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Abstract: Deep eutectic solvents (DESs) are novel solvents with physicochemical properties similar
to those of ionic liquids, and they have attracted extensive attention for the extraction of bioactive
compounds from different plant materials in the context of green chemistry and sustainable de-
velopment. In this study, seven DESs with different polarities were explored as green extraction
solvents for cembratrien-diols (CBT-diols) from waste tobacco flowers. The best solvent, DES-3
(choline chloride: lactic acid (1:3)), which outperformed conventional solvents (methanol, ethanol,
and ethyl acetate), was selected and further optimized for microwave-assisted DES extraction using
the response surface methodology. The maximum yield of CBT-diols (6.23 ± 0.15 mg/g) was achieved
using a microwave power of 425 W, microwave time of 32 min, solid/liquid ratio of 20 mg/mL, and
microwave temperature of 40 ◦C. Additionally, the isolated CBT-diols exhibited strong antimicrobial
activity against Salmonella, Staphylococcus aureus, Escherichia coli, Bacillus subtilis, and Pseudomonas
aeruginosa and antitumor activity in the human liver cancer HepG2 and SMMC-7721 cell lines. This
study highlights the feasibility of recovering CBT-diols from tobacco flower waste using DESs and
provides opportunities for potential waste management using green technologies.

Keywords: cembratrien-diols; natural deep eutectic solvent; response surface methodology; microwave-
assisted extraction; antitumor activity

1. Introduction

Cembratriene-diols (CBT-diols) are cembranoid diterpenes with complex molecular
structures [1] that were first extracted from burley tobacco leaves using traditional organic
liquid–liquid extraction [2,3]. The parent skeleton is a fourteen-membered macrocycle
composed of four isoprene units connected end-to-end [3]. CBT-diols are important aroma
precursors that can be degraded to produce aroma components, such as solanone, solan-
ifuran, and ketamine, which are key contributors to the aroma of tobacco [2]. Notably,
CBT-diols have extremely high biological activity and are increasingly used in medicine
and healthcare [4–6]. Therefore, the investigation of the biological activities of CBT-diols
has recently become popular.

Tobacco (Nicotiana tabacum L.) is an important cash crop belonging to the Solanaceae
family, which is distributed worldwide. Many chemical components are present in tobacco,
and 5229 were confirmed [2]. Tobacco plants have well-developed glandular hairs and
other secretory tissues in their epidermis, which produce many adhesive secretions during
growth; CBT-diols are mainly present in these glandular hair secretions [2]. Additionally,
recent research found that the content of CBT-diols in tobacco flowers is four to seven times
higher than that in fresh tobacco leaves [2,7]. To date, traditional liquid–organic solvent
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extraction methods have been widely used for the effective extraction of CBT-diols from
tobacco plants [2,8]. However, to minimize environmental pollution, new solvents are
required to replace the organic solvents used for such extraction processes.

Natural deep eutectic solvents (DESs), also known as green eutectic solvents, are com-
posed of natural compounds, for example, primary metabolites such as amino acids [9,10].
Owing to their unique physicochemical properties, DESs are considered a third liquid
phase naturally present in organisms, independent of water and lipids [11,12]. Depending
on the compounds used in their synthesis, DESs can be divided into five categories: ionic
liquid, neutral, neutral acid, neutral base, and amino acid types [12,13]. Currently, choline
chloride is the most widely used hydrogen-bond acceptors (HBAs) in DES systems and can
form DESs with various hydrogen-bond donors (HBDs), such as urea, alcohols, carboxylic
acids, and sugars [13,14]. The nontoxic, biodegradable, reusable, and green advantages
of DESs make them popular for the extraction of active compounds [15,16]. For example,
flavonoids [17] and phenolic acids [18] have been successfully extracted from different
plant materials using DESs. Therefore, DESs are expected to replace traditional organic
solvents and resolve many problems hindering the extraction of natural compounds.

In particular, microwave-assisted DES extraction can provide a safe, clean, and green
extraction technique. Thus, the present study is the first to report on the extraction of CBT-
diols from waste tobacco flowers using DESs in combination with microwaves. In particular,
different DESs combined with microwave heating were used in this study to extract CBT-
diols from tobacco flower waste, and the optimal conditions for the microwave-assisted
extraction of CBT-diols from waste tobacco flowers were determined using single-factor
experiments and a response surface methodology design. To demonstrate the biological
activity of the CBT-diols extracted using DESs, their antimicrobial and antitumor activities
were studied.

