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Abstract: It is urgent to develop a polyamide (PA) thin-film composite (TFC) membrane with
a new method in this study by designing and constructing a new nanomaterial support layer
instead of the conventional support layer. Polydopamine-wrapped single-walled carbon nan-
otubes (PDA@MWCNTs) as the place of the polymerization reaction can optimize the PA film
structure and performance. The resulting composite membrane presents a higher water flux of
15.8 L·m−2·h−1·bar−1 and a rejection rate of 97% to Na2SO4, simultaneously maintaining this high
separation performance in 300 min. It is a new ideal to construct novel support layer by using
inorganic nanoparticles and organic polymer nanofiber membranes.

Keywords: PDA@MWCNTs/PVDF support; PA film; permselectivity; stability

1. Introduction

With the development of scientific technology and industrialization, more environ-
mental problems are continuously manifesting [1,2]. For example, the water pollution
phenomenon is becoming more and more severe [3]. How to obtain a clean water source
is an urgent problem that we face. At present, seawater desalination and wastewater
treatment are effective methods to alleviate water scarcity [4]. In all processing methods,
membrane separation technology has attracted widespread attention from researchers be-
cause of its unique properties [5]. Nanofiltration (NF) and reverse osmosis (RO) membranes
are the core aspects of the membrane separation process [6]. The polyamide (PA) thin-film
composite (TFC) membrane is the main structural type of NF and RO membranes. A typical
PA TFC membrane is fabricated by the interfacial polymerization (IP) of diamine and acyl
chloride to form a PA thin film on a porous support layer. With decades of development,
PA TFC membranes have been widely applied commercially [7,8]. However, there are
still some defects that restrict its further development, such as the trade-off between the
rejection and water flux of PA films [4].

A PA TFC membrane with superior water permeate flux while maintaining high
salt ion rejection is still the goal pursued by researchers [9–11]. Generally, the PA film is
mainly responsible for the rejection and water flux of the TFC membrane. Therefore, most
researchers have focused on improving the physicochemical properties of the PA active
layer through changing reacted monomer types, the interfacial polymerization method,
and surface modification [12–14]. At present, there are effective methods to improve the
water flux of PA films, such as decreasing the thickness of PA films, shortening the distance
of the internal water channel, decreasing the transmission resistance, and increasing the
new water channel. To sum up, exploring a high degree of crosslinking and ultrathin
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PA films is the main research direction of researchers [15,16]. Although the active layer
determines the permselectivity of the PA TFC membrane, the structure and properties
of the porous support layer still have a non-negligible impact on the IP process. The
porous support layer is the reaction site of IP, which influences the IP process and further
influences the resulting PA film formation and properties [17,18]. In theory, an ideal support
layer should have low flexibility, high surface porosity, and an appropriate pore size. The
porous ultrafiltration polymeric membrane is the typical support layer, which is fabricated
via the phase inversion technique. Recently, some studies revealed that improving the
performance of the TFC membrane by embedding nanomaterials into support layer is an
effective method. Mohammed et al. [19] used a nanozeolites-modified support layer and
investigated the effect of various concentrations on the overall performance of the TFC
membrane. Polisetti et al. [20] utilized SiO2/TiO2 to modify a PAN/PVDF-blended support
layer and fabricated a nanofiltration membrane. The TFC membrane with modified support
exhibited higher water flux than the control sample. Xia’s group fabricated nanofiltration
membranes (NFMs) via interfacial polymerization on polyvinylidene fluoride (PVDF)
substrates modified with hierarchical flower-like molybdenum disulfide (HF–MoS2). The
TFC membrane exhibited higher selective and permeating performance for Na2SO4 [21].
Moreover, the functional CNTs also is an ideal nanomaterial to modify the support layer.

In spite of the structure exhibiting excellent stability and separation performance, the
water permeation flux is low. In the current decade, exploring and designing a new type of
porous support layer has become the subject of remarkable research projects in the field of
PA TFC membranes [22,23].

