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Abstract: α-Dicarbonyls are significant degradation products resulting from the Maillard reaction
during food processing. Their presence in foods can indicate the extent of heat exposure, processing
treatments, and storage conditions. Moreover, they may be useful in providing insights into the
potential antibacterial and antioxidant activity of U.S. honey. Despite their importance, the occurrence
of α-dicarbonyls in honey produced in the United States has not been extensively studied. This
study aims to assess the concentrations of α-dicarbonyls in honey samples from different regions
across the United States. The identification and quantification of α-dicarbonyls were conducted
using reverse-phase liquid chromatography after derivatization with o-phenylenediamine (OPD) and
detected using ultraviolet (UV) and mass spectrometry methods. This study investigated the effects
of pH, color, and derivatization reagent on the presence of α-dicarbonyls in honey. The quantification
method was validated by estimating the linearity, precision, recovery, method limit of detection,
and quantification using known standards for GO, MGO, and 3-DG, respectively. Three major OPD-
derivatized α-dicarbonyls including methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone
(3-DG), were quantified in all the honey samples. 3-Deoxyglucosone (3-DG) was identified as the
predominant α-dicarbonyl in all the U.S. honey samples, with concentrations ranging from 10.80 to
50.24 mg/kg. The total α-dicarbonyl content ranged from 16.81 to 55.74 mg/kg, with the highest
concentration measured for Southern California honey. Our results showed no significant correlation
between the total α-dicarbonyl content and the measured pH solutions. Similarly, we found that
lower amounts of the OPD reagent are optimal for efficient derivatization of MGO, GO, and 3-DG in
honey. Our results also indicated that darker types of honey may contain higher α-dicarbonyl content
compared with lighter ones. The method validation results yielded excellent recovery rates for 3-DG
(82.5%), MGO (75.8%), and GO (67.0%). The method demonstrated high linearity with a limit of
detection (LOD) and limit of quantitation (LOQ) ranging from 0.0015 to 0.002 mg/kg and 0.005 to
0.008 mg/kg, respectively. Our results provide insights into the occurrence and concentrations of
α-dicarbonyl compounds in U.S. honey varieties, offering valuable information on their quality and
susceptibility to thermal processing effects.

Keywords: honey; liquid chromatography-mass spectrometry methylglyoxal; glyoxal; 3-deoxygluscosone;
geographical origins; Maillard reaction

1. Introduction

Honey is a natural food produced by honeybees from nectar or plant secretions. The
composition of honey is diverse, consisting of glucose and fructose sugars, along with
water, and lower levels of minerals, vitamins, proteins, and phenolic compounds [1].
The composition of honey may differ across different honey types, creating a distinct
chemical fingerprint that reflects the specific botanical and geographical origins of honey.
α-Dicarbonyls are abundant in most sugar-containing foods, such as syrups, jam, candies,
and bakery items, and they exhibit antioxidant activity [2]. The Maillard reaction is a
common chemical reaction between amino acids and sugars that occurs during the heating
process in foods. The Maillard reaction is by far the most important process that gives
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foods their flavor, aroma, and brown color [2]. Honey is prone to the Maillard reaction
because of its high sugar content and substantial amino acid constituents. During the
thermal processing of honey, the Maillard reaction occurs rapidly, leading to the formation
of α-dicarbonyl compounds through a series of complex fragmentation and Amadori
rearrangement reactions [3], as shown in Figure 1.
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α-Dicarbonyls are reactive compounds formed during the degradation of sugars in
honey through dehydration and oxidative processes [4]. Storage time, heat treatments,
and processing may increase the accumulation of these compounds in honey [5]. In
addition, the floral or geographical origin of the honey type, as well as factors such as
pH, and temperature, can affect the formation of α-dicarbonyls in foods. The analysis
of α-dicarbonyls in honey can be challenging compared to their quantification in other
similar food items. This arises from honey’s complex composition, which includes sugars,
proteins, amino acids, phenolics, and other constituents. Additionally, the majority of
α-dicarbonyl compounds are present in honey at relatively low concentrations. Another
limitation arises from the unavailability of pure α-dicarbonyl standards, which constrains
the exploration of α-dicarbonyls in honey and food products. Previous research on the
α-dicarbonyl composition in honey from various floral and geographical sources has
revealed that methylglyoxal (MGO), glyoxal (GO), and 3-deoxyglucosone (3-DG) are some
of the primary α-dicarbonyls found [6–10]. For instance, Marceau et al. [6] developed an
HPLC-DAD method to quantify α-dicarbonyls in various types of multifloral honey and
identified nine compounds, including MGO and GO derivatives. In another study, Yan
et al. [11] identified nine α-dicarbonyl compounds in acacia honey. They found that 3-DG
was the most abundant compound, with an average concentration of 138.09 mg/kg, and
trace levels of MGO and GO ranging from 0.77 to 4.79 mg/kg and 0.56 to 3.18 mg/kg,
respectively. A study by Weigel and colleagues [10] found that German multifloral honey
types contain higher amounts of 3-DG compared with other α-dicarbonyls. Marshall
et al. [9] also reported that Florida varietal honey types exhibited high concentrations of
3-DG, ranging from 206 to 884 µg/g with lower levels of MGO and GO identified in these
types of honey.

