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Abstract: We report the discovery of a novel cyclic nonribosomal peptide (NRP), acyl-surugamide
A2, from a marine-derived Streptomyces albidoflavus RKJM-0023 (CP133227). The structure of acyl-
surugamide A2 was elucidated using a combination of NMR spectroscopy, MS2 fragmentation
analysis, and comparative analysis of the sur biosynthetic gene cluster. Acyl-surugamide A2 contains
all eight core amino acids of surugamide A, with a modified N-ε-acetyl-L-lysine residue. Our
study highlights the potential of marine Streptomyces strains to produce novel natural products with
potential therapeutic applications. The structure of cyclic peptides can be solved using MS2 spectra
and analysis of their biosynthetic gene clusters.

Keywords: Streptomyces; surugamide; cyclic peptide; nonribosomal peptide; acyl-surugamide A2;
cyclic nonribosomal peptide; marine Streptomyces; GNPS; natural products

1. Introduction

Surugamides are a family of cyclic peptides that were first isolated from a marine-
derived S. albidoflavus [1,2]. They are characterized by their eight amino acid cyclic peptide
structure, which includes four D-amino acid residues. The surugamide family includes
several core members, the surugamides A–E [1] and G–J [3], albucyclone A–F [3] and
acyl-surugamide A [3]. Several other natural products can be included in the surugamide
family when extending the family to other cyclic peptides that are cyclized by the same
type of unique standalone β-lactamase superfamily cyclase enzyme [4,5]. These related
natural products are the surugamide F–F2 [4], cyclosurugamide F [4], desotamides [6,7],
wollamides [8], ulleungmycins [9], and noursamycins/curacomycins [10,11]. These cyclic
peptides range in size between six and ten amino acids in length and share the charac-
teristic presence of at least one tryptophan or phenylalanine and a C-terminal glycine
or D-amino acid [12]. A biosynthetic gene cluster was proposed for the surugamides
from Streptomyces sp. JAMM992 by using next-generation sequencing to sequence the
genome, AntiSMASH [13] to identify the cluster, and gene knockouts to confirm associated
genes [14]. The cluster has four non-ribosomal peptide synthetase (NRPS) genes, surABCD,
two for the core surugamide A and two of which are responsible for the biosynthesis of
the structurally unrelated surugamide F-F2 [14]. Surugamide F was discovered as a linear
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peptide; however, it was shown that, using recombinant technology, the same cyclization
enzyme, surE, is capable of cyclizing surugamide F into cyclosurugamide F [4].

The discovery of new bioactive cyclic peptide natural products is highly desirable
for their potential pharmacological applications. Cyclic peptides are highly desirable
due to their conformational rigidity and increased metabolic stability, making them more
resistant to enzymatic degradation compared to linear peptides [15]. Cyclic peptides
possess the ability to be orally available, which is a significant advantage over linear
peptides that are readily degraded in the gut [16,17]. Surugamides have been found to
have promising biological activities, including antifungal [3], antimicrobial activity [18],
and antiproliferative CDK inhibitors [19], as well as being a cathepsin B inhibitors [1]. Acyl-
surugamide A is another derivative of surugamide A that was isolated from Streptomyces
albus J1074 and has been shown to have good antifungal bioactivity (IC50 3.5 µM) against
Saccharomyces cerevisiae [3]. There have been mentions of additional members of the family
in several previous publications; however, their structures have yet to be elucidated [3,20].

Ultra-high pressure liquid chromatography paired with high-resolution mass spec-
trometry (UHPLC–HRMS/MS) working in tandem to acquire both MS1 and MS2 data have
significantly enhanced the utility of untargeted metabolomic analysis approaches for the
identification of related molecules in complex mixtures of NPs. The UHPLC–HRMS/MS
data can be processed by Global Natural Products Social Molecular Networking (GNPS) to
cluster group the related NPs together based on MS2 fragment patterns [21]. GNPS has
emerged as an indispensable tool for small molecule dereplication by comparing anno-
tated natural product fragmentation patterns [21,22]. Utilizing an untargeted metabolomic
approach using GNPS, we were able to determine that marine S. albidoflavus RKJM-0023
produces trace amounts of several unidentified natural products structurally related to
surugamide A [1]. Using molecular networks to identify known molecules is a quick way
to find new analogues and expand the chemical space of natural products produced by
an organism [23]. Herein, we describe the isolation and structural elucidation of acyl-
surugamide A2, a new cyclic surugamide containing a rare N-ε-acetyl-L-lysine residue, that
to the best of our knowledge has only been identified in a couple examples [3,24]. Utilizing
2D NMR data (HMBC, TOCSY, and HSQC) coupled with UHPLC–HR-ESI-MS/MS for
structural fragment annotation, and biosynthetic gene cluster annotation, we were able to
elucidate the structure of acyl-surugamide A2.

2. Results and Discussion
2.1. Targeted Isolation of Acyl-Surugamide A2 from S. albidoflavus RKJM-0023 Isolated from a
Marine Tunicate

Strain RKJM-0023 was isolated from the tunicate Halocynthia papillosa (Red Sea Squirt),
collected from the Mediterranean Sea on the coast of Turkey. Analysis of the nearly complete
16S rRNA gene sequence (1456 bp) using the EzBioCloud 16S identification tool [25]
determined that RKJM0023 was most closely related to S. daghestanicus NRRL B-5418T