In 2015, Livingston’s [24] group constructed a unique support layer and, by controlling
the IP reaction condition, fabricated a PA TFC membrane with unprecedented solvent
permeance and high rejection. The support layer was composed of cadmium hydroxide
(Cd(OH)2) nanowires and a polymer ultrafiltration membrane. The ultrathin PA film was
formed on the nanowires, and then the nanowires were removed via dissolving. This report
opens up a new research direction for the study of support layers. Wang et al. [25] used
cellulose nanocrystals to replace Cd(OH)2 nanowires as an interlayer to fabricated a PA TFC
nanofiltration membrane, which exhibited an ultrahigh water flux at low operating pressure.
Meanwhile, it also exhibited an excellent separation ratio for monovalent/divalent ions.
Inspired by this new ideal, some inorganic nanomaterials were used as interlayers such as
graphene oxide (GO), metal–organic frameworks (MOFs), and covalent organic frameworks
(COFs). To sum up, these materials as interlayers can effectively decrease the thickness of
PA films and increase water flux.

Inspired by the above, we used a tailor-made nanofiber membrane to replace the
conventional support layer. Based on our previous research, we found that a tree-like
structure not only can improve the pore structure of the nanofiber membrane but effectively
increase the water flux of the PA TFC membrane. The microfiber of tree-like nanofiber
membranes combined with PA films forming new water channels is the main reason for
the increased water flux of TFC membranes [26]. However, the construction of a tree-like
structure has a certain degree of randomness, as well as being limited by harsh experimental
conditions. In order to obtain the support layer with a uniform surface pore structure and
stable performance. We constructed a double-layer support layer by depositing inorganic
nanoparticles on the nanofiber membrane surface, which to provide new ideal designs of
PA TFC membranes. Up to now, there are few studies in the literature on carbon nanotubes
(CNTs) interlayers. CNTs exhibit a uniform nanoscale size and excellent chemical stability.
Therefore, a CNTs interlayer possesses a uniform and small pore size, high porosity, and
smooth surface roughness. However, the agglomeration phenomenon is easy to occur on
virgin CNTs. It is essential to modify CNTs’ surface, improving the dispersity of CNTs.

In this research, we fabricated polydopamine-wrapped multi-walled carbon nanotubes
(PDA@MWCNTs)/polyvinylidene fluoride (PVDF) nanofiber double-layer support layers.
PDA@MWCNTs deposited on the PVDF nanofiber membrane surface via the vacuum
filtration method. PDA@MWCNTs as a thin interlayer which has a uniform pore size, high
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surface porosity, optimal surface hydrophilic ability, and a high ratio of interconnected
pores. These advantages facilitate the formation of defect-free and ultrathin PA films
by adjusting the IP conditions. The resulting PA TFC membrane exhibited an excellent
separation performance with a water flux of 15.8 L/(m2·h·bar) and a 97% rejection ratio to
sodium sulfate (Na2SO4).

2. Result and Discussion
2.1. Characteristic of the Structure and Properties of PDA@MWCNTs

MWCNTs with nanoscale size experience an easy-to-occur agglutination phenomenon
in solution. In order to improve the dispersity of MWCNTs, we utilized strong hydrophilic
PDA coated on the surface of MWCNTs. The charge effect between the solution and
PAD@MWCNTs is conducive to PAD@MWCNTs being uniformly dispersed in water
solutions. The microstructure and morphology of modified and unmodified MWCNTs are
exhibited in Figure 1a,b. TEM images present unmodified MWCNTs stacked together as a
small ball. The PDA@MWCNTs did not appear to experience obvious agglutination and
uniformly dispersed on the Cu net. Furthermore, we can observe the obvious structure
change between them: the PDA@MWCNTs surface has a significant PDA cladding layer
with a smoother surface.
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To further prove the structure change, the MWCNTs and PDA@MWCNTs were ana-
lyzed via Raman spectroscopy, and the results are shown in Figure 1c. They possess two
obvious peaks in the image: the D peak at 1352 cm−1 and the G peak at 1750 cm−1 [27,28].
Compared the two peak values, we can find that the D peak value of PDA@MWCNTs
is smaller, and the G peak value is larger. It indicates that PDA optimized the defect of
acid-treated MWCNTs surface.