3-DG is one of the main degradation products of glucose and acts as a precursor for the
brown coloration of foods [12]. 3-DG is particularly pronounced in foods like honey due to
the composition of sugars and amino acids leading to the Maillard reaction. In addition
to honey, the presence of α-dicarbonyls in commonly consumed foods such as milk, beer,
wine, cheese, and cookies has been extensively investigated by other researchers [7,13–15].
α-Dicarbonyl compounds are becoming increasingly popular as indicators for assessing
honey quality and storage conditions. 5-Hydroxymethylfurfural (5-HMF), a by-product of
the degradation of 3-DG, is commonly used as an indicator to assess honey quality after
thermal processing and storage [8]. Moreover, despite the beneficial effects of α-dicarbonyl
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compounds in promoting the quality of food, high intake amounts of these compounds
have been associated with chronic and age-related disease complications such as diabetes,
Alzheimer’s, and cardiovascular diseases [16–19].

Numerous clinical studies have shed light on the biological implications of α-dicarbonyls
and certain Maillard reaction products at in vivo levels [20–24]. The tissue and plasma
levels of MGO, GO, and 3-DG have been shown to be significantly elevated in patients
with diabetes [25]. Among all the α-dicarbonyls, 3-DG, MGO, and GO have received
considerable attention because of their adverse health effects [26]. Furthermore, several
attempts are being made to minimize the formation of these compounds in food products
within the food industry. So far, the cytotoxic concentrations of α-dicarbonyls in honey
have not been reported.

Analyzing α-dicarbonyl compounds in honey, particularly honey produced in the
United States, is crucial. Methylglyoxal, for example, is well-known for its antibacterial
activities and is responsible for the unique non-peroxide antibacterial activity found in
Manuka honey, native to New Zealand. The investigation of this α-dicarbonyl content
can help determine if similar antibacterial properties are present in honey produced in the
United States. Moreover, monitoring the levels of α-dicarbonyls such as MGO, GO, and
3-DG can help ensure the quality and authenticity of honey products in the United States.
High levels of these compounds might indicate improper processing or prolonged storage.
While the presence of α-dicarbonyl compounds in foods is known, their occurrence in
honey, specifically, in U.S. honey, has not been comprehensively investigated. In this study,
we explored the α-dicarbonyl content in honey from different geographic regions in the
United States and compared them to manuka honey from New Zealand to understand
their role in food quality control and potential health benefits. We focused on evaluating
the method validation parameters used to measure the α-dicarbonyls contents in the
honey samples.

2. Results and Discussion
2.1. Identification of α-Dicarbonyls in U.S. Honeys

α-Dicarbonyl compounds were analyzed as quinoxaline derivatives after being deriva-
tized with o-phenylenediamine (OPD) reagent using reverse phase-HPLC in the positive
electrospray ionization mode. Representative HPLC-MS/MS spectra of MGO, 3-DG, and
GO derivatives are shown in Figure 2a, Figure 2b, and Figure 2c, respectively. The phenyl
column used in this study improves the separation of the OPD-derivatized α-dicarbonyls
in honey [13]. Methylglyoxal (MGO), glyoxal (GO), and 3-DG were tentatively identified
by comparing retention times, UV spectra, and mass spectra with corresponding standards.
O-phenylenediamine was employed as an effective trapping agent to selectively capture
and convert MGO, 3-DG, and GO into their quinoxaline forms. In this investigation, the
OPD reagent resulted in improved separation by eliminating undesired interactions with
other intermediate Maillard reaction products, thereby enhancing the precise determina-
tion of α-dicarbonyls in honey. Table S1 provides information on the retention time, exact
mass, molecular mass, and fragment masses of the MGO, GO, and 3-DG derivatives. The
HPLC-UV chromatograms for MGO, GO, and 3-DG derivatives at a wavelength of 312 nm
for Washington and Manuka honey are displayed in Figure 2a,b. Peaks 1, 2, and 3 recorded
in Figure 3a,b were identified as (MGO, Rt = 11.80 min.), (GO, Rt = 10.30 min.), and (3-DG,
Rt = 7.56 min.), respectively. Peak 4 was suspected to result from the degradation of the
OPD reagent. The analysis of α-dicarbonyl derivatives in honey using HPLC, coupled with
ultraviolet (UV) and diode array detection (DAD) methods, has been described in previous
studies [6,8,10,27]. In our samples, we identified three principal dicarbonyls—namely, GO,
MGO, and 3-DG—that have been previously detected in honey from diverse geographical
locations. For instance, Weigel et al. [10] utilized a reversed-phase HPLC-UV method to
analyze the α-dicarbonyl content of multifloral German honey samples. In their study, the
authors identified the presence of several α-dicarbonyl compounds including GO, MGO,
and 3-DG. In the analysis of Canadian honey samples using the HPLC-DAD method, GO,



Molecules 2024, 29, 1588 4 of 17

3-DG, and MGO were identified among the nine α-dicarbonyl compounds by comparing
their UV and collision-induced dissociation (CID) spectra with α-dicarbonyl standards [6].
Marshall and his colleagues [9] also demonstrated that the α-dicarbonyl profiles of honey
from Florida contained 3-DG, MGO, and GO, as determined through HPLC-DAD-MS.
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Figure 2. A representative HPLC-MS/MS product ion spectra of derivatized MGO, 3-DG, and
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deoxyglucosone, m/z = 235.39 Da, and (c) glyoxal, m/z = 131.0 Da].
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(a) Washington honey and (b) Manuka honey.

