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Abstract: PETase exhibits a high degradation activity for polyethylene terephthalate (PET) plastic
under moderate temperatures. However, the effect of non-active site residues in the second shell
of PETase on the catalytic performance remains unclear. Herein, we proposed a crystal structure-
and sequence-based strategy to identify the key non-active site residue. D186 in the second shell of
PETase was found to be capable of modulating the enzyme activity and stability. The most active
PETaseD186N improved both the activity and thermostability with an increase in Tm by 8.89 ◦C. The
PET degradation product concentrations were 1.86 and 3.69 times higher than those obtained with
PETaseWT at 30 and 40 ◦C, respectively. The most stable PETaseD186V showed an increase in Tm of
12.91 ◦C over PETaseWT. Molecular dynamics (MD) simulations revealed that the D186 mutations
could elevate the substrate binding free energy and change substrate binding mode, and/or rigidify
the flexible Loop 10, and lock Loop 10 and Helix 6 by hydrogen bonding, leading to the enhanced
activity and/or thermostability of PETase variants. This work unraveled the contribution of the key
second-shell residue in PETase in influencing the enzyme activity and stability, which would benefit
in the rational design of efficient and thermostable PETase.

Keywords: polyethylene terephthalate; PETase; second-shell residue; thermostability; molecular
mechanism

1. Introduction

Plastics have become an indispensable part of daily life due to their desirable prop-
erties, such as lightweight, durability, and low price [1–4]. However, most of the plastic
waste accumulates in the natural environment, exposing serious consequences for the
environment and human health [5–7]. Polyethylene terephthalate (PET) is a semicrystalline
thermoplastic composed of terephthalic acid (TPA) and ethylene glycol (EG), and is widely
used in food/beverage packaging and textiles industry [8,9]. In PET, TPA and EG are linked
by an ester bond that is highly resistant to biodegradation, leading to the accumulation of
large amounts of PET waste in the environment [5,10]. Therefore, it is crucial to explore
efficient strategies for the treatment and recycling of PET plastics. Biodegradation methods
have recently received significant attention due to their low energy consumption and
environmental sustainability [11].

To date, a variety of enzymes that can decompose PET have been identified, including
lipases, esterases, and cutinases [12,13]. However, these enzymes generally show poor
degradation activity on PET plastics with high crystallinity, and often require high temper-
atures to achieve the degradation of PET plastics [14,15]. Yoshida et al. isolated a bacterium
(Ideonella sakaiensis 201-F6) from PET waste that could use PET as a carbon and energy
source at moderate temperatures [16]. This bacterium can secrete a novel enzyme, PET
hydrolase (PETase), which can not only degrade PET efficiently at moderate temperatures,
but also shows higher activity and specificity for PET with high crystallinity than other
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hydrolases [4,17]. However, the degradation activity of PETase for highly crystallized
PET is still low and rapidly loses enzyme activity at 40 ◦C, which limits the application in
degrading PET waste to resolve the existing environmental crisis [17–19].

To overcome these limitations, various protein engineering strategies have been imple-
mented to improve the thermostability of PETase (Table S1). For example, Son et al. applied
a rational design strategy to obtain ThermoPETase, which exhibited an 8.8 ◦C higher Tm
value and a 14-fold improvement in PET degradation activity over PETaseWT [17]. The
GRAPE strategy was developed by Wu et al. and designed the DuraPETase. The Tm
value and the degradation efficiency of DuraPETase against PET films were improved
by 31 ◦C and over 300-fold, respectively [20]. The FAST-PETase, which was designed
by a machine learning algorithm, exhibited an increase in Tm of 18.4 ◦C as compared to
PETaseWT and was able to completely degrade 51 different post-consumer PET wastes
within 7 days [21]. Moreover, an automated, high-throughput directed evolution platform
and a fluorescence-based high-throughput screening assay were designed for the directed
evolution of PETase [15,22]. The engineered HotPETase and DepoPETase have both en-
hanced the robustness of the enzyme, and HotPETase could operate at the glass transition
temperature of PET [15,23].

It is interesting to note that most of the mutations that enhanced the thermostability
of PETase are the second-shell or distal residues (Table S1 and Figure S1). Actually, the
non-active site residues can be classified into different “shells” depending on their locations
in the enzyme. The second-shell residues are defined as the residues that interact with the
first-shell residues [24,25], while the residues in direct contact with the substrate, cofactor,
or product are the first-shell residues [24]. The residues that are located in the second
shell or further and are not within van der Waals distance of any part of the substrate,
cofactor, or product are distal residues [26,27]. Many works have demonstrated that non-
active site residues play an important role in the regulation of enzyme functions such as
activity, stability, and selectivity [25,27–30]. However, there is no research on the molecular
mechanism of how the second-shell or distal residues manipulate the catalytic performance
of PETase.