2. Results and Discussion
2.1. Evaluation of DES Extraction Efficiency

Recent studies confirmed that DESs have a high potential for the extraction of water-
insoluble active compounds from various plant materials [16,19,20]. Therefore, in this
study, seven DESs were tested as extractants for CBT-diols from WTFs. The compositions of
the sustainable and environmentally friendly two-component DESs prepared in our work
are listed in the Section 3.

Notably, the DES composition had a significant effect on the extraction efficiency
(Figure 1). In particular, the DESs formed of HBA choline chloride exhibited the highest
extraction efficiency, and the extraction yields of CBT-diols were 3.94 ± 0.20, 3.49 ± 0.20,
5.56 ± 0.14, 4.43 ± 0.24, and 4.21 ± 0.17 mg/g for DES-1 through DES-7, respectively.
Crucially, DESs formed of carboxylic acids (lactic and citric acids in this study) as HBDs
can efficiently damage and dissolve the cell walls of plants, thus improving the extraction
efficiency of CBT-diols from WTFs [21]. Although DES-3 and DES-4 were composed of
choline chloride and carboxylic acids, the high viscosity of DES-4 reduced mass transfer,
which decreased the extraction yield of CBT-diols [13,22]. For DES-1, which was formed
from polyols, the increase in the number of hydroxyl groups makes it easier for alcohols
to form intramolecular hydrogen bonds with choline chloride, leading to an increase in
the viscosity of the system and poor extraction efficiency of CBT-diols from WTFs [23].
In addition, to evaluate the DESs as a possible alternative to conventional solvents, a
comparative analysis of the extraction efficiency was conducted using 80% methanol,
80% ethanol, and 80% ethyl acetate [13,24], indicating that the extraction effect of DES-3
was significantly better than that of traditional organic solvents. Overall, DES-3 (choline
chloride and lactic acid at a molar ratio of 1:3) was selected as the optimum solvent for
extracting CBT-diols from WTFs.
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Figure 1. Comparison of CBT-diol extraction from WTFs using different DESs and three conventional
organic solvents. Extraction parameters were as follows: microwave power of 300 W, microwave time
of 20 min, microwave temperature of 40 ◦C, and solid/liquid ratio of 20 mg/mL. * and ** indicate that
the extraction yields of CBT-diols from WTFs were significantly (p < 0.05) and extremely significantly
(p < 0.01) different from that of DES-3.

2.2. Optimization of DES Extraction Using Single-Factor Experiments

In addition to the type of extraction solvent, the extraction parameters (extraction
power, time, temperature, etc.) have significant effects on the extraction yields of active
substances from plant materials [25,26]. Therefore, the effects of microwave power, extrac-
tion time, temperature, and solid/liquid ratio on the yields of CBT-diols from WTFs using
DES-3 were investigated (Figure 2).
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perature of 40 °C. Different letters indicate significant differences at p < 0.05. 
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Figure 2. Single-factor experiments for optimizing the extraction efficiency of CBT-diols from WTFs.
Effect of microwave power using DES-3 (a) with the following fixed parameters: microwave time of
20 min, microwave temperature of 40 ◦C, and solid/liquid ratio of 20 mg/mL; effect of microwave
time using DES-3 (b) with the following fixed parameters: microwave power of 300 W, microwave
temperature of 40 ◦C, and solid/liquid ratio of 20 mg/mL; effect of microwave temperature using
DES-3 (c) with the following fixed parameters: microwave power of 300 W, microwave time of
20 min, and solid/liquid ratio of 20 mg/mL; effect of solid/liquid ratio using DES-3 (d) with the
following fixed parameters: microwave power of 300 W, microwave time of 20 min, and microwave
temperature of 40 ◦C. Different letters indicate significant differences at p < 0.05.