Similarly, Arena et al. [8] investigated the levels of α-dicarbonyls in various commercial
honey samples from Italy using an HPLC-DAD method. Amongst all the honey studied,
GO, 3-DG, and MGO were identified as the three primary α-dicarbonyls, with 3-DG
being more abundant than GO and MGO. In naturally matured and artificially treated
acacia honey samples collected from China, the presence of 3-DG, GO, and MGO was
simultaneously detected following incubation with OPD. The analysis was carried out
using UHPLC-DAD and UHPLC-ESI-Q-TOF conditions [11]. As previously mentioned,
there is a dearth of information in the existing literature regarding the α-dicarbonyl content
of honey in the United States. To the best of our knowledge, this study is the first to report
the α-dicarbonyl concentrations of honey from different geographical origins in the United
States using HPLC-UV and HPLC-MS/MS methods.

2.2. Optimization Conditions for Derivatization of α-Dicarbonyls in Honey
2.2.1. Effects of pH on the α-Dicarbonyl Content of Honey

In the present study, we optimized the chemical derivatization reaction by assessing
its efficiency under various pH conditions ranging from 2 to 10. Numerous studies have
discussed the influence of pH on Maillard reaction products [28–30]. Overall, our findings
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revealed no significant correlation between the pH of the solutions and the measured total α-
dicarbonyl content (p > 0.05, R = 0.267). The results suggest that pH might not have a direct
impact on the α-dicarbonyl content of honey, although this scenario is likely under most
conditions, considering the reaction conditions and the type of sample analyzed. The levels
of GO, MGO, and 3-DG exhibited a corresponding decrease when solutions were prepared
at much lower pH values of 2.0 and 4.0. We observed a significant influence of pH on the
three target α-dicarbonyls when the reaction was conducted at a pH above 7. However,
the effect of increasing pH for GO, 3-DG, and MGO appeared inconclusive. Interestingly,
when we used a higher pH value of 10, we did not observe a significant increase in the GO,
MGO, and 3-DG concentrations. The graph in Figure 4 visually represents the effects of pH
on the levels of GO, MGO, and 3-DG in the samples.
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2.2.2. Effects of o-Phenylenediamine (ODP) on the α-Dicarbonyl Content of Honey

The effectiveness of the derivatization reaction depends on the amount of the o-
phenylenediamine (OPD) reagent. Incubations of α-dicarbonyls with OPD are typically
completed within 5–24 h, depending on the steric complexity of the carbon chain structure
of the α-dicarbonyl compound. Another reason may be the hemiacetal opening that occurs
before the condensation reaction between the amino acid and carbonyl group during the
Maillard reaction [1]. This process results in a slow rate-determining step, which decreases
the reactivity time of α-dicarbonyls with the trapping reagent. This phenomenon explains
why short-chain α-dicarbonyl compounds such as MGO and GO are completely derivatized
in a few hours, compared with 3-DG, which requires longer hours because of its long-chain
carbon backbone. In this study, we examined the effect of the trapping reagent on the
detection of MGO, GO, and 3-DG in the samples. Changes in the concentrations of reagents,
prepared at 0.01 g/mL (1% w/v), 0.02 g/mL (2% w/v), 0.05 g/mL (5% w/v), and 0.1 g/mL
(10% w/v) concentrations, did not affect the levels of GO, MGO, and 3-DG, as illustrated in
Figure 5. While the peak areas of GO and 3-DG remained unaffected, the measured peak
area of MGO increased when the OPD concentration was increased to 0.1 g/mL (10% w/v).
The reason behind the observed increase in MGO following incubation with 0.1 g/mL OPD
reagent is not yet clear. One possible explanation is that MGO may have degraded rapidly,
rendering it inaccessible for reaction with the trapping reagent, thereby requiring higher
amounts of OPD for detection. Our findings here unequivocally show that an excessive
OPD amount corresponds to a decrease in measured peak intensities for MGO, GO, and
3-DG. Based on these experimental results, we recommend that a lower OPD concentration
between 0.01 and 0.02 g/mL (1–2% w/v) may be optimal for the determination of GO,
MGO, and 3-DG in honey. Taken together, for OPD incubations, the following conditions
were found to be suitable for the complete reaction of MGO, 3-DG, and GO derivatives in
honey: an OPD concentration of 0.01–0.02 g/mL (1–2%) within a pH range of 7–9.
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2.3. Method Validation for α-Dicarbonyl Determination in Honey