and S. albidoflavus DSM 40455T (99.86% identity). Chemical screening of fermentations
of RKJM-0023 identified the production of surugamides and putative novel surugamide
analogs in ethyl acetate extracts of fermentations conducted in BFM15m medium. The
fermentation extracts were characterized by UHPLC–ESI-HRMS/MS and organized into
molecular clusters using GNPS [21] resulting in the identification of a cluster with GNPS
database matches to surugamide A and D (Figure 1). Additionally, two ions with m/z
matching literature values for surugamide G and H [3] were also present within the cluster
(Figure 1). The BFM15m fermentation extract was chosen for further investigation due to
the production of significant quantities of the putatively novel surugamide analogue with
an m/z 954.64.
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Figure 1. (A) Molecular network cluster generated by GNPS including the annotation of previously 
isolated surugamides A, B–E, G, and H. Nodes are labelled by their m/z, edges are labelled by the 
mass difference between neighbors, and edge thickness represents the cosine score between the MS1 
ion (0.65-1). Each node is annotated with a previously predicted amino acid sequence (black) or our 
predicted amino acid sequence (red), where the + sign represents the addition of either [+14.02 Da], 
[+28.00 Da], or [+42.02 Da] to the following amino acid in the sequence. (B) Structure of surugamide 
A, acyl–surugamide A, and acyl–surugamide A2 (1). 
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manually annotated based on the literature of both isolated and predicted amino acid 
sequences (Figure 1). Previously isolated surugamides A, B–E, G, and H were detected, 
while several other surugamide analogues have been previously predicted by cyclic 
peptide sequence algorithm NPMiner, including 914.63 (IAIVKIYL), 813.56 (IAI-
[+14]KIFL), 799.54 (IAI-KIFL), and 784.64 (IAII-IFL) [26], while the m/z 926.64 
(IAII[+14]KIFL), 940.62 (IAII[+28]KIFL), and 954.64 (IAII[+42]KIFL) were previously 
predicted using the MultiTag algorithm where they were referred to as reginamides [27]. 
Additionally, previously unreported surugamide associated ions (m/z 900.62, 927.50, 
942.63, and 841.55) were included in the cluster. The m/z 841.55 has a distinct difference of 
113.09, matching an isoleucine/leucine residue; therefore, the predicted amino acid 
sequence of IAI-[+42]KIFL lacking isoleucine is suggested. For m/z 940.62 and m/z 926.64, 
the MS2 fragmentation pattern compared to 954.64 suggests a similar +42-Lys residue with 
one or two Ile substitutions for a Val, similar to surugamide A valine substituted 
equivalents, surugamides B–E and G. The annotated sequences for m/z 926.64 and 940.62 
contradicts the previously predicted amino acid sequences [27]; however, this is a 
different organism and therefore may be making different surugamide analogues. 

The putatively novel surugamide m/z 954.64 analog was found to be most abundant 
in fermentations conducted in BFM15m, thus fermentations were scaled up in this 
medium (10 × 1 L). The fermentations were extracted with ethyl acetate and a combination 
of flash chromatography and reversed-phase HPLC were used to purify m/z 954.6385, 
named acyl-surugamide A2 (0.6 mg) (Figure S1). 

2.2. Structural Characterization of Acyl-Surugamide A2 via NMR and UPLC-HR-ESI-MS/MS 
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Acyl-surugamide A2 (1) (Figure 1, Table 1) was obtained as a white powder and HR-
ESI-MS supported a molecular formula of C50H83N9O9, requiring 13 degrees of 
unsaturation. The peptidic nature of the compound was determined by analysis of the 1H 
NMR spectrum (Figure S2) which revealed the presence of nine amide protons, 50-NH 
(δH 7.13), 6-NH (δH 7.82), 9-NH (δH 8.29), 15-NH (δH 7.95), 21-NH-(δH 7.61), 26-NH (δH 

Figure 1. (A) Molecular network cluster generated by GNPS including the annotation of previously
isolated surugamides A, B–E, G, and H. Nodes are labelled by their m/z, edges are labelled by the
mass difference between neighbors, and edge thickness represents the cosine score between the MS1
ion (0.65-1). Each node is annotated with a previously predicted amino acid sequence (black) or our
predicted amino acid sequence (red), where the + sign represents the addition of either [+14.02 Da],
[+28.00 Da], or [+42.02 Da] to the following amino acid in the sequence. (B) Structure of surugamide
A, acyl–surugamide A, and acyl–surugamide A2 (1).

The surugamide molecular network cluster from S. albidoflavus RKJM0023 was manu-
ally annotated based on the literature of both isolated and predicted amino acid sequences
(Figure 1). Previously isolated surugamides A, B–E, G, and H were detected, while several
other surugamide analogues have been previously predicted by cyclic peptide sequence al-
gorithm NPMiner, including 914.63 (IAIVKIYL), 813.56 (IAI-[+14]KIFL), 799.54 (IAI-KIFL),
and 784.64 (IAII-IFL) [26], while the m/z 926.64 (IAII[+14]KIFL), 940.62 (IAII[+28]KIFL),
and 954.64 (IAII[+42]KIFL) were previously predicted using the MultiTag algorithm where
they were referred to as reginamides [27]. Additionally, previously unreported surugamide
associated ions (m/z 900.62, 927.50, 942.63, and 841.55) were included in the cluster. The
m/z 841.55 has a distinct difference of 113.09, matching an isoleucine/leucine residue; there-
fore, the predicted amino acid sequence of IAI-[+42]KIFL lacking isoleucine is suggested.
For m/z 940.62 and m/z 926.64, the MS2 fragmentation pattern compared to 954.64 suggests
a similar +42-Lys residue with one or two Ile substitutions for a Val, similar to surugamide
A valine substituted equivalents, surugamides B–E and G. The annotated sequences for
m/z 926.64 and 940.62 contradicts the previously predicted amino acid sequences [27];
however, this is a different organism and therefore may be making different surugamide
analogues.

The putatively novel surugamide m/z 954.64 analog was found to be most abundant
in fermentations conducted in BFM15m, thus fermentations were scaled up in this medium
(10 × 1 L). The fermentations were extracted with ethyl acetate and a combination of flash
chromatography and reversed-phase HPLC were used to purify m/z 954.6385, named
acyl-surugamide A2 (0.6 mg) (Figure S1).