2.2.1. Effect of Microwave Power on the Yields of CBT-Diols from WTFs

As shown in Figure 2a, the yield of CBT-diols increased significantly as the mi-
crowave power was increased from 200 to 400 W. The maximum extraction yield was
5.84 ± 0.06 mg/g at microwave power of 400 W, possibly because the increase in mi-
crowave power caused a cavitation effect in cells, which enhanced cell wall breakage,
reduced mass transfer resistance, and facilitated the extraction of CBT-diols [13,27]. How-
ever, the extraction efficiency of CBT-diols decreased significantly at microwave powers of
500 and 600 W, possibly because the excessive microwave power increased the solubility of
impurities and damaged the structure of the CBT-diols, resulting in a decrease in extraction
yield [28]. Thus, the optimal microwave power was set at 400 W for the RSM.

2.2.2. Effect of Microwave Time on the Yields of CBT-Diols from WTFs

Generally, extraction time determines whether an active substance can be fully dis-
solved [13]. The effect of microwave irradiation time on the yield of CBT-diols is shown in
Figure 2b. At short microwave times (10 or 20 min), the dissolution of CBT-diols from the
WTFs was low, resulting in low yields of CBT-diols. When the reaction time was increased
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to 30 min, the yield reached a maximum of 5.63 ± 0.10 mg/g. Subsequently, the extraction
yield showed no significant improvement with further extensions of the microwave time.

2.2.3. Effect of Microwave Temperature on the Yields of CBT-Diols from WTFs

In the DES extraction process, microwave temperature is an important factor affect-
ing extraction efficiency [9,29]. Temperature significantly affects the diffusion coefficient
and viscosity of DESs, thereby affecting the extraction yield of CBT-diols [9,28]. As the
microwave temperature increased, the yield of CBT-diols first increased and then stabilized
(Figure 2c). Notably, the extraction yields significantly increased from 30 to 40 ◦C. This
might be because the increase in microwave temperature reduced the viscosity of the DESs
and increased the solubilities and diffusion coefficients of the CBT-diols [13,29]. At 40 ◦C,
the highest yield was 5.50 ± 0.12 mg/g, and the yield remained basically unchanged above
40 ◦C.

2.2.4. Effect of Solid/Liquid Ratio on the Yields of CBT-Diols from WTFs

The effects of different solid/liquid ratios on the extraction efficiency of CBT-diols were
also investigated (Figure 2d). The extraction yields increased with decreasing solid/liquid
ratio from 50 to 30 mg/mL. It is possible that, with the reduction in the amount of extraction
material, the chance of contact between WTF cells and the DESs components increased,
which is conducive to the dissolution of CBT-diols [13,30]. The yields of CBT-diols from
WTFs were highest (5.60 ± 0.19 mg/g) at a solid/liquid ratio of 30 mg/mL. Therefore,
30 mg/mL was chosen for further optimization.

2.3. Optimization of DES Extraction Using the Response Surface Methodology

An RSM using BBD was applied to 29 experimental points based on the single-factor
experiments [31,32]. The extraction yields of CBT-diols from WTFs are presented in Table 1,
and the data analysis was performed using Design Expert 8.0 Trial. The following multiple
quadratic regression model equation was obtained using the extraction yields of CBT-diols
as the response values:

Yield = 6.03 + 0.1308A − 0.0508B + 0.0392C − 0.1458D − 0.0075AB + 0.0350AC
− 0.2250AD − 0.1600BC − 0.0700BD + 0.0375CD − 0.7367A2 − 0.0542B2

− 0.2743C2 − 0.0268D2.

The results obtained using the regression equation are presented in Table 2. The
p-value (<0.001) of the regression model indicates that it has extremely high significance
(p < 0.01), and the p = 0.149 for lack of fit suggests that this is not significant (p > 0.05)
(Shang et al., 2019). The R2 of the model was 0.9405, indicating a high correlation between
the model and reality, and the fitting is good [33,34]. The coefficient of variation was 2.61%
(<10%), and the signal-to-noise ratio was 11.7741 (>4), indicating that this model has high
confidence and can be used to navigate the design space. The equation also showed a good
fit with the experiments and could be used to analyze and predict the extraction yields
of CBT-diols from WTFs using DESs. Further, the significance analysis of this equation
indicated that the effects of primary terms A and D, interaction terms AD and BC, and
secondary terms A2 and C2 on the extraction yields of CBT-diols reached a highly significant
level, whereas the effects of the other terms were not significant. Based on the F value,
the four factors affected the extraction yield in order of solid/liquid ratio > microwave
power > microwave time > microwave temperature.