The quantification method was evaluated for the detection of 3-DG, GO, and MGO
in the analyzed honey samples. To achieve this, various validation parameters such
as linearity, precision, recovery, LOD, and the LOQ were determined. The seven-point
calibration curve showed high linearity for MGO, GO, and 3-DG derivatives. The high
linearity values indicate that the method exhibits linearity within the expected calibration
range. The recovery was determined at three different concentration levels using a honey
matrix (comprising glucose and fructose in water) and a blank. The average recovery
values for MGO, GO, and 3-DG were calculated as 75.8%, 67.0%, and 82.5%, respectively, as
shown in Table 1. The interday and intraday repeatability was reported as the percentage
relative standard deviation (%RSD) from six replicate measurements of the honey samples.
The intraday and interday %RSD values were reported to be within the range of 1.98% to
3.93% and 2.19% to 4.98%, respectively. A summary of the LOD and LOQ values reported
for MGO, GO, and 3-DG is provided in Table 1. The LOD for 3-DG, MGO, and GO was
calculated as 0.0018, 0.0015, and 0.002, respectively. In terms of the LOQ, the values ranged
from 0.005 to 0.008. The recovery rates for GO and MGO were low, which may be due to
some losses of the compounds during the wash step. However, the precision of the method
was very good. The use of a solvent with a stronger elution strength may help to improve
the overall recovery rates.

Table 1. Method validation parameters for MGO, GO, and 3-DG.

α-Dicarbonyl Linearity (R2) LOD (mg/kg) LOQ (mg/kg) Intraday Precision
(%RSD)

Interday Precision
(%RSD)

%Recovery
(Mean ± SD)

MGO 0.9989 0.0018 0.006 1.98 2.19 75.8 ± 0.21
GO 0.9999 0.0015 0.005 2.68 4.98 67.0 ± 0.21

3-DG 0.9979 0.002 0.008 3.93 4.24 82.5 ± 0.25

2.4. Quantification of α-Dicarbonyl Compounds in Honey

To ensure the precise quantification of α-dicarbonyls in samples like honey, it is cru-
cial to systematically evaluate reaction parameters, including temperature, pH, amount
of derivatization reagent, and reaction time. Therefore, employing highly sensitive ana-
lytical methods becomes imperative for the reliable quantification and identification of
α-dicarbonyls in honey. In this study, the quantification of GO, MGO, and 3-DG in honey
was based on external calibration curves established with pure quinoxaline standards,
which are derivatized forms of α-dicarbonyl compounds. We evaluated the levels of the
three α-dicarbonyls in a total of nineteen honey samples from Washington, Texas, and SoCal
and compared them to the standard medical grade Manuka honey from New Zealand.
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The average levels of GO, MGO, and 3-DG in Washington, Texas, SoCal, and Manuka
honey are presented in Table 2. All the samples showed increased levels of 3-DG except
Manuka honey. The honey derived from SoCal demonstrated the highest 3-DG concentra-
tion, ranging from 24.5 to 50.2 mg/kg. Substantial quantities of 3-deoxyglucosone (3-DG)
were also detected in the honey from Texas and Washington, with mean concentrations of
36.5 mg/kg and 17.5 mg/kg, respectively. However, we observed a statistically significant
difference (p < 0.05, p = 0.008) in the individual α-dicarbonyl contents assessed across all
the analyzed samples.

Table 2. The concentration of MGO, GO, and 3-DG in honey.

Honey Geographical
Location

3-Deoxygluconse
(3-DG) mg/kg

Glyoxal (GO)
mg/kg

Methylglyoxal
(MGO) mg/kg

Total Dicarbonyl
Content (mg/kg)

Washington A Washington 10.80 3.44 2.57 16.81
Washington B Washington 22.14 9.43 6.03 37.60
Washington C Washington 18.56 8.10 4.25 30.91
Washington D Washington 17.02 9.26 1.38 27.66
Washington E Washington 21.04 7.88 1.69 30.62
Washington F Washington 15.71 7.42 4.23 27.36

Texas A Texas 30.26 4.61 N/D 1 34.87
Texas B Texas 29.12 4.94 N/D 34.07
Texas C Texas 46.99 4.59 N/D 51.58
Texas D Texas 37.47 4.62 N/D 42.09
Texas E Texas 43.34 4.65 N/D 48.00
Texas F Texas 32.04 4.76 N/D 36.80
SoCal A Southern California 24.51 2.86 N/D 27.38
SoCal B Southern California 36.24 4.75 N/D 41.00
SoCal C Southern California 41.37 5.56 N/D 46.94
SoCal D Southern California 45.45 4.74 N/D 50.19
SoCal E Southern California 42.84 4.75 N/D 47.60
SoCal F Southern California 50.24 4.49 N/D 55.74
Manuka New Zealand 8.16 N/D 28.82 36.98
Average 30.17 ± 12.97 5.60 ± 1.93 6.99 ± 9.76 38.12 ± 10.16
Range 10.80–50.24 2.86–9.43 1.38–28.82 16.81–55.74

