 +0.076 1.901
5-3-G-T 0.51 1.212 +0.061 1.928

1-4-G-Quint 0.60 1.207 +0.096 1.896

Neutrals 1-3-G-Q 0.39 1.225 −0.065 1.670
2-3-G-T 0.38 1.225 −0.071 1.729
4-3-a-T 0.36 1.226 −0.099 1.732

In Figure 4a,b, we summarized the variations of the adsorption energies (Ea) and the
stretching frequencies of the adsorbed O2 vs. the NPA charges localized on the Au atom
of the -O-Au sites in Au1–5Ox

−/+/0 (x = 1 and 2). The considered structures include the
lowest-lying ones shown in Figures 1–3 as well as other examples shown in Figures S1–S12.
For anionic Au1–5Ox

− (x = 1 and 2), a roughly inverse correlation was observed between the
adsorption energies (Ea) and the NPA charges. The Ea values decrease from around 1.5 eV
to around 0.5 eV when the NPA charges increase from around −0.1 a.u. to around +0.4 a.u.
The stretching frequencies of the adsorbed O2 on the -O-Au sites concentrate in the range of
1100 to 1200 cm−1. These values are much lower than the calculated stretching frequencies
of a free O2, which stands at 1637 cm−1 (1580 cm−1 as reported in experiment [74]), and
there is not a clear correlation between these frequencies and the NPA charges. For cationic
gold oxide clusters Au1–5Ox

+ (x = 1 and 2), an approximately positive correlation exists
between the Ea values and the NPA charges on the Au atoms of -O-Au sites. The Ea values
increase from around 0.4 eV to around 0.8 eV when the NPA charges increase from around
+0.6 a.u. to around +1.0 a.u. The stretching frequencies of the adsorbed O2 on the -O-Au
sites concentrate in the range of 1500 to 1600 cm−1. These values are very close to that of a
free O2, and there is not a clear correlation between these frequencies and the NPA charges.
For neutral Au1–5Ox (x = 1 and 2), the adsorption energies (Ea) concentrate around 0.4 eV,
which is lower than the Ea values of the anionic and cationic Au1–5Ox

−/+ (x = 1 and 2). The
correlation between Ea and NPA charges of neutral Au1–5Ox (x = 1 and 2) can be viewed as
an extension of the positive correlation of cationic Au1–5Ox

+ (x = 1 and 2) toward the small
NPA charge values. The stretching frequencies of the adsorbed O2 on the -O-Au sites in
neutral clusters spread from 1300 cm−1 to 1500 cm−1, which is between the values of the
anionic and cationic species.
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2.5. Analyses on the Bonding Patterns

In order to understand the charge-dependent bonding strengths and activation degrees
of O2 on the -O-Au sites of various clusters, we conducted an analysis of the density of states
(DOSs). This analysis allowed us to identify the bonding patterns in several representative
structures with differing charge polarities. The density of states (DOSs) of AuO− (1-1-G-S),
AuO+ (1-1-G-T), AuO (1-1-G-D), Au3O− (3-1-G-S), Au3O+ (3-1-c-T), and Au3O (3-1-a-D) are
shown in Figure 5a,c,e,g,i,k, respectively. The density of states (DOSs) of their adsorption
products, AuO3

− (1-3-G-T), AuO3
+ (1-3-G-Quint), AuO3 (1-3-G-Q), Au3O3

− (3-3-G-T),
Au3O3

+ (3-3-b-Quint), and Au3O3 (3-3-G-Q), and the partial density of states (PDOSs) of
the adsorbed O2 are shown in Figure 5b,d,f,h,j,l, respectively.