The model equation was used to plot the 3D response surfaces shown in Figure 3. As
shown, the effect of microwave power on the extraction yield was significantly affected by
the microwave power (Figure 3a–c). Further, the yield curve increased and then decreased,
and hence, the optimal range of microwave power was determined to be 400–450 W.
The combined effects of microwave time and temperature on extraction yield are shown
in Figure 3d, even though they had no significant impact on the yield. However, the
contour map shows that there was a significant interaction between microwave time and
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temperature. Thus, we concluded that the optimal microwave time was 30–35 min, and
the optimal microwave temperature was 37–45 ◦C. By calculating the derivative of the
model equation, we obtained the optimal conditions for extracting CBT-diols as follows:
microwave power of 423.874 W, microwave time of 32.3123 min, microwave temperature
of 39.5054 ◦C, and solid/liquid ratio of 20.2467 mg/mL. The theoretical extraction yield
of CBT-diols was 6.18982 mg/g under optimal process conditions. For practicality, the
extraction parameters were adjusted to a microwave power of 425 W, microwave time of
32 min, microwave temperature of 40 ◦C, and solid/liquid ratio of 20 mg/mL. The actual
average extraction yield obtained from three replicate experiments was 6.23 ± 0.15 mg/g,
which is close to the theoretical value.

Table 1. BBD and observed responses.

Run
Variables

Yields (mg/g)
A (W) B (min) C (◦C) D (mg/mL)

1 400 30 40 30 5.99
2 400 40 50 30 5.49
3 300 30 50 30 4.91
4 300 40 40 30 5.09
5 500 30 30 30 4.94
6 400 40 40 40 5.77
7 400 30 40 30 6.06
8 400 20 30 30 5.53
9 400 30 40 30 6.02
10 400 30 30 20 5.97
11 500 30 40 20 5.88
12 400 20 40 20 5.87
13 400 30 40 30 5.97
14 500 20 40 30 5.56
15 400 30 50 20 5.98
16 300 30 30 30 4.91
17 500 30 50 30 5.08
18 400 20 40 40 5.79
19 400 20 50 30 5.93
20 300 30 40 20 4.91
21 400 40 30 30 5.73
22 400 30 50 40 5.72
23 400 30 30 40 5.56
24 300 30 40 40 5.04
25 300 20 40 30 5.38
26 400 30 40 30 6.09
27 500 40 40 30 5.24
28 400 40 40 20 6.13
29 500 30 40 40 5.11

A, microwave power (W); B, microwave time (min); C, microwave temperature (◦C); D, solid/liquid ratio (mg/mL).

Table 2. The ANOVA of this regression model for extraction yields of CBT-diols.

Source Sum of
Squares

Degrees
of Freedom Mean Square F Value p-Value

Model 4.67 14 0.3334 15.8 <0.0001
A 0.2054 1 0.2054 9.74 0.0075 **
B 0.031 1 0.031 1.47 0.2455
C 0.0184 1 0.0184 0.8725 0.3661
D 0.2552 1 0.2552 12.1 0.0037 **

AB 0.0002 1 0.0002 0.0107 0.9192
AC 0.0049 1 0.0049 0.2322 0.6373
AD 0.2025 1 0.2025 9.6 0.0079 **
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Table 2. Cont.

Source Sum of
Squares

Degrees
of Freedom Mean Square F Value p-Value

BC 0.1024 1 0.1024 4.85 0.0448 *
BD 0.0196 1 0.0196 0.929 0.3515
CD 0.0056 1 0.0056 0.2666 0.6137
A2 3.52 1 3.52 166.87 <0.0001 **
B2 0.0191 1 0.0191 0.9048 0.3576
C2 0.4879 1 0.4879 23.12 0.0003 **
D2 0.0046 1 0.0046 0.22 0.6463

Residual 0.2954 14 0.0211
Lack of Fit 0.2857 10 0.0286 11.76 0.149
Pure error 0.0097 4 0.0024
Corr. total 4.96 28