1 N/D—not detectable.

In another study, Degen et al. [7] investigated the α-dicarbonyl compounds in com-
monly consumed food products and reported higher levels of 3-DG in honey, ranging from
271 to 1641 mg/kg, and in other bakery products such as bread (13–619 mg/kg) and cookies
(8.5–385 mg/kg). The increased levels of 3-DG in these food samples may be attributed to
the Maillard reaction or caramelization process that takes place during food processing. The
Maillard reaction typically occurs in processed foods such as honey and baked products,
leading to the formation of stable advanced glycation end products, such as pyrraline,
which is a major component of 3-DG [31]. The 3-DG content in monofloral honey samples
as reported by Marceau et al. [6] showed a wider range, from 143 to 1099 mg/kg. Similarly,
the distribution of α-dicarbonyls in Italian monofloral and multifloral honey samples re-
vealed 3-DG as the highest α-dicarbonyl with a reported concentration of 310.8 mg/kg [8].
3-Deoxyglucosones are known to be important intermediates in the Maillard reaction [12].
Moreover, trapping agents commonly employed in derivatization contain amine groups
that catalyze the generation of α-dicarbonyls under high thermal conditions [32]. This
occurrence could lead to a higher accumulation of 3-DG in the reaction mixtures when
incubated with OPD and may contribute to the higher 3-DG amounts reported in numerous
cases. In contrast, we detected lower levels of 3-DG in the honey samples compared with
those reported in honey from various geographic regions [6–10]. One significant factor that
may contribute to the low formation of α-dicarbonyls is the low water activity in honey,
which can inhibit the initial glycosylamine reaction during the Maillard reaction [33]. The
acidic pH of honey may also suppress the Maillard reaction and subsequent α-dicarbonyl
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formation. Furthermore, honey’s natural antioxidant properties, including the presence
of flavonoids and phenolic compounds, may mitigate oxidative processes that lead to the
formation of α-dicarbonyls. We also presume that the variability in honey composition
could potentially explain the reduced levels of 3-DG found in the samples. This variability
stems from factors like floral source, processing techniques, climate, and geographic region.
Another contributing factor might be the specific floral source of the honey, as diverse floral
nectars contain varying precursor levels that influence the formation of 3-DG during the
Maillard reaction.

In agreement with previous findings [34,35], we recorded the highest level of MGO
in Manuka honey, although this concentration was relatively lower compared with the
levels reported in these studies. The average MGO content in all the samples ranged
from 1.38 to 28.82 mg/kg. Furthermore, we observed lower levels of GO in Washington,
Texas, and SoCal honey samples, ranging between 2.86 and 9.43 mg/kg. This range is
similar to the GO levels found in honey from Florida [9], and close to the highest average
concentration in multifloral honey from Italy and Hungary [8]. In contrast, GO was not
detected in manuka honey, as outlined in Table 2. Figure 6 illustrates the geographical
differences in the total α-dicarbonyl concentrations among the honey samples using a box
and whisker plot. The plot clearly indicates that SoCal and Texas honey have a higher total
α-dicarbonyl concentration compared with honey from Washington and New Zealand.
The plot highlights distinct variations in individual α-dicarbonyl concentrations, providing
insight into the impact of geographical origins on the composition of honey α-dicarbonyls.
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2.5. Influence of Honey Color on the Content of α-Dicarbonyls in Honey

The color of honey plays a crucial role in complementing its origins, and it is employed
to assess its quality [36]. Aging or heat treatments during processing can modify honey’s
color. Moreover, prolonged heat treatments could result in increased caramelization and
browning, thereby enhancing the formation of honey’s color [37]. Previous studies have
suggested a correlation between the color of honey and its phenolic composition [38–42]. In
this study, we examined the influence of color on the concentration of α-dicarbonyls in the
honey samples. Our results, based on the Pfund calculations, revealed that the color of the
honey samples ranged widely from light amber to dark amber tones, as shown in Table 3.
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Table 3. Effects of honey color on α-dicarbonyl content of honey.

Honey Geographical Origin pH Color Total Dicarbonyl Content (mg/kg)

Washington A Washington 3.80 89.94 (Light amber) 1 16.81
Washington B Washington 3.81 89.94 (Light amber) 37.60
Washington C Washington 3.83 90.45 (Light amber) 30.91
Washington D Washington 3.74 90.84 (Light amber) 27.66
Washington E Washington 3.83 91.11 (Light amber) 30.62
Washington F Washington 3.81 90.76 (Light amber) 27.36

Texas A Texas 4.20 117.69 (Dark amber) 34.87
Texas B Texas 4.00 117.31 (Dark amber) 34.07
Texas C Texas 3.75 118.27 (Dark amber) 51.58
Texas D Texas 3.73 118.42 (Dark amber) 42.09
Texas E Texas 3.74 119.86 (Dark amber) 48.00
Texas F Texas 4.05 120.44 (Dark amber) 36.80
SoCal A California 3.88 99. 97 (Amber) 27.38
SoCal B California 3.90 100.56 (Amber) 41.00
SoCal C California 3.82 100.53 (Amber) 46.94
SoCal D California 3.83 99.42 (Amber) 50.19
SoCal E California 3.86 100.77 (Amber) 47.60
SoCal F California 3.96 99.76 (Amber) 55.74
Manuka New Zealand 3.87 64.42 (Light Amber) 36.98
Average 3.86 ± 0.11 100.92 ± 14.58 38.12 ± 10.16
Range 3.74–4.20 64.42–119.45 16.81–55.74

Regression values R = 0.267
(p > 0.05)

R = 0.668
(p < 0.05)