Insights from the results of AuO− (1-1-G-S), AuO3
− (1-3-G-T), Au3O− (3-1-G-S), and

Au3O3
− (3-3-G-T) presented in Figure 5a,b,g,h, reveal that the two up-spin and one down-

spin components originating from the π2p* of O2 are occupied in the adsorption products.
These observations suggest that a single electron has been transferred from the anionic gold
oxide clusters to the adsorbed O2, which follows a pattern reminiscent of O2 adsorption
on active Aun

− [51]. It is crucial to note that an excess electron on the π2p* of O2 may
substantially weaken the O-O bond strength, echoing the findings shown in Table 1 and
Figure 4. The interaction process between AuO− (1-1-G-S) or Au3O− (3-1-G-S) and O2 can
be elaborated as follows: an electron located on one HOMO (π*//) of the anionic cluster is
excited to its LUMO (the σ orbital enclosed by a blue frame). Consequently, the occupied
σ orbital, which extends externally, showcases a high propensity for σ bond formation.
Subsequently, the interaction between this σ orbital and one singly occupied π* orbital
of O2, results in an occupied σ orbital and an unoccupied σ orbital. This newly formed
occupied σ orbital boasts bonding characters predominantly comprised of the π* orbital
of O2, and the newly formed unoccupied σ orbital exhibits antibonding characters mainly
originating from the LUMO of AuO− or Au3O−. These chemical bonding figures can
account for the strong bonding strengths and the high activation degrees of O2 in these
anionic species.
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Figure 5. The DOS and PDOS (O2) figures in (a) AuO− (1-1-G-S) and (b) AuO3
− (1-3-G-T); (c) AuO+

(1-1-G-T) and (d) AuO3
+ (1-3-G-Quint); (e) AuO (1-1-G-D) and (f) AuO3 (1-3-G-Q); (g) Au3O− (3-1-G-

S) and (h) Au3O3
− (3-3-G-T); (i) Au3O+ (3-1-c-T) and (j) Au3O3

+ (3-3-b-Quint); (k) Au3O (3-1-a-D)
and (l) Au3O3 (3-3-G-Q). In each panel, the DOSs and PDOSs (O2) are plotted in black and in red,
respectively; the HOMO position is indicated by a dotted line. The figures of some orbitals (those
around the HOMO position) are shown to illustrate the bonding interactions between the gold oxide
clusters and O2, and the orbitals enclosed by blue frames stand for the ones most correlated with
these interactions. These results were obtained according to the KS orbitals from the calculations at
the B3LYP level with the basis sets of def2-SVP for Au and def2-TZVP for O.
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According to the calculated DOSs of AuO+ (1-1-G-T), AuO3
+ (1-3-G-Quint), Au3O−

(3-1-c-T), and Au3O3
+ (3-3-b-Quint) shown in Figure 5c,d,i,j, the up-spin and down-spin

components on the cluster moiety and the O2 do not apparently change during the adsorp-
tion reactions, and marginal electron transfer can be distinguished. The bonding interaction
between the two moieties could be related to mixing of the filled up-spin components of
gold oxide and the filled up-spin π* components of O2. For the corresponding neutral
examples, AuO (1-1-G-D), AuO3 (1-3-G-Q), Au3O (3-1-a-D), and Au3O3 (3-3-G-Q), their
calculated DOSs shown in Figure 5e,f,k,l, present scenarios similar to those of cations. The
main contributions to the bonding interactions in these cationic and neutral species can
be attributed to electrostatic attractions between the more or less positively charged Au
atom of -O-Au sites and the polarized O2 molecule. The more positively charged Au atom
of -O-Au sites in the cationic gold oxide clusters can interpret their marginally stronger
bonding strengths with O2 than those in the neutral ones. At the same time, the more
positively charged Au atom of -O-Au sites can more effectively prevent electron transfer
to the π* orbital of O2 and therefore lead to the lower activation degrees of O2 in the
cationic ones.

3. Methods

The structures of Au1–5Ox
−/+/0 (x = 1–4) were preliminarily identified using a modi-

fied version of the Deaven–Ho genetic algorithm [35,75–77]. The modification involved
incorporating incomplete optimizations of descendant structures from each crossover and
mutation step [78]. The reliability, feasibility, and efficiency of this algorithmic procedure
have been demonstrated in our previous published articles [64,78,79].

The specific implementation process is as follows:

(1) In our search program, we specify the number of gold and oxygen atoms and the
multiplicity of the clusters. Based on the complexity of cluster searching, we determine
the type and number of initial structures as initial random structures with diverse
motifs. We have designed a module capable of generating seven typical motifs for a
defined cluster size: the space-free motif, the close packing motif, the simple cubic
packing motif, the cage motif, the solid sphere motif, the ring motif, and the specially
defined motif through atomic coordinates. The latter allows users to input specially
defined or previously reported structures.