A, microwave power (W); B, microwave time (min); C, microwave temperature (◦C); D, solid/liquid ratio (mg/mL).
* p < 0.05 and ** p < 0.01.
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2.4. Recovery of CBT-Diols from DES Extraction Systems

To isolate CBT-diols from DES extracts and evaluate their biological activity, six
different macroporous resins (HPD-500, S-8, HPD-300, AB-8, D101, and X-5) were tested.
Analysis of the recovery efficiency (Figure 4) showed that the low-polarity macroporous
resins (HPD-300 and AB-8) had the best adsorption capacities of all resins. In particular,
AB-8 was the optimal macroporous resin for the adsorption and desorption of CBT-diols
from DES extracts (recovery rate of 85.70% ± 1.14%). The recovery efficiencies could
be influenced by the different properties of the six macroporous resins, such as polarity,
particle size range, average pore size, and specific surface area. Therefore, the macroporous
AB-8 resin was chosen for the isolation of CBT-diols from DES extracts.
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2.5. In Vitro Bioactivity of CBT-Diols Extracted from WTFs Using DESs
2.5.1. Antimicrobial Activity

The inhibitory activity of CBT-diols against fungi (Botrytis cinerea and Phytophthora
nicotianae) was previously investigated [2]. To evaluate the antimicrobial activity of the
isolated CBT-diols further, their antibacterial activities against Salmonella, S. aureus, E. coli,
P. aeruginosa, and B. subtilis were determined. As shown in Table 3, CBT-diols from the
WTFs and the positive control both exhibited inhibitory effects on all bacterial strains
compared with the solvent control. Specifically, the antibacterial activity of the posi-
tive control was stronger than that of the CBT-diols. In addition, the isolated CBT-diols
showed outstanding inhibition effects toward S. aureus (28.63 ± 0.55 mm) and P. aeruginosa
(21.28 ± 0.63 mm). Thus, CBT-diols from WTFs extracted using DESs have good inhibitory
effects on bacteria.

Table 3. The diameter of inhibition zone of CBT-diols extracted from WTFs using DESs.

Samples
Diameter of Inhibition Zone (mm)

Salmonella S. aureus E. coli B. subtilis P. aeruginosa

CBT-diols 8.35 ± 0.57 28.63 ± 0.55 14.55 ± 0.69 15.02 ± 0.30 21.28 ± 0.63
Solvent control - - - - -
Positive control 17.08 ± 0.77 32.17 ± 0.96 24.89 ± 0.52 24.37 ± 0.51 24.12 ± 0.65

- No inhibition zone.
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2.5.2. Antitumor Activity

Many plant extracts were found to inhibit the growth of cancer cells dramatically [35–37].
For example, polysaccharides obtained from ginger (Zingiber officinale) directly inhibit the
growth of the human colon cancer HCT 116 cell line, human lung adenocarcinoma H1975
cell line, and human cervical cancer HeLa cell line [38]. In addition, the total polyphenols
from Empetrum nigrum significantly inhibit B 16F 10 melanoma cell proliferation and induce
apoptosis in melanoma cells [39]. To determine the antitumor function of the isolated
CBT-diols, we investigated the in vitro inhibitory activity of CBT-diols on the human liver
cancer HepG2 and SMMC-7721 cell lines using the MTT assay.

The antitumor activity of the isolated CBT-diols on HepG2 and SMMC-7721 cells is
shown in Figure 5, revealing that it increased in a dose-dependent manner between 1.25 and
80 mg/L (Figure 5a,b). Primarily, the cell viability of HepG2 and SMMC-7721 decreased to
0.84% and 3.45%, respectively, at 72 h when using 80 mg/L. Compared with the negative
control treatments, the inhibitory effect of the CBT-diols on HepG2 and SMMC-7721 cell
proliferation in vitro was significant (p < 0.05). These results are consistent with those
of previous studies. For example, cembratriene-4,6-diol extracted from cigarette smoke
condensate inhibits cancer cell growth in vitro [40]. Therefore, we concluded that CBT-diols
from WTFs extracted using DESs inhibited the self-proliferation of HepG2 and SMMC-7721
tumor cells in vitro.
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3. Materials and Methods
3.1. Materials and Reagents