2.2. The Morphology and Properties of PDA@MWCNTs/PVDF Support Membrane

The PDA@MWCNTs supernatant dispersion solution after centrifugal treatment was
deposited on the nanofiber support layer. The PDA@MWCNTs thin layer obviously improved
the pore structure and properties of the nanofiber membrane, such as the morphology, pore
size, porosity, roughness, and hydrophilic ability. The surface and cross-section morphology
of the PDA@MWCNTs/PVDF support layer are shown in Figure 2. The PDA@MWCNTs
layer presents a continuous and porous network structure, and the surface pore size is rela-
tively uniform. Compared to the tree-like nanofiber membrane (Supplementary Figure S1),
the PDA@MWCNTs ultrathin film surface pore diameter from hundreds of nanometers
decreases to tens of nanometers. The PDA@MWCNTs content significantly influences the
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surface morphology of the support layer. When the content is low, the PDA@MWCNTs
does not effectively coat the nanofiber membrane surface. Some fiber structures can be
observed, which might cause some defects. When the content is high, PDA@MWCNTs are
excessively deposited on the surface, and surface pore size decreases.
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The PDA@MWCNTs/PVDF composite support layer comprises the PVDF tree-like
nanofiber membrane and PDA@MWCNTs thin film (Figure 2). The preparation process of
the PVDF tree-like nanofiber membrane is detailed in our previous experimental work [29].
In this study, we fabricated three different composite support layers by changing the content
of PDA@MWCNTs.

The dynamic wettability of the optimal support layer and nanofiber membrane are
shown in Figure 3b. The PVDF nanofiber has a hydrophobic nature which makes it difficult
to wet. As is known to all, PDA is an excellent hydrophilic material. PDA attached to
MWCNTs can effectively improve the surface hydrophilic of MWCNTs. The hydrophilic
PDA@MWCNTs thin layer conduces to the formation of PA films via the interfacial poly-
merization reaction. All the support layer water contact angles are shown Supplementary
Figure S2. Moreover, PDA possesses good adhesion results: the PDA@MWCNTs cannot
fall off the nanofiber membrane. Furthermore, the resulting PDA@MWCNTs/PVDF mem-
brane presented good thermal stability (Supplementary Figure S3); it can endure long-time
operations at high water pressures.
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The charge effect and PA film pore size are closely related to the salt ions’ rejection of
the PA TFC membrane. The charge effect plays a leading role in screening ions. The zeta
potential is used to characterize the charge of the support layer surface, and the change
in the PDA@MWCNTs/PVDF membrane surface charge, as Figure 3a shows [30,31]. The
PDA@MWCNTs film surface presents electronegativity at the range of 3–8 pH, which
indicates that the support layer surface possesses a large amount of negative charge. The
zeta potential value is 87 mV under neutral conditions. The PA film is negatively charged
because of carboxyl groups arising from the acyl chloride hydrolysis. Therefore, the PA
film formed on the PDA@MWCNTs/PVDF support layer possesses higher negatively
potential. Under normal conditions, a film surface with higher zeta potential has a greater
electrostatic repulsion effect on the same charged ion. Based on the above, we designed the
PDA@MWCNTs/PVDF support layer to contribute to improving the separation properties
of the PA TFC membrane.

2.3. The Morphology and Properties of PA Film
2.3.1. Micromorphology

PA TFC membranes with various support layers were prepared via the interfacial
polymerization of MPD and TMC. Figure 4 shows the surface and cross-sectional mor-
phology of the composite membranes. It is obvious that the PA film on the nanofiber
membrane presents an obvious spherical protrusion structure, and the PA films with the
PDA@MWCNTs support layer show a typical ridge-and-valley structure. This is because
the nanofiber membrane with a large pore size and surface roughness slows the organic
solution diffusion rate, making the formed PA film appear to have a nodular-based rough
surface. PDA@MWCNTs support layers with a small and uniform pore size, as well as a
smoother surface, quickens the reaction of MPD and TMC, and the nascent PA starts to ap-
pear turbulence as the reaction persists, forming the ridge-and-valley structure. However,
the thickness of the PDA@MWCNTs layer significantly influences the complete morphology
of the PA film. S-2 with the thinnest PDA@MWCNTs layer results in some defect sections
of the PA film being formed. S-3 and S-4 with thicker PDA@MWCNTs layers contribute
to a defect-free PA film being formed. A complete and defect-free PA film is one of the
important guarantees of the TFC membrane with excellent separation properties.
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2.3.2. Separation Property