2.2. Structural Characterization of Acyl-Surugamide A2 via NMR and UPLC-HR-ESI-MS/MS
Fragment Annoatation

Acyl-surugamide A2 (1) (Figure 1, Table 1) was obtained as a white powder and
HR-ESI-MS supported a molecular formula of C50H83N9O9, requiring 13 degrees of un-
saturation. The peptidic nature of the compound was determined by analysis of the 1H
NMR spectrum (Figure S2) which revealed the presence of nine amide protons, 50-NH (δH
7.13), 6-NH (δH 7.82), 9-NH (δH 8.29), 15-NH (δH 7.95), 21-NH-(δH 7.61), 26-NH (δH 7.75),
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29-NH (δH 7.80), 35-NH (δH 8.44), 44-NH (δH 7.73), of which eight have a pairing alpha
protons consistent with the molecular network identification surugamide A backbone, plus
one amide bond. Analysis of 2D NMR HMBC, HSQC, and TOCSY (Figures S3–S5) spectra
confirmed the identity of the amino acid constituents and revealed the presence of Ala,
Leu, four Ile, Phe, and a unique acetyl-Lys residue (Table 1, Figure 2). To account for the
remaining degree of unsaturation, it was determined that this compound must be cyclic. It
was determined that this molecule cyclized in a peptide bond between the N-terminal and
C-terminal amino acids as there are no hydroxyl groups, no shifts suggesting an ester-bond
found in depsipeptide cyclization [28], and no aldehyde protons in the 1H. This is consistent
with a surugamide A [1] core and a modification on the side chain residue of Lys, similar
to what was observed with acyl-surugamide A [3]. The acetyl group methyl C-28 (δH
1.77, δC 23.1) is a distinct singlet with no TOSCY correlations. Due to the low amount of
material, the HMBC spectra only presented correlations from each methyl group on the
molecules, as well as the CH3 of the acetyl group to the carbonyl C27 (δC 169.4) and 26-NH
(δH 7.75). The Lys secondary amide 26-NH shares a TOCSY spin system with H-26/H-
25/H-24/H-23/H-22, placing it as the Lys residue functional group. This corroborates
the MS/MS interpretation of the addition of a functional group extending from the Lys
residue. Through careful review of the acquired NMR and comparison to the previously
published NMR shifts for surugamide A [1] and acyl-surugamide A [3], all protons could
be assigned to acyl-surugamide A2 (Table 1). To determine the sequence of amino acids,
a combination of UHPLC–HR-ESI-MS/MS fragment annotation and biosynthetic gene
cluster (BGC) analysis were used.

Table 1. NMR spectroscopic data (1H 600 MHz, 13C 150.9 MHz, DMSO-d6), TOCSY, and HMBC for
acyl-surugamide A2 (1).

Acyl-Surugamide A2 (1)

Residue Position a δC type δH (J in Hz) TOCSY HMBC

L-Ile-1 50-NH 7.13, m 1, 2, 4, 5
1 57.7, CH 4.07, t (7.0) 50-NH, 2, 3, 4, 5
2 36.0, CH 1.77, m 50-NH, 1, 3, 4, 5
3 24.5, CH2 1.26, 1.11, m 1, 2, 4, 5
4 11.7, CH3 0.79, m 50-NH, 2, 3
5 15.6, CH3 0.79, m 50-NH, 2, 3 3, 2, 1
6 ND, C

D-Ala 6-NH 7.82, m 7, 8
7 48.45, CH 4.22, m 6-NH, 8
8 19.3, CH3 1.21, d (6.7) 9, 7
9 b 173.0, C

L-Ile-2 9-NH 8.29, brd (7.44) 10, 11, 12, 13, 14
10 58.0, CH 4.16, m 9-NH, 11, 12, 13, 14
11 35.8, CH 1.75, m 9-NH, 10, 12, 13, 14
12 24.9, CH2 1.46, 1.12, m 9-NH, 10, 11, 13, 14
13 11.1, CH3 0.82, m 9-NH, 10, 11, 12, 14
14 14.9, CH3 0.82, m 9-NH, 10, 11, 12, 13 12, 11, 10
15 ND, C

D-allo-Ile-3 15-NH 7.95, m 16, 17, 18, 19, 20
16 56.9, CH 4.18, m 15-NH, 17, 18, 19, 20
17 36.7, CH 1.81, m 15-NH, 16, 18, 19, 20
18 26.2, CH2 1.30, 1.21, m 15-NH, 16, 17, 19, 20
19 11.9, CH3 0.81, m 15-NH, 16, 17, 18, 20
20 15.1, CH3 0.81, m 15-NH, 16, 17, 18, 19 18, 17, 16
21 ND, C
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Table 1. Cont.

Acyl-Surugamide A2 (1)

Residue Position a δC type δH (J in Hz) TOCSY HMBC

N-ε-Acetyl-L-Lys 21-NH 7.61, m 22, 23, 24
22 52.43, CH 4.27, m 21-NH, 23, 24, 25, 26
23 32.1, CH2 1.54, 1.41, m 21-NH, 22, 26, 26-NH
24 22.7, CH2 1.20, 1.13, m 21-NH, 22, 26, 26-NH
25 28.8, CH2 1.27, m 26, 22, 26-NH
26 38.93, CH2 3.01, 2.87, m 23, 24, 25, 26-NH

26-NH 7.75, m 22, 23, 24, 25, 26 27
27 b 169.4, C
28 23.1, CH3 1.77, s 27
29 ND, C

L-Ile-4 29-NH 7.81, m 30, 31, 32, 33, 34
30 58.3, CH 3.85, m 29-NH, 31, 32, 33, 34
31 36.2, CH2 1.43, m 29-NH, 30, 32, 33, 34
32 25.1, CH2 1.14, 0.81, m 29-NH, 30, 32, 33, 34
33 11.5, CH3 0.68, t (7.55) 29-NH, 30, 31, 32, 34 32, 31
34 15.2, CH3 0.44, d (6.75) 29-NH, 30, 31, 32, 33 32, 31, 30
35 ND, C