Fresh waste tobacco flowers (N. tabacum L., cultivated variety NC55) (WTFs) were
collected from the Xinxing Experimental Station (Zhucheng City, Shandong Province,
China; 36.048◦ N, 119.558◦ E). The WTFs were fully freeze-dried in a vacuum freeze-dryer
(LGJ-10N/A, Beijing Yaxing Yike Technology Development Co., Ltd., Beijing, China) at
−50 ◦C for 48 h. The dried WTFs were crushed into 40-mesh powder and then stored
hermetically in a refrigerator at 4 ◦C before the extraction and quantification of the CBT-
diols. Lactic acid, citric acid, glycerol, urea, D-(+)-glucose, tartaric acid, and choline chloride
were obtained from the Aladdin Reagent Company (Shanghai, China). Acetonitrile for
high-performance liquid chromatography (HPLC) analysis was purchased from Shanghai
Macklin Biochemical Co., Ltd. (Shanghai, China). The other reagents and chemicals used
in this study were of analytical grade and obtained from China National Medicines Co.,
Ltd. (Beijing, China).



Molecules 2024, 29, 1563 10 of 15

3.2. Preparation and Characterization of DESs

All DESs used in this study were synthesized using the heating and mixing method
described previously [13,41]. The components were added to capped flasks according to
the molar ratios listed in Table 4, and a transparent homogeneous DES liquid was obtained
by magnetic stirring in a water bath at 80 ◦C and 100 r/min for 3 h. Then, deionized water
was added to the DES system to adjust the water content to 30% (w/w), and the samples
were denoted DES-1 to DES-7. DESs diluted with water were used to extract CBT-diols
from WTFs and to determine their viscosity and density.

Table 4. DES sample labels, compositions, molar ratios, densities, and viscosities.

Abbreviation
Composition

Molar Ratio Density a (g/cm3) Viscosity a (mPa/s)
Component 1 Component 2

DES-1 Choline chloride Glycerol 1:2 1.18 ± 0.03 271.3 ± 1.8
DES-2 Choline chloride Urea 1:2 1.08 ± 0.05 153.3 ± 0.9
DES-3 Choline chloride Lactic acid 1:3 1.14 ± 0.07 105.5 ± 1.6
DES-4 Choline chloride Citric acid 1:1 1.29 ± 0.04 128.9 ± 1.1
DES-5 Choline chloride D-(+)-Glucose 3:2 1.28 ± 0.06 164.8 ± 1.4
DES-6 Urea Glycerol 1:2 1.13 ± 0.03 143.6 ± 1.7
DES-7 Tartaric acid D-(+)-Glucose 1:1 1.03 ± 0.05 129.6 ± 1.0

a Density and viscosity were measured at 25 ◦C after dilution with water (30%).

3.3. Screening of DESs for the Microwave-Assisted Extraction of CBT-Diols from WTFs

To obtain the best DES system for the microwave-assisted extraction of CBT-diols from
WTFs, the extraction capacities of the seven different DESs prepared in this study were
evaluated by extracting WTF powder (100 mg) using 1 mL of DESs as the extraction solvent.
The extraction processes were performed in triplicate at 40 ◦C for 20 min at a microwave
power of 300 W. The yields of CBT-diols extracted from WTFs were used to compare the
extraction efficiencies of the DESs with those of conventional solvents (80% methanol, 80%
ethanol, and 80% ethyl acetate) [13,42].

3.4. Quantification of CBT-Diols Extracted from WTFs Using HPLC-UV Analysis

Quantitative analyses of the α-CBT-diols and β-CBT-diols isolated from WTFs were
performed using ultra-HPLC (UPLC; H-CLASS, Waters, MA, USA). The chromatographic
column was an Acquity UPLC BEH C18 column (1.7 µm, 50 mm × 2.1 mm). The mobile
phase A and B were acetonitrile and pure water, respectively. The isogradient elution
procedure was as follows: 0–8 min, 50% A and 50% B. The column temperature, injection
volume, flow rate, and detection wavelength were 40 ◦C, 5 µL, 0.3 mL/min, and 200 nm,
respectively. The chromatograms of α-CBT-diols and β-CBT-diols are shown in Figure 6.
The calibration curve equation used for α-CBT-diols and β-CBT-diols determination were
y = 20910x − 21414 (r2 = 0.9997, n = 8, with a linear range of 10–1000 µg/mL), and y =
15297x − 14940 (r2 = 0.9996, n = 8, with a linear range of 10–1000 µg/mL), respectively.
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3.5. Single-Factor Optimization for the Extraction of CBT-Diols from WTFs