Water flux and salt ions rejection are the two key indicators to measure PA TFC
membrane permselectivity. Figure 5a exhibits the fabricated PA TFC membrane’s water
flux and rejection of the Na2SO4 solution. The TFC-1 possesses the highest water flux,
but the salt rejection rate is the lowest. This is because the nanofiber membrane support
layer with a large pore size easily causes PA film fractures at high pressures. Compared
with TFC-1, TFC-2, TFC-3, and TFC-4 present higher salt ions rejection and lower water
fluxes. However, the rejection of PA-2 is relatively low, which can be attributed to the
defected PA film formed on S-2. Notably, TFC-3 and TFC-4 present similar rejections,
but the water flux of TFC-4 is lower. This can be ascribed to the thicker PDA@MWCNTs
layer storing more MPD aqueous solution, resulting in a thicker PA film being formed,
which increased the water transmission distance and transmission resistance. The rejection
behavior of TFC-3 to different salt solution is shown in Supplementary Figure S4. The
composite membrane exhibited higher rejection to Na2SO4 and MgSO4. We have compared
the separation performance of PA TFC membranes with other reports (Supplementary
Table S1), we found that modifying the PA film can obtain higher water fluxes compared
with optimizing the support layer. However, we obtained the highest water flux only by
improving the support membrane property. To further determine the practice application
performance, the optimal TFC-2 membrane was continuously operated for 300 min to
analyze the stability. The result (Figure 4b) shows that the water flux and rejection of the
PA TFC membrane almost remain unchanged.
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2.3.3. Mechanistic Insights

All the above analyses indicated that the PDA@MWCNTs layer significantly affects
PA film performance. The detail mechanistic of action is depicted in Figure 5c. Tree-like
nanofiber membranes with large pores can store more MPD aqueous solution, which is
conductive to producing a thicker PA film and even a portion of PA film being inserted into
the pores. Nonetheless, the large pore diameter of the support layer did not withstand high
pressure at practical application and caused PA film damage. However, the PDA@MWCNTs
layer not only could decrease the nanofiber membrane pore size but regulate the PA film
thickness so that the resulting PA film shows excellent stability and separation [32,33].
Moreover, the new water channels between the PDA@MWCNTs and PA film accelerated
the transport of water. Nonetheless, the PDA@MWCNTs content also played an important
role. When the content was insufficient, the PDA@MWCNTs could not uniformly cover
the top of the nanofiber membrane, causing a defect of the support layer surface. When
the content was too much, a thicker PDA@MWCNTs layer caused a thicker PA film to be
formed and resulted in a decrease in the flux.

3. Experimental Section
3.1. Materials

The polyvinylidene fluoride (PVDF) material was purchased from Solef, (Changzhou,
China). N,N-dimethylformamide (DMF) and acetone were purchased from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Acid-treated MWCNTs powder (diameter:



Molecules 2024, 29, 1460 8 of 12

<15 nm, length: 0.5–2 µm; purity: >95%) was provided by XFNANO Technology Co., Ltd.
(Nanjing, China). M-phenylenediamine (MPD) and trimethyl chloride (TMC) as monomers
of the interfacial polymerization reaction were purchased from Damas-beta (Shanghai,
China). Other chemicals used in our experiment were all purchased from Sigma-Aldrich
(St. Louis, MO, USA).