D-Phe 35-NH 8.44, d (8.24) 36, 37
36 55.0, CH 4.38, m 35-NH, 37
37 36.8, CH2 2.68, t (12.57), 3.24, m 35-NH
38 b 138.5, C

39, 43 128.6, CH 7.24, m 37
40, 42 129.6, CH 7.22, m 37

41 126.7, CH 7.17, m
44 ND, C

D-Leu 44-NH 7.73, m 45, 46, 47, 48, 49
45 52.6, CH 4.23, m 44-NH, 46, 47, 48, 49
46 40.8, CH2 1.85, 1.47, m 44-NH, 45, 47, 48, 49
47 24.8, CH 1.68, m 44-NH, 45, 46, 48, 49
48 23.7, CH3 0.92, d (6.7) 44-NH,45, 46, 47, 49 49, 47, 46
49 21.9, CH3 0.85, d (6.6) 44-NH, 45, 46, 47, 48 48, 47, 46
50 ND, C

a Carbon shifts inferred from HSQC experiment. b Select carbon inferred from HMBC correlations. Missing
carbon shifts marked as not detected (ND).
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The amino acid sequence of cyclic peptides, such as the surugamides, can be deter-
mined using various methods. One strategy involves rebuilding the sequence based on the
HRMS/MS predictable amino acid fragmentation of acyl-surugamide A2 amino acids and
comparing it directly to the reference fragments of surugamide A in the GNPS library [21].
A similar reconstruction of the MS2 fragments was used to determine the sequence of su-
rugamide A [1] and acyl-surugamide A [3] (Figure S6). Utilizing the information obtained
from the NMR confirms that the molecule contains all eight core surugamide A amino
acids with a modified acetyl-lysine (Table 1).

To determine the amino acid sequence of acyl-surugamide A2 using the MS2 fragments,
the location of the three none-Leu/Ile amino acids must be determined; Ala (A, fragment
mass difference of 71.04 m/z), Phe (F, fragment mass difference of 147.07 m/z), and the
modified acetyl-Lys (aK, fragment mass difference of 170.11 m/z). The substitution of K
for aK produces a mass difference of 42 m/z, accounting for the mass difference between
surugamide A and acyl-surugamide A2. MS2 amino acid fragmentation of acyl-surugamide
A2 was annotated by comparing the acquired fragments to the MS2 spectrum of surugamide
A (Figures 3, S6 and S7, Table 2). The annotated fragments match a full assembly of
cyclo-[(I/L)A(I/L)(I/L)aK(I/L)F(I/L)] for acyl-surugamide A2. All fragments predicted to
contain aK have complementary MS2 peaks in the surugamide A spectrum with a difference
of −42 m/z (Figures S6 and S7, Table 2). For each additional m/z in the surugamide A
cluster from S. albidoflavus RKJM0023 (Figure 3), the predicted amino acid sequence and
composition were previously algorithmically predicted [26,27] or manually annotated
based on their shared fragments to surugamide A and acyl-surugamide A2 (Figure S7).
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Figure 3. (A) The structure of (1) with diagnostic MS2 amino acid fragments of acyl-surugamide
A2 was used to determine the amino acid sequence. (B) Amino acid sequence of acyl-surugamide
A2 with fragments masses. The iterative addition of each amino acid on the fragment starting with
acetyl-lysine (K) is in blue, the diagnostic fragment for AIIK is in purple, and the large matching
surugamide A fragments confirming that K is the only modified amino acid is in red.
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Table 2. Major MS2 fragments of acyl-surugamide A2, their predicted fragment sequence, the
equivalent fragment mass for surugamide A [1,21], and the mass difference of the fragments.

MS2 Fragments of
Acyl-Surugamide

A2, m/z

Fragment Amino
Acid Sequence

Equivalent MS2
Fragments

Surugamide A, m/z
Mass Difference, m/z

841 KIFLIAI- 799 42
728 KIFLIA-- 686 42
657 KIFLI--- 615 42
544 KIFL---- 502 42
431 KIF----- ND
284 KI------ ND
397 K-----II 373 42
671 --FLIAII 671 0
581 KI---AII 539 42
558 --FLIAI- 558 0
468 K----AII 426 42
374 --FLI--- 374 0
298 -----AII 298 0
261 --FL---- 261 0
185 -----IA- 185 0

2.3. S. albidoflavus RKJM-0023 Surugamide Biosynthetic Gene Cluster Analysis (sur)

The biosynthetic gene cluster of a NRP can also be used to determine the amino
acid order of cyclic-NRPs [1,5]. To date, all core surugamides follow the LDLDLLDD
amino acid configuration sequence [1–3,5,29] as well as the core AA order cyclo-[IAIIKIFL]
with possible substitutions of L-Ile-1, L-Ile-2, or L-Ile-4 for Val [1,3,14]. The genome of S.
albidoflavus RKJM-0023 was sequenced using PacBio RSII sequencing [30] and 1.5 × 106

resulting reads were assembled into two contigs representing a 7,031,575 bp genome
(GenBank accession CP133227) and a 90,910 bp plasmid (GenBank accession CP133227) [31].
The assembled contigs had a mean coverage depth of 1542X, an N50 of 7,031,575, and
a GC content of 73.35%. The ends of both contigs were screened for regions of internal
overlap; however, none were found, suggesting that both the genome and plasmid are
linear. Annotation of the genome using the GenBank PGAP pipeline identified 6126 CDSs
and 67 tRNAs.