The single-factor experiments were designed and conducted to improve the efficiency
of CBT-diols extraction from WTFs using DESs. Microwave power (200, 300, 400, 500, and
600 W), microwave temperature (30, 40, 50, 60, and 70 ◦C), microwave time (10, 20, 30, 40,
and 50 min), and solid/liquid ratio (10, 20, 30, 40, and 50 mg/mL) were selected as the in-
vestigation factors. Based on the different parameters, CBT-diols were extracted from WTFs
using DESs according to the methods described in Section 3.3. Single-factor experiments
were performed using the extraction yields of CBT-diols as an optimization index.

3.6. Response Surface Methodology Optimization of the Extraction of CBT-Diols from WTFs

Based on the results of the previous single-factor experiments, Box–Behnken design
(BBD) was applied to select suitable levels of each factor for response surface methodology
(RSM) optimization using the central composite design principle. The four main influencing
factors, microwave power, microwave temperature, solid/liquid ratio, and microwave
time, were selected as independent variables. The final factor levels and coding values
are presented in Table 5. After microwave extraction, the yield of CBT-diols isolated from
the WTFs using DESs was used as the response value. The prediction model for the
microwave-assisted extraction and correlation analysis of the responses and independent
factors was developed using Design Expert Ver. 8.0 (Stat-Ease Inc., Minneapolis, MN, USA).
Three-dimensional (3D) response surface plots were used to reveal the interactions between
the various variables visually.

Table 5. Independent variables and levels for BBD.

Variables Symbols
Coded Levels

−1 0 1

Microwave power (W) A 300 400 500
Microwave time (min) B 20 30 40

Microwave temperature (◦C) C 30 40 50
Solid/liquid ratio (mg/mL) D 20 30 40

3.7. Recovery of CBT-Diols from DES Extracts Using Macroporous Resins

To recover the CBT-diols from the DES after extraction, six different macroporous
resins (HPD-500, S-8, HPD-300, AB-8, D101, and X-5, Tianjin Yunkai Resin Technology Co.,
Ltd., Tianjin, China) were selected as separation and purification systems (Table 6). The
pretreated macroporous resins (20 g) were added into a 100 mL syringe, and then 10 mL
of the DES extract was added. Subsequently, the following elution procedure was used:
thorough washing with 100 mL of deionized water (a flow rate of 2 mL/min) and elution
with 50 mL of 50% ethyl acetate and 50 mL of 100% ethyl acetate (a flow rate of 1 mL/min).
The ethyl acetate elution phases were entirely collected and dried using vacuum rotary
evaporation. A crude extract of CBT-diols from the DES system was obtained and used
for further analysis of biological activity. The recovery efficiency (%) of CBT-diols was
calculated using the following equation:

Recovery efficiency (%) = (Cea · Vea)/(Ce · Ve),

where Cea is the concentration of CBT-diols in the ethyl acetate elution phase, Vea is the
total volume of the ethyl acetate elution phase, Ce is the concentration of CBT-diols in the
DES extract, and Ve is the volume of the DES extract.
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Table 6. The characteristics of six macroporous resins for CBT-diols extracted from WTFs.