1 Pfund value used to determine color.

Honey produced in Texas and Washington displayed darker color tones compared
with SoCal and Manuka honey, which showed significantly lighter shades. The color vari-
ation in honey is influenced by several factors including floral and geographical sources,
along with processing conditions. While dark-colored honey types may be preferred for
their taste or aroma, they can potentially pose a risk of extreme toxicity in humans when
they contain excessive amounts of α-dicarbonyls [21–25,43,44]. In response to this, some
studies have attempted to address the control of food browning in the food industry [45].
To date, there is currently no officially approved method to determine the color of honey;
however, the Pfund color grader stands out as the most used method for this purpose.
In our study, the color range of the samples fell within the acceptable range specified by
the “United States Standards for Grades of Extracted Honey” [46]. We also observed a
moderately positive correlation between honey color and total α-dicarbonyl concentration
(R = 0.668, p < 0.05). While this result suggests that there is some tendency for darker
honey to have higher α-dicarbonyl concentration, it does not imply a direct relationship.
α-Dicarbonyl compounds formed through Maillard reactions and caramelization during
honey processing and storage can occur independently of honey color and may be influ-
enced by factors such as temperature, pH, sugar content, and the honey floral source from
which the nectar is collected by bees.

2.6. Nutritional Consequences of MGO, GO, and 3-DG in Honey

It is worth mentioning that high concentrations of α-dicarbonyl compounds in foods
are associated with the risk of chronic diseases in humans, such as diabetes, Alzheimer’s,
cancer, and cardiovascular diseases [47–49]. Several studies have examined the presence of
α-dicarbonyls in various food products and their physiological effects in humans [50,51].
Although MGO, GO, and 3-DG can be ingested through diets, the specific dose levels of
each individual α-dicarbonyl that pose extreme toxicity in humans remain ambiguous.
Consequently, predicting the accumulation of 3-DG, MGO, and GO in various food products
and their biological impact on human cells is challenging. Furthermore, the extent to
which the amount is digested and absorbed by the blood and tissues during digestion
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partly depends on the formation and degradation reactions that take place in intestinal
cells [52,53]. The exposure of α-dicarbonyl compounds through treatment solutions and
drugs has been discussed recently [54,55]. Among α-dicarbonyls in foods, 3-DG, 3,4-DGE,
and 3-DGal exhibit extreme toxicity when ingested in high amounts [56,57]. In addition
to the above-mentioned compounds, elevated plasma levels of MGO and GO have been
linked to kidney dysfunction in uremic patients [25,58]. In the present study, we compared
the concentrations of MGO, GO, and 3-DG in our samples to the average range reported in
honey from different geographical origins (as presented in Table 4).

Table 4. Reported α-dicarbonyl content range in honey of different floral and geographical origins.

Honey Geographical Origin MGO (mg/kg) GO (mg/kg) 3-DG (mg/kg) References

Multifloral Germany 0.4–5.4 0.2–2.7 79–1266 [10]
Multifloral Canada/Australia/Hungary 0.8–33 0.3–1.3 143–1099 [6]
Multifloral Italy/Hungary 0.2–2.9 0.1–10.9 75.9–808.8 [8]
Multifloral Florida/New Zealand 3.63–483 2.19–7.35 206–884 [9]

Manuka New Zealand N/D 1–761 N/D–7.0 119–1451 [35]
Manuka/Revamil New Zealand/Netherlands 29.3–497.1 14.4–27.3 221.6–687.3 [59]

Multifloral Multiple locations 1.6–725 N/D 271–1641 [7]
Acacia China 0.77–4.79 0.56–3.18 114.36–146.42 [60]

Multifloral Spain N/D N/D 150–2380 [61]
Honeydew Italy 5.7–9.9 N/D N/D [62]
Eucalyptus Italy 9.9–12.7 N/D N/D [62]
Multifloral USA 1.38–28.82 2.86–9.43 10.80–30.24 [62]

1 N/D—not detected.

3. Materials and Methods
3.1. Chemicals and Reagents

The o-phenylenediamine reagent and quinoxaline standards were purchased from
Sigma Aldrich (St. Louis, MO, USA). HPLC grade methanol was acquired from Sigma
Aldrich (St. Louis, MO, USA). Sodium phosphate monobasic and sodium phosphate dibasic
were purchased from Sigma Aldrich (St. Louis, MO, USA). 3-deoxyglucosone (3-DG) was
purchased from Santa Cruz Biotechnology (Dallas, TX, USA). Pure methylglyoxal, glyoxal
standards were procured from Sigma Aldrich (St. Louis, MO, USA).

Sep-Pak C18 cartridges (500 mg, 3 mL) for SPE were purchased from Waters (Mil-
ford, MA, USA). Syringe filters (0.45 µm, diameter 25 mm) were acquired from Sterlitech
(Auburn, WA, USA). Ultrapure filtered water was obtained from a Milli-Q water purifica-
tion system (Nalgene, Rochester, NY, USA).

3.2. Honey Samples

Twenty honey samples were analyzed in this study. A monofloral Manuka honey with
a certified unique manuka factor (UMF, 20+) was purchased online from New Zealand
(New Zealand Honey Co., Ltd., Wanaka, New Zealand). The UMF index is used to measure
the potency of Manuka honey. A high UMF factor corresponds to an elevated level of
antibacterial activity whereas a lower UMF value indicates lower antibacterial capacity.
Nineteen processed multifloral honey samples in air-tight plastic containers were obtained
from Washington, Texas, and Southern California in the United States. Except for the
Manuka honey, the botanical origin of all the remaining honey samples was not provided.
The crystallized honey samples were subjected to mild heating at 30 ◦C in a water bath and
allowed to liquefy for 5 min. The samples were stored at room temperature in the dark
until further analysis.