The draft genome sequence was mined for natural product biosynthetic gene clusters
(BGCs) using AntiSMASH (7.0.0.0) [13]. Complete BGC identification was determined by
a consensus rate of higher than 99% matching annotated BGCs in MIBiG [32]. Twenty-
one BGC-containing areas were identified in the genome and none were detected on the
plasmid. From the twenty-one BGC-containing regions, seven can be annotated due to high
consensus to known BGC (≥99% identical) nucleotide sequences; these include SGR PTMs
(BGC0001043), cyclofaulknamycin (BGC0002358), geosmin (BGC0001181), surugamide
(BGC0001792), desferrioxamine B (BGC0000941), ectoine (BGC0000853), and antimycin
(BGC0000958). One BGC was predicted to match the published surugamide cluster (sur)
with a 100% consensus with the known cluster blast and MIBiG [32] reference sequence
(Figure 4) (BGC0001792) [3,14,32,33].

The S. albidoflavus RKJM-0023 sur cluster contains twenty-one genes (Table 3) including
the six sur genes has been previously established in the literature [3,14,34]. The core NRPS
genes for the octapeptide surugamide A backbone are surA and surD [14]; combined,
these two synthetases are the proposed core NRPS modules for the other surugamide
analogues with modified Lys residues, acyl-surugamide A (butyryl functionalized Lys),
and albucyclones A-F (albuquinone A functionalized Lys) [3]. The other two sur NRPS
modules, surB and surC, are the synthetases for the biosynthesis of the separate decapeptide
core of the surugamide F’s [14] (Figure 4). The additional biosynthetic gene surE, is the
standalone cyclase domain with homology to a penicillin-binding protein-type thioesterase.
SurE has been established to cyclase both the octapeptide and the decapeptide cores of the
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surugamides [5,34,35]. The Gnt-R transcriptional regulator, surR, has been shown to silence
the sur gene cluster when expression is induced [3]. The function of the remaining 15 coding
sequences of the sur BGC has not been formally established. The Pfam annotations for each
sur protein coding region were annotated by BlastP [36] and are summarized in Table 3.
The sur BGC from S. albidoflavus RKJM-0023 was compared directly to the sur BGC from
S. albidoflavus J1074 (CP004370.1) and several other publicly available surugamide BGC
sequences.
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Table 3. The annotated S. albidoflavus sur genes and their function category predicted (Pfam) functions
based on identifiable sequences from BlastN NCBI [36], and the literature annotation of the sur
homologs. Gene functiond grouped by color; transport genes blue, core biosynthesis red, additional
biosynthetic genes orange, regulatory green, and other gray.

Function Predicted Function sur
Homolog

1 transport ABC transporter permease
2 transport ABC transporter permease
3 other ABC transporter substrate-binding protein
4 other Secreted protein
5 transport MFS transporter
6 other hypothetical protein
7 regulatory TetR/AcrR family transcriptional regulator
8 transport MFS transporter
9 biosynthetic non-ribosomal peptide synthase surA
10 biosynthetic non-ribosomal peptide synthase surB
11 biosynthetic non-ribosomal peptide synthase surC
12 biosynthetic non-ribosomal peptide synthase surD
13 biosynthetic-additional serine hydrolase domain-containing protein surE
14 other membrane protein
15 regulatory GntR family transcriptional regulator surR
16 other hypothetical protein
17 transport ATP-binding cassette domain-containing protein
18 other ABC transporter permease
19 biosynthetic-additional MbtH family protein
20 biosynthetic-additional alpha/beta hydrolase
21 biosynthetic-additional aldehyde dehydrogenase family protein
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The sur nucleotide sequence obtained from RKJM-0023 was directly compared to
the sur BGC sequence from S. albidoflavus J1074 (BGC0001792 (MIBiG), NCBI accession
CP004370.1). The nucleotide sequences had a high percent identity of 99.24% and a sim-
ilarity score of 1.488 × 105. The RKJM-0023 sur BGC sequence exhibits a high degree of
gene synteny with previously published sur BGC sequence structures [4,14,37] with no
additional modules and no significant deletions (Figure 5). The sur BGC identified from S.
albidoflavus RKJM-0023 is a complete sur gene cassette, complete with the four core NRPS
genes surABCD, the trans-acting PBP-type TE gene surE, and the regulator surR [4,5,14].
AntiSMASH detected epimerization (E) domains in modules 2 and 4 of surA and modules
7 and 8 of surD (Figure 4B). Furthermore, antiSMASH also predicted that condensation (C)
domains from modules 3, 5, and 8 would accept D-configured substrates. The collinearity of
E domains and D-accepting C domains is consistent with previously reported surugamide
stereochemistry [3,14]. To verify that each epimerization domain was functional, the E
domain amino acid sequences from modules 2, 4, 7, and 8 were extracted from the sur BGC
of S. albidoflavus RKJM-0023 and compared to the homologous domains from S. albidoflavus
J1071 and JAMM992 (Figure S8), as the stereochemistry of the surugamides produced
by these strains were previously determined by Marfey’s analysis [1,3,38]. The sur E do-
mains were aligned to the reference domains from modules 2 and 4 of the gramicidin
BGC (BGC000367) and the conserved E domain active sited motifs (E1–E5) were annotated
(Figure S8) [39–41]. The sequences of the E domain active site motifs were identical between
the three strains for each module compared (Figure S8). This suggested that none of the S.
albidoflavus RKJM-0023 sur E domains had acquired a mutation that would render any of
the E domains inactive. While we did not determine the amino acid stereochemistry of acyl
surugamide A2, the alignment of the pattern of the epimerization domains in S. albidoflavus
RKJM0023 sur cluster suggests that acyl-surugamide A2 is consistent with the amino acid
configuration pattern of L-D-L-D-L-L-D-D as previously described for all surugamide
A cores [14]. The order of the modules corroborates the observed amino acid sequence
determined by the fragmentation patterns by MS2 (Figure 3, Table 2). Acyl-surugamide A2
has a sequence of cyclo-[L-Ile-D-Ala-L-Ile-D-allo-L-Lys-L-Ile-D-Phe-D-Leu], established by
MS2 and sur BGC analysis.
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Figure 5. Comparative analysis of the sur biosynthetic gene cluster from S. albidoflavus RKJM-0023
(CP133227). Genes are color coded by proposed functions from the top hit on NCBI BlastP function.
The nucleotide sequence identity of each sur is listed compared to RKJM-0023 and each cluster is
predicted to synthesize surugamide demonstrating that the BGC is highly conserved.