(2) The initial random structures undergo relaxation using an incomplete optimization
approach and are screened using the competition method under the small basis set
we specify. The surviving structures become the offspring of the first generation.

(3) The first-generation results undergo multiple iterations of crossover and mutation
under the genetic algorithm framework, generating a substantial number of offspring.
After deduplication and competition, the next generation of structures is produced.
This cycle continues until a global minimum is attained under the specified con-
vergence limit. The structure optimizations at this stage were performed using a
relatively coarse DFT method. Specifically, the B3LYP hybrid functional [80,81] with
the LANL2DZ basis set [82] for Au and the 6–31+G* basis set [83–85] for O were
utilized. For each Au1–5Ox

−/+/0 (x = 1–2), the program explored structure candidates
in the two lowest-lying spin multiplicities, and for each Au1–5Ox

−/+/0 (x = 3–4), the
program explored structure candidates in the three lowest-lying spin multiplicities.
When conducting a structural search for the system containing three to four O atoms,
the randomly generated structures consist of either all the O atoms being randomly
dispersed or two of the O atoms combined as an O2 unit being adsorbed on the
remaining gold oxide clusters containing a single O atom or two O atoms.

(4) All structures that were relatively stable (within approximately 1.0 eV of the lowest-
lying one) underwent further optimization and scrutiny at a more sophisticated theory
level, in which the B3LYP hybrid functional in combination with the def2-SVP basis
set for Au and the def2-TZVP basis sets for O [86,87] was utilized. Scalar and spin-
orbital relativistic effects of Au were addressed through energy consistent relativistic
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pseudopotentials. The ultimate global minima were validated via vibrational mode
analysis, confirming the absence of imaginary frequencies.

(5) The adsorption energies of O2 on specific structures were calculated based on the
Hartree–Fock energies corrected by the zero-point energies from frequency analyses.
The formula for calculating the adsorption energy is the sum of the energies of the
gold oxide cluster and O2, minus the energy of the compound after adsorption. The
distribution of charges localized on the adsorbed O2 and the Au atom of the -O-Au
sites were examined using the Natural Bond Analysis method [88]. The density of
state (DOS) spectrum was obtained by broadening the calculated Kohn–Sham (KS)
orbitals from the more sophisticated theory level using the Gaussian function with
a FWHM of 0.1 eV. The position of HOMO in the DOS spectrum has been corrected
using the clusters’ vertical detachment energy (VDE) values. All DFT calculations
were performed using the Gaussian 09 program [89], and the DOS spectra were
generated from the calculation results using the Multiwfn software [90].

4. Conclusions

Using an improved genetic algorithm program combined with DFT methods, we con-
ducted extensive calculations on the structures of Au1–5O1,2

−/+/0 and their corresponding
products after adsorbing an O2, Au1–5O3,4

−/+/0. The preferred adsorption sites and the
charge-dependence of the adsorption strengths and the activation degrees were analyzed.
The conclusions are as follow:

1. Regardless of the charge states of gold oxide clusters, the -O-Au sites are inevitably
the primary sites for O2 adsorption.

2. The charge states of gold oxide clusters determine the bonding strengths and the
activation degrees of the adsorbed O2. For anionic gold oxide clusters, the occurrence
of electron transfer from the -O-Au sites to the adsorbed O2 leads to the formation
of typical chemical bonds and high activation degrees of O2. For both cationic and
neutral gold oxide clusters, their interactions with O2 are predominantly electrostatic.
More positive charges on the Au atom of -O-Au sites in the cationic clusters lead to
stronger binding energies than those of corresponding neutral ones. Meanwhile, the
lower electron densities around the Au atom of -O-Au sites in the cationic clusters
make electron transfer to O2 more unlikely, and O2 activation on the cationic gold
oxide clusters is less effective than those in neutral species.

These findings could deepen the understanding of intricate charge effects on the ability
of active sites on gold-based catalysts to activate O2 and offer pivotal information to reveal
their catalytic mechanisms at the atomic and molecular level.
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− (x = 1–4). Figure S5:
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+ (x = 1–4).
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