Macroporous Resins Polarity Specific Saturated
Adsorption Capacity (mg/g)

Specific Surface
Area (m2/g) Average Aperture (nm)

HPD-500 High polarity 22.40 ± 0.0022 500–550 10–12
S-8 High polarity 21.57 ± 0.0028 100–120 28–30

HPD-300 Low polarity 41.16 ± 0.0075 800–870 5–5.5
AB-8 Low polarity 48.31 ± 0.0015 480–520 9–10
D101 Nonpolar 34.46 ± 0.0027 550–600 9–10
X-5 Nonpolar 32.19 ± 0.0070 650–700 9–10

3.8. Evaluation of In Vitro Bioactivity of CBT-Diols Extracted from WTFs Using DESs
3.8.1. Evaluation of Antimicrobial Activity

The inhibitory effects of CBT-diols from WTFs by using DESs on Salmonella (CM-
CCBC2184B), Staphylococcus aureus (CMCCBC03068), Bacillus subtilis (CMCCB63501), Es-
cherichia coli (CMCCBC00148), and Pseudomonas aeruginosa (CMCCBC0055B) were evaluated
using filter paper diffusion methods, as described by Shang et al. [42]. These five bacteria
were inoculated into Luria–Bertani (LB) agar medium, respectively, and cultured continu-
ously at 37 ◦C for 12 h. A single bacterial colony was then selected and placed in 5 mL of
liquid LB medium. The bacterial solution was incubated with oscillation until the optical
density at 600 nm (OD600) was 0.6, and then it was stored at 4 ◦C. Under sterile conditions,
a total of 100 µL of the bacterial suspension was uniformly coated on the surface of the LB
agar medium. Sterile blank drug-sensitive tablets were soaked in CBT-diols dissolved in
dimethylsulfoxide (DMSO, 150 µg/mL) for 30 s, dried slightly, and then attached to the
surface of the medium. Drug-sensitive tablets containing penicillin–streptomycin solution
(1000 U/mL) and DMSO solution were used as positive and solvent controls, respectively.
All plates were incubated upside down at 37 ◦C for 24 h, and each treatment was repeated
three times in parallel. Finally, the diameter of the inhibition zone was determined and
used as an evaluation index for the antimicrobial activity of the CBT-diols.

3.8.2. Evaluation of Antitumor Activity

The inhibitory effects of the isolated CBT-diols on the human liver cancer HepG2 and
SMMC-7721 cell lines (Cell Bank of Chinese Academy of Sciences, Qingdao, China) in vitro
were also determined using the colorimetric MTT assay (Shanghai Yuanxin Biotechnology
Co., Ltd., Shanghai, China) [35,37]. The cell suspension was transferred into a culture bottle
filled with complete culture medium, fully shaken, and then placed in a cell incubator
(37 ◦C) containing 5% CO2 for incubation. DMSO solutions having different concentrations
of CBT-diols (80, 40, 20, 10, 5, 2.5, and 1.25 mg/L) were used to detect the inhibition rate of
the HepG2 and SMMC-7721 cells at 24, 48, and 72 h. Cancer cell culture media without
CBT-diols were used as negative controls.

3.9. Statistical Analysis

Statistical analysis was conducted by analysis of variance (ANOVA) using SPSS
24.0 (Chicago, IL, USA). Means were compared by the Duncan test at a 95% confidence
level. The experimental analysis was performed in triplicate, and data are represented as
mean ± standard deviation.

4. Conclusions

The findings of this study demonstrate the feasibility of recovering CBT-diols from
WTFs using DESs and the potential applications of CBT-diol-rich DES extracts. Among
the tested DESs, DES-3, composed of choline chloride and lactic acid (molar ratio of 1:3),
showed the highest CBT-diol extraction efficiency compared to the conventional organic
solvents (80% methanol, 80% ethanol, and 80% ethyl acetate). The optimal conditions for
microwave-assisted DES extraction were determined using RSM to be a microwave power
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of 425 W, microwave time of 32 min, microwave temperature of 40 ◦C, and solid/liquid
ratio of 20 mg/mL. The yield of CBT-diols was 6.23 ± 0.15 mg/g under these conditions.
The recovery of CBT-diols from the DES extraction systems was also investigated, and the
macroporous AB-8 resin was selected as the most suitable separation resin. Furthermore,
the antibacterial and antitumor activities of CBT-diols were evaluated in vitro. The isolated
CBT-diols exhibited inhibitory effects against Salmonella, S. aureus, E. coli, P. aeruginosa, and
B. subtilis also showed dose-dependent cytotoxic effects on HepG2 and SMMC-7721 human
liver cancer cell lines. These results suggest that CBT-diols are promising antitumor agents
and their mechanism of action warrants further investigation.
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