The biosynthetic origins of the acetyl-Lys in acyl-surugamide A2 is unknown. No
acetylase was observed in the BGC (Table 3). Other potential routes of biosynthesis include
using acetyl-Lys as a building block incorporated by a promiscuous surA adenylation
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domain in the fifth module of the NRPS from surA, or added post-NRPS biosynthesis by
an acetylase after the surugamide core is made. Another potential root is nonenzymatic
via acetylation by acetyl phosphate, a known method of widespread protein acetylation
in Streptomyces spp. [42]. Analysis of the sur BGC genes and surrounding area revealed
no identifiable acetyltransferase in the RKJM-0023 sur BGC (Figure 5); however, NCBI
Prokaryotic Genome Annotation Pipeline identified 69 GNAT family N-acetyltransferase
domains scattered throughout the genome [43]. Lysine acetylation in living cells, including
Streptomycetes, is a ubiquitous and conserved post-translational modification in primary
metabolism [44]; however, to the best of our knowledge there are no examples of a post-
translational modification occurring on a natural product lysine residues. The acetyl-Lys
post-translational modification is typically reserved for proteins and serves a critical and
unique role in histone interactions as a central epigenetic control of gene transcription [45].

A comparative analysis of the sur BGC to nine other sur BGC protein sequences shows
the highly conserved sur BGC in many Streptomyces spp. (Figure 5). The sur clusters with
the highest percent identity were both marine isolates, S. albidoflavus YIM 100212 and
SM254, having 99.33% and 99.27%, respectively. The sur BGC is highly conserved among
S. albidoflavus isolates, with BiGFAM identifying 85 submitted sequences of the sur BGC
and showing that all sur BGCs have been identified exclusively in Streptomyces species to
date [46].

3. Methods and Materials
3.1. General Experimental for MS Analysis

A Thermo Scientific (Waltham, MA, USA) Vanquish UHPLC chromatograph equipped
with HRMS-CAD-UV detection, which included a Thermo Scientific ID-X Tribrid mass
spectrometer fitted with a heated electrospray ionization (H-ESI) source, a Thermo Scientific
charged aerosol detector VF-D20-A, and a Thermo Scientific diode array detector (DAD)
VF-D11-A-01 scanning 190–600 nm, was used. The solvents A = 0.1% FA in water and
B = 0.1% FA in acetonitrile were used at a 0.5 mL/min flow rate with a Kinetex 1.7 µm
C18 100 Å (50 × 2.1 mm) with the following gradient: 0 min = 5% B, 0.2 min = 5% B
(isocratic), 4.8 min = 98% B, 8 min = 98% B (isocratic), 8.5 min = 5% B, 9.8 min = 5% B
(isocratic). The MS parameters include positive ion scans performed from 150–2000 amu at
an ion transfer tube temperature of 300 ◦C and a vaporizer temperature of 275 ◦C. NMR
spectra were obtained on a Bruker (Billerica, MA, USA) AvanceNeo NMR spectrometer (1H:
600 MHz, 13C: 150.9 MHz) equipped with a 5 mm TCI cryoprobe. All chemical shifts (δ) are
referenced to the DMSO-d6 residual solvent peaks [1H (DMSO-d6): 2.50 ppm; 13C (DMSO-
d6): 39.51 ppm]. Automated flash chromatography was performed on a Teledyne (Waterloo,
ON, Canada) Combiflash Rf200 using C18 RediSep columns (24 g). HPLC purifications
were carried out on a Waters Corporation (Milford, MA, USA) auto purification system
coupled with an evaporative light-scattering detector and UV detector. All reagents were
purchased from commercial sources and used without further purification unless otherwise
stated.

3.2. Isolation of RKJM-0023

RKJM-0023 was isolated in April 2013 from a marine sample collected under a permit
issued to Prof. Dr. Belma Konuklugil, Ankara University, Faculty of Pharmacy, Department
of Pharmacognosy, 06100 Tandoğan Ankara (granted 02.01.2012 by the Ministry of Food,
Agriculture, and Animal Husbandry, Directorate General on Agricultural Researches
and Policies; Issue: B.12.0.TAG.0.04.03.730.10-2457). RKJM-0023 was isolated from the
tissue of a tunicate Halocynthia papillosa collected in the Mediterranean Sea off the coast
of Turkey (36.591415, 30.600488) at a depth of 18 m via SCUBA. The tunicate tissue was
homogenized and serial dilutions were plated on raffinose histidine agar plates (raffinose
10 g/L, histidine 1 g/L, KH2PO4 1 g/L, FeSO4·7H2O 0.01 g/L, noble agar 12 g, 1 L
ddH2O with the pH = 7.5) supplement with Instant Ocean® (Mystic, CT, USA) marine
salts (18 g/L) [47], cycloheximide (50.0 µg/mL), and nalidixic acid (15.0 µg/mL) [48].
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The plates were incubated at 22.5 ± 2.5 ◦C and strain RKJM-0023 was purified by serial
subculturing. To identify the strain, the 16S rRNA gene was amplified and sequenced
as described previously [49]. The 16S rRNA sequence (1456 bp) was analyzed using the
EZBioCloud 16S rRNA classification tool (database ver. 2021.07.07) [25]. RKJM0023 was
archived in a solution of 25% glycerol at −80 ◦C.