3.3. pH of Honey

To measure the pH of honey, a 50% honey solution was prepared in deionized water
and subjected to mild heating at 30 ◦C to liquefy the crystallized honey. The pH readings
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of the solutions were measured using a standardized pH meter (Mettler Toledo, Thermo
Fisher Scientific, Waltham, MA, USA) [63].

3.4. Determination of Honey Color

The color of the honey samples was classified using the Pfund procedure and formula
proposed by Beretta et al. [64]. More specifically, a 50% aqueous honey solution (w/v)
was prepared and subjected to mild heating at 50 ◦C for the complete dissolution of the
sugar crystals. The measurements were carried out using a UV-Vis spectrophotometer
(Agilent Technologies Inc., Santa Clara, CA, USA) at 635 nm. The absorbance readings were
converted into mm Pfund values using the proposed formula in Equation (1) [65]:

mm Pfund = −38.70 + (371.39 × Abs) (1)

3.5. Derivatization of α-Dicarbonyls in Honey

The procedure described by Marshall et al. [9] was adopted with some modifications.
α-Dicarbonyls were analyzed as their corresponding quinoxaline derivatives after incuba-
tions with o-phenylenediamine (OPD) solutions. α-Dicarbonyls are highly reactive and not
easily analyzed by spectrophotometric and mass detection methods without derivatization.
The OPD trapping reagent in this case prevents further reaction of MGO, GO, and 3-DG
with undesirable constituents in honey. First, 1 mL of 15% (w/v) honey in sodium phos-
phate buffer (0.1 M, pH = 6.5) was mixed with 0.6 mL of 1% (w/v) OPD reagent in 0.1 M
sodium phosphate buffer. The honey solutions were kept in the dark at room temperature
for 12–24 h to ensure the completeness of the reaction. Following the derivatization step,
the honey solutions were incubated and filtered through a 0.45 µm pore membrane filter.
Subsequently, the filtrate obtained was taken through a solid phase extraction (SPE) pro-
cess to remove excess derivatization products. SPE was performed using C18 cartridges
(Sep-Pak, 500 mg, Waters, Milford, MA, USA).

3.6. Preparation of α-Dicarbonyls (MGO, GO, and 3-DG) in Honey

Pure quinoxaline standards for MGO and GO named as MGO-Q and GO-Q, respec-
tively, were obtained and prepared in 80% methanol at 0.145 mg/mL and 0.06 mg/mL,
respectively. The working solution was prepared by dilution with 10% methanol. The
calibration ranges for MGO-Q (0.145–0.001 mg/mL), GO-Q (0.03–0.001 mg/mL), and 3-
DG standard (5–0.08 mg/mL) were used for quantitative analysis. In total, 2 mL of each
standard solution was derivatized using the same procedure described previously for the
honey samples, and 10 µL of the standard solution was injected for HPLC-MS analysis.

3.7. HPLC-MS/MS Analysis of α-Dicarbonyl Derivatives

The three α-dicarbonyl derivatives were separated by a reverse-phase high-performance
liquid chromatograph (Perkin Elmer, Shelton, CT, USA) coupled to an LCQ Deca XP+
ion trap mass spectrometer (Thermo Finnigan, San Jose, CA, USA). The separation was
achieved on an Inert sustain phenyl column (5 µm × 2.1 mm × 150 mm, GL Sciences,
Torrance, CA, USA) maintained at a temperature of 40 ◦C. A binary solvent system con-
sisting of mobile phase A (water with 0.1% formic acid) and mobile phase B (methanol
with 0.1% formic acid) was operated under the following gradient conditions: 3 min, 5%
B, 3–8 min,40% B; 8–18 min, 100% B; 18–24 min, 20% B; and 24–30 min, 5% B for column
equilibration run time. Then, 10 µL of the derivatized honey solution was injected at a flow
rate of 0.3 mL/min into the LC system for a total run time of 30 min. The identification of
α-dicarbonyl compounds in the honey samples was confirmed by comparing their retention
times and MS/MS mass spectra with the standard solutions. Mass spectrometry conditions
were performed on an ion trap mass spectrometer using an electrospray ionization source
operated in the positive mode. The ESI source was set using the following conditions:
capillary temperature of 320 ◦C and an ionization voltage of 4.5 kV. MS spectra for both
standards and honey samples were acquired in the full scan mode within the m/z range
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of 100–500 Da. The MS/MS fragmentation studies for each analyte were assisted using a
data-dependent scan with nominal collision energies set between 20 and 40 eV and He as
the collision gas. LC-MS/MS data acquisition and processing was executed using Xcalibur
software, version 2.0.7 (Thermo Finnigan, San Jose, CA, USA).

3.8. HPLC-UV Analysis of α-Dicarbonyl Derivatives

A Shimadzu HPLC 20AD pump system coupled with a UV-Vis detector SPD 20 AV
(Shimadzu, Columbia, MD, USA) was used for the determination of α-dicarbonyl compounds.
The separation was achieved on an Inert sustain phenyl column (5 µm × 2.1 mm × 150 mm,
GL Sciences) maintained at a temperature of 40 ◦C. A binary solvent system consisting of
mobile phase A (water with 0.1% formic acid) and mobile phase B (methanol with 0.1%
formic acid) was operated under the same gradient conditions as described previously.
The analytes were monitored at 312 nm, and the UV spectrum was recorded from 200 to
400 nm.