3.2. Preparation of PDA@MWCNNTs

First, we prepared the Tris-HCl buffer solution with a concentration of 50 mM and a
pH of 8.5. Next, we measured 100 mL buffer solution, 0.2 g polydopamine, 0.016 g CuSO4
solution, and 40 µL H2O2 solution which were added to the beaker, respectively. And, 1 g
MWCNTs were added to the beaker for ultrasonic dispersion. Finally, the mixed solution
was reacted for 1 h at 50 ◦C. The mechanism is shown in Figure 6.
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3.3. Preparation of PDA@MWCNTs/PVDF Composite Support Membrane

We measured a certain amount of the PDA@MWCNTs solution and sodium dodecyl-
benzenesulfonate (SDS) which were added to Milli-Q water and sonicated 10 h. Then, the
dispersion was centrifuged at 10,000 rpm for 1 h to remove undispersed PDA@MWCNTs.
The PDA@MWCNTs dispersion solution was further diluted and deposited on the nanofiber
membrane surface via the vacuum filtration method. The detailed experimental process is
shown in Figure 7. The resultant support layers were labeled S-2 to S-4, and S-1 was the
control sample. The fabrication details of the nanofiber membrane was described in our
previous work [26].
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3.4. Preparation of PA TFC Membrane

The interfacial polymerization process is described in our previous work [34]. The
PDA@MWCNTs/PVDF support layer was fixed on a glass plate. The MPD solution of
2 wt% was used to wet the PDA@MWCNTs thin film, and the residual solution was
removed via air knife. Then, the TMC solution of 0.15 wt% was used to cover the surface
to react for 2 min, and the excess solution was rinsed by acetone solution. The resultant
composite membrane was treated in the oven at 70 ◦C for 10 min. Finally, the composite
membranes were stored in DI water for further testing. The resultant PA TFC membranes
were labeled as PA-1 to PA-4.

3.5. Characterization
3.5.1. Microscopy Characterization via SEM and TEM Testing

The microscopy morphology of MWCNTs and the PA film was characterized via scan
electron microscopy (SEM). The samples were dried in the oven at 60 ◦C before measuring.
The morphology of the modified MWCNTs were analyzed via a transmission electron
microscope (TEM).

3.5.2. Membrane Separation Performance Evaluation

The salt ion rejection and water flux of the composite membranes were measured
by a lab-scale device in a cross-flow system and an effective testing area of 3.14 cm2. The
separation performance was tested at the operation pressure of 0.5 MPa. A Na2SO4 solution
of 2000 ppm was the feed solution. The same film was measured at least 5 times to calculate
the average. The water flux and rejection were calculated by the following equation [35,36].

J =
V

A × t
(1)

where J is the water flux (L/(m2 h)), t is the test time (h), and V and A are the water volume
(L) and the effective measure area (cm2), respectively.

R =

(
1 − Cp

C f

)
× 100% (2)

where R is the rejection ratio (%), and Cp and Cf are the conductivity of the permeate and
feed (µs/cm), respectively.
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3.5.3. Zeta Potential Analysis

The surface zeta potential value of the membrane was tested by a zeta potential
analyzer. The test pH range was 3–10, and the test solution was 1 mM potassium chloride
solution. Before testing, the sample needed to be cut into 3 pieces × 3 cm size.

4. Conclusions

In this study, we designed and constructed a new support layer with a uniform surface
pore structure and small pore size. The support layer was composed of PDA@MWCNTs
and a PVDF tree-like nanofiber membrane. PDA is endowed with excellent dispersity and
improves the hydrophilic capacity of MWCNTs. The uniformly dispersed PDA@MWCNTs
were deposited on a tree-like nanofiber membrane surface via vacuum filtration. Regu-
lating the PDA@MWCNTs film thickness not only optimized the surface structure of the
nanofiber membrane but controlled the interfacial polymerization condition, obtaining a
high-performance PA film. The resultant PA TFC membrane exhibited a water flux up to
15.8 L/(m2·h·bar) and a rejection rate of 97% to Na2SO4 solution at 0.5 MPa.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29071460/s1, Figure S1: (a1,a2) Tree-like nanofiber
membrane SEM images; Figure S2. The contact angle of various support layer; Figure S3. TG curves
of PVDF nanofiber membrane and PDA@MWCNTs/PVDF membrane; Figure S4. The rejection
of membrane TFC-3 to various salt solution; Table S1: Comparison of the result in this work with
other results of report for Na2SO4 separation performance. References [6,31,37–41] are cited in the
Supplementary Materials.
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