3.3. Fermentations and Extraction

A two-stage seed culture process was used to generate inoculum for fermentations.
Approximately 50 µL of glycerol stock was used to inoculate 7 mL of BSM1m medium
(dextrose 10 g/L, yeast extract 4 g/L, agar 0.4 g/L, soluble starch 15 g/L, calcium carbonate
1 g/L, NZ Amine A 4 g/L, Instant Ocean® 18 g/L, pH 7.3) in a 25 × 150 mm culture
tube containing five 4 mm glass beads and incubated at 30 ◦C and 200 RPM. After 24 h,
1 mL of the first-stage seed was transferred to 50 mL of fresh BSM1m broth and incubated
under the same conditions for 24 h. For the small-scale media screen, 200 µL of the second
stage seed was transferred to test-tubes containing 7 mL of one of the following media:
BFM15m (sucrose 20 g/L, Bacto peptone 2 g/L, cane molasses 5 g/L, FeSO4·7H2O 0.1 g/L,
MgSO4·7H2O 0.2 g/L, potassium iodide 0.5 g/L, calcium carbonate 5 g/L, Instant Ocean®

18 g/L, in 1 L ddH2O) [50], BFM16m (glucose 40 g/L, dried yeast 5 g/L, K2HPO4 1 g/L,
NaCl 1 g/L, (NH4)SO4 2 g/L, CaCO3 2 g/L, FeSO4-7H2O 0.001 g/L, MnCl2-4H2O 0.001 g/L,
ZnSO4-7H2O 0.001 g/L, NaI 0.0005 g/L, in 1 L ddH2O) [50], BFM17m (corn starch 10 g/L,
pharmamedia 5 g/L, CaCO3 1 g/L, NaI 0.0005 g/L, in 1 L ddH2O) [50], BFM18m (glucose
40 g/L, casamino acids 15 g/L, NaCl 5 g/L, CaCO3 2 g/L, K2HPO4 1 g/L, MgSO4 12.5 g/L,
in 1 L ddH2O) [50], BFM19m (glycerol 30 g/L, corn syrup 15 g/L, pharmamedia 10 g/L,
fish meal 10 g/L CaCO3 6 g/L, in 1 L ddH2O) [50], BFM20m (molasses 60 g/L, soluble
starch 20 g/L, fish meal 20 g/L, CuSO4-5H2O 0.1 g/L, NaI 0.0005 g/L, CaCO3 2 g/L, in
1 L ddH2O) [50], BFM31m (modified PVA; maltose 20 g/L, Organotechnie Vegetal peptone
ET1 10 g/L, V8 juice 100 mL/L, in 1 L ddH2O, and pH adjusted to 7.0 ± 0.2) [51], or
ISP2m. Fermentations were extracted with 10 mL of EtOAc and concentrated for UHPLC–
HRMS/MS analysis. For the large-scale fermentation, the second-stage seeds from multiple
flasks were combined, and 10 mL of seed culture was used to inoculate each of 10 Fernbach
flasks, each containing 1 L of BFM15m medium. After 5 days at 30 ◦C with shaking at
200 RPM, the cultures were extracted three times with equal volumes of EtOAc. The organic
layers were combined and dried in vacuo.

3.4. Global Natural Product Social Networking (GNPS) Analysis of Family Members

The UHPLC–HR-ESI-MS/MS chromatograms obtained were converted from a .RAW
file to an open-source MS file type .mzML using msConvert (ver. 3.0.18232), which is part
of the ProteoWizard tool kit [52]. The .mzML file was then uploaded to the GNPS server
using WinSCP (https://winscp.net/eng/download.php) (accessed on 1 April 2021). The
classical molecular network was generated using Global Natural Products Social Molec-
ular Networking (GNPS) [21]. Notable molecular network setting parameters included
precursor ion mass tolerance of 2.0, fragment ion mass tolerance of 0.5, minimum pairs cos
of 0.7, network TopK of 10, minimum matched peaks of 6, and minimum cluster size of
2. The molecular network was analyzed and visualized using Cytoscape (ver. 3.8.1) [52].
The surugamide molecular network cluster contained 11 unknowns, including GNPS
fragmentation database matches to annotations of surugamide A and D [1], while also
containing literature matching m/z values for surugamide G and H [3]. The analogues
were then reanalyzed with Xcalibur, and their MS2 fragmentation patterns were compared
to that of surugamide A, resulting in a total of 15 compounds within the Surugamide family
produced by RKJM-0023. The acyl-surugamide A2 fragmentation pattern was manually
annotated to determine the amino acid sequence.
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3.5. Chromatographic Purification

The S. albidoflavus RKJM-0023 crude extract (350 mg) was prepared for solid load
injection by adsorbing on C18 with initial fractionation performed using a 24 g C18 column
(High-Performance GOLD RediSep Rf) using a mobile phase flow rate of 30 mL/min. The
mobile phase consisted of a linear gradient from CH3OH:H2O (10%:90%) to 100% CH3OH
over 30 min followed by 100% CH3OH for 5 min. Acyl-surugamide A2 was further purified
via RP-HPLC using a Waters Corporation semi-preparative C18 column (SunFire C18 100 Å,
3.5 µm, 4.6 mm × 150 mm). Isocratic elution with 48% H2O containing 0.1% formic acid
and 52% CH3OH containing 0.1% formic acid was used over 40 min. The eluent was
monitored by ELSD and MS at m/z 954.6. Acyl-surugamide A2 eluted as a single peak at
19 min. Subsequent evaporation in vacuo resulted in 0.6 mg of pure acyl-surugamide A2.

Acyl-surugamide A2 (1): white solid; UV (ACN) λmax (log ε) 190, 210; 1H NMR
(DMSO-d6, 600 MHz) and 13C NMR chemical shifts extrapolated from 2D HSQC data
(DMSO-d6, 150.99 MHz) are described in Table 1; HRESIMS m/z 954.63851 [M + H]+ (calcd
for C50H83N9O9, m/z 954.63865).