3.9. Quantitation of Derivatized α-Dicarbonyls in Honey

The quantification of MGO, GO, and 3-DG derivatives was based on an external
calibration curve for MGO-Q, GO-Q, and 3-DG standards, respectively. The quantification
of MGO, GO, and 3-DG derivatives in the honey samples was based on the peak areas
of the analytes and the quotients of the areas of the analytes and respective standards.
Replicate measurements were carried out on each sample. The quinoxaline concentration
was expressed as mg/kg.

3.10. Method Validation for α-Dicarbonyl Analysis
3.10.1. Linearity

The linearity was determined by linear regression analysis. A seven-point calibration
was created for MGO-Q, GO-Q, and 3-DG standards and covered the concentration ranges.
The calibration plot was based on the analyte response against each standard concentration
for MGO-Q, GO-Q, and 3-DG. The linear fit for the curve was estimated from the linear
regression analysis.

3.10.2. Accuracy/Recovery

A recovery experiment was conducted to evaluate the accuracy of the method for the
quantitation of MGO, GO, and 3-DG derivatives in the honey samples. A honey matrix and
a blank solution were prepared and spiked with MGO, GO, and 3-DG standards at three
different concentration levels, as shown in Table 5. For each spiked concentration level, the
samples were independently analyzed in triplicate measurements. The mean recovery of
MGO, GO, and 3-DG were expressed as follows in Equation (2).

Recovery =
[ (concentration o f analyte in honey matrix)− (concentration o f blank)]

Amount o f analyte added
× 100% (2)

Table 5. Spiked concentrations of MGO, GO, and 3-DG added to the honey matrix and blank for
recovery analysis.

α-Dicarbonyls Low Concentration (mg/mL) Middle Concentration (mg/mL) High Concentration (mg/mL)

Spiked MGO 0.001 0.01 0.1
Spiked GO 0.006 0.03 0.06

Spiked 3-DG 0.001 0.01 0.1

3.10.3. Precision

Precision was determined by running six replicate measurements of each honey sample
analyzed independently on three consecutive days (n = 18). The precision was expressed
as the percent relative standard deviation (%RSD).
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3.10.4. Limit of Detection (LOD) and Limit of Quantitation (LOQ)

LOD and LOQ values for MGO, GO, and 3-DG were estimated from the linear cali-
bration curve based on the standard deviation of the response (Sy) and the slope of the
calibration curve. The LOD and LOQ of the method were calculated from Equation (3):

LOD = 3.3 ×
(

Sy
Slope

)
and LOQ = 10 × (

Sy
Slope

) (3)

3.10.5. Statistical Analysis

The average concentrations of GO, MGO, and 3-DG were expressed as (mean ± SD)
values derived from replicate measurements and analyzed by GraphPad Prism 10.0. A
one-way analysis of variance (ANOVA) was used to estimate the mean differences in the
MGO, GO, and 3-DG content among the Washington, Texas, SoCal, and Manuka honey
samples. Pearson’s correlation was employed to estimate the relationship between the
reaction conditions and the MGO, GO, and 3-DG contents. Statistical significance was
determined as a p-value < 0.05.

4. Conclusions

In this study, we conducted a comprehensive assessment of α-dicarbonyl concentra-
tions in honey samples from various regions across the United States. Our findings shed
light on the occurrence and levels of MGO, GO, and 3-DG as major α-dicarbonyls in these
honey samples. In this study, 3-DG was found as the predominant α-dicarbonyl across all
U.S. honey samples, with concentrations ranging from 10.80 to 50.24 mg/kg. The total α-
dicarbonyl content varied between 16.81 and 55.74 mg/kg, with Southern California honey
exhibiting the highest concentrations. Through our investigations, we elucidated several
factors influencing the presence of α-dicarbonyls in honey. The pH of the honey solutions
did not show a significant correlation with the total α-dicarbonyl content, indicating that
other factors might play a more substantial role in their formation. Additionally, we found
that lower amounts of the OPD reagent were optimal for efficient derivatization of MGO,
GO, and 3-DG in honey. Comparing our results with standard medical grade Manuka
honey from New Zealand, we observed varying levels of α-dicarbonyls across different U.S.
honey varieties. Particularly, SoCal honey exhibited the highest 3-DG concentration among
the samples studied. Geographical variations were evident in this study, with the SoCal
and Texas honey samples showing higher total α-dicarbonyl concentrations compared
with the Washington and Manuka honey samples. The lower levels of 3-DG found in
our samples compared with other studies could be attributed to various factors such as
honey composition variability. Our findings emphasize the need for further exploration
into the factors influencing α-dicarbonyl formation in honey. Additionally, understanding
the levels of α-dicarbonyls in honey is crucial, given their potential implications on food
quality, processing effects, and human health. The variations observed in MGO, GO and
3-DG concentrations among the different honey varieties in our study demonstrate the
importance of region-specific studies and quality assessment in honey production.
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