3.6. DNA Isolation, Genome Sequencing, and Biosynthetic Gene Cluster Analysis of RKJM-0023

Genomic DNA (gDNA) was isolated from S. albidoflavus RKJM-0023 using the DNeasy
UltraCLean Microbial kit (Qiagen, Hilden, Germany) according to the manufacturer’s
instructions. Biomass for DNA isolation was obtained by culturing RKJM-0023 in ISP2m
medium for two days in ISP2m medium (yeast extract 4 g/L, malt extract 10 g/L, dextrose
4 g/L, supplemented with 18 g/L instant ocean, in 1 L of deionized water) at 30 ◦C and
200 RPM.

The gDNA was repurified with a DNeasy Power Clean Pro kit (Qiagen), followed
by library preparation using the SMRTbell® prep kit 3.0 protocol. The gDNA library
was sequenced on a Pacific Biosciences Sequel II instrument using the adaptive loading
protocol, Sequel II Sequencing Kit 2.0, SMRT Cell 8M and 30 h movies with a 2h pre-
extension time by McGill University and the Genome Quebec Innovation Centre (Genome
Quebec). The assembly was carried out using the HGAP4 workflow developed by PacBio
(pb_hgap4 from SMRT Link v 11.0.0). The assembled genome was returned as two contigs;
ctg.1 with 7,031,575 bp and ctg.2 with 90,910 bp. The genome was deposited in NCBI
(genome CP133227 and plasmid CP133228) and annotated by the NCBI Prokaryotic Genome
Annotation Pipeline (PGAP) [43]. The number GNAT family N-acetyltransferase domains
were counted using the NCBI Genome Workbench (version 3.8.2) [53] to review the PGAP
annotations. For localization of potential BGCs the consensus assembly sequence was
annotated using AntiSMASH 7.0.0.0 [33], and the S. albidoflavus RKJM-0023 sur biosynthetic
gene cluster sequence was extracted for further analysis.

Comparative analysis of the gene synteny and sur coding genes of the S. albidoflavus
RKJM-0023 sur cluster was performed by gathering eight sur BGC sequences by searching
for annotated surugamide clusters in NCBI [23] and selecting ClusterBlast matches from
AntiSMASH [13]. Comparative analysis of the GenBank sequences of sur BGC was done
using the clinker tool [54] and compared using BlastN for percent identity to the RKJM-0023
sur nucleotide sequence [36]. For epimerization domain analysis between S. albidoflavus
RKJM0023 (CP133227) and previously stereochemical elucidated surugamide producing
strains S. sp. JAMM992 (surA AXN72677.1, surD AXN72680.1) and S. albidoflavus J1074
(BGC0001792, CP004370.1), the protein sequences of each epimerization domain from the
core surugamide A NRPS modules were aligned to reference epimerization domains from
gramicidin BGC (BGC000367, AP008955.1) using MUSCLE [55] using Geneious Prime® ,
https://www.geneious.com (accessed on 20 October 2023, ver. 2023.2.1).

4. Conclusions

Based on our findings, we have discovered a novel surugamide A analogue, acyl-
surugamide A2, from a marine-derived S. albidoflavus RKJM-0023. The targeting of ana-
logues is greatly simplified when using GNPS to group natural products based on their

https://www.geneious.com
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MS2 fragmentation patterns. Continued work will see acyl-surugamide A2 tested for
biological activity. Our study highlights the potential of unique Streptomyces isolated from
marine environments to produce novel natural products [56]. We also demonstrate that
MS2 fragmentation patterns and analysis of biosynthetic gene clusters can be used to solve
the structure of cyclic peptides, as previously shown in studies on surugamides [1,3,4].
It is also another demonstration of the utility of using GNPS-calculated molecular net-
works to highlight potential bioactive natural product analogues that can be streamlined
for isolation [21,23]. Our study adds to the growing body of research on natural prod-
uct biosynthesis and highlights the importance of exploring marine environments for
the discovery of novel natural products with potential therapeutic applications. Future
studies may choose to synthesize acyl-surugamide A2 using the established solid-phase
peptide synthesis strategy [5,57] for further studies of the biosynthesis and bioactivity of
acyl-surugamide A2 as natural abundance of the natural product is extremely low. Further,
other surugamide analogues discoveries may lead to the development of new bio-actives.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29071482/s1, Figure S1: UHPLC-HR-ESIMS chro-
matogram for purified acyl-surugamide A2, including the UV plot, CAD detector, total ion chro-
matogram (TIC), extracted ion chromatogram (EIC) for acyl-surugamide A2 (m/z 954.6385 [M +
H]+), and MS1 spectrum at 3.51 min; Figure S2: Proton (1H 600 MHz, 13C 150 MHz, DMSO-d6)
for Acyl-Surugamide A2 (1); Figure S3: TOCSY (1H 600 MHz, 13C 150 MHz, DMSO-d6) for Acyl-
Surugamide A2 (1); Figure S4: HSQC (1H 600 MHz, 13C 150 MHz, DMSO-d6) for Acyl-Surugamide
A2 (1); Figure S5: HMBC (1H 600 MHz, 13C 150 MHz, DMSO-d6) for Acyl-Surugamide A2 (1);
Figure S6: MS2 mirror plot comparing the MS2 spectrum of surugamide A (912) to acyl-surugamide
A2 (954); Figure S7: MS2 fragment structures of key acyl-surugamide A2 fragments. The fragments
are structurally grouped; in blue are the iterative fragment structures N-terminus acetyl-lysine, in
purple are the identified fragments ending with C-terminus acetyl-lysine, and red are fragments with
exact matches for surugamide A fragments used to confirm the sequence without acetyl-lysine; Figure
S8: MUSCLE protein alignment of the epimerization domains for the sur BGCs from S. albidoflavus
RKJM0023 (CP133227), J1074 (BGC0001792, CP004370.1) and JAMM993 (surA AXN72677.1, surD
AXN72680.1), compared to the first two epimerization domains of the gramicidin BGC (BGC000367,
AP008955.1). Blue annotations indicate the highly conserved active site motifs for a functional
epimerization domain.
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