Therefore, the present study focused on identifying the key non-active site residue in
the second shell of PETase by using a crystal structure- and sequence- (multiple sequence
alignment, phylogenetic and conservative analysis) based strategy. The key non-active
site residue was then mutated to the other 19 canonical amino acids to investigate how
mutations of this residue manipulate the activity and stability of PETase. The structural
changes of the variants were characterized by circular dichroism (CD) and fluorescence
spectroscopy. Subsequently, MD simulations were performed to explore the molecular
mechanisms underlying the effects of these mutations on enzymatic properties.

2. Results and Discussion
2.1. Identification of Key Non-Active Site Residue

The B-factor and root mean square fluctuation (RMSF) values of the β6-β7 strand
connecting loop (D186-F191) were found to be significantly higher than the overall structure
of PETase (Figure 1a) [17,31]. This connecting loop was one of the most flexible regions
in PETase [17], a key region influencing the stability of PETase. In our previous study,
we found that the D186 residue in this flexible loop could interact with the I168R and
S188E mutations to form an R168-D186-E188 salt bridge network, which significantly im-
proved the thermostability of PETase [32]. It was also reported that the mutation of D186H
combined with other residues (E121 and N172) could form a water-mediated hydrogen
bond [17,21], or the D186 residue interact with other mutations (I168R and S188Q) to form
a hydrogen bond or a salt bridge to improve the stability of PETase [20,31]. The above
analysis indicates that D186 is a key residue in the connecting loop influencing PETase
stability. To further investigate the role of D186 in PETase, the amino acid sequences of
PETase and 71 PETase-like enzymes from phylogenetically distinct organisms were aligned
using ClustalX [33], and the phylogenetic tree of PETase-like enzymes was constructed



Molecules 2024, 29, 1338 3 of 18

using MEGA 11 software (Figure 1b) as reported previously [4,34]. As shown in Figure 1b,
the PETase-like enzymes could be divided into types I and II, and the type II enzymes
could be further subdivided into two types (type IIa and type IIb). The type I enzymes
contained 58 PETase-like enzymes and type II contained 14 enzymes, of which PETase
belonged to type IIb. Meanwhile, most of the type I and IIa enzymes were reported to
exhibit higher thermostability and lower PET degradation activity compared with PETase,
such as the cutinase from Thermobifida fusca (TfCut1and TfCut2) [35,36], Saccharomonospora
viridis (Cut190) [37], and the lipase from a metagenomic library (PET2), etc. [12,38,39],
whereas the type IIb enzyme variant from Burkholderiales bacterium (BurPLDM) showed
higher thermostability and PET degradation activity than that of PETase [40]. Thus, the
conservation of the D186 residue in different types were then analyzed by the WebLogo
sever (Figure 1c) [41]. This site could be amino acid D, S, N, or H in the type IIb enzymes,
while it could be amino acid D, Y, or N in type IIa enzymes. In the type I enzymes, the amino
acid N had the most frequency, followed by H and D. The highly conserved positions deter-
mine the general commonality of all homologous enzymes, while the sequence variability
and non-strictly conserved position may lead to the functional diversity, substrate, and
reaction specificity of enzymes [42–45]. Based on the above analysis, it is considered that
the variability of residue 186 in the different types of PETase-like enzymes was important
for changing the enzymatic performance of PETase. To understand how possible mutations
at this key non-active site residue in the second shell are likely to manipulate the activity
and thermostability of PETase, the D186 residue was mutated to the other 19 canonical
amino acids.
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Figure 1. The crystal structure- and sequence-based strategy to identify the key non-active site
residue in the second shell of PETase. The structure and B-factors of PETaseWT (a), where the residues
D186-F191 were marked by orange dotted box, the highest B-factor region was colored in lime green
and the lowest B-factor region was colored in blue. The phylogenetic tree of PETase-like enzymes (b),
where the PETase was marked with a pentagram in the type IIb enzymes. The conservation of the
D186 residue in different types of PETase-like enzymes (c).
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2.2. Catalytic Activity of D186 Variants

In order to investigate the effect of the mutations on the activity of PETase, the hy-
drolytic activities were tested using BHET as a substrate at 30 and 40 ◦C because PETase and
its variants can hydrolyze BHET to MHET and EG [4,46]. As shown in Figure 2a,b, in all
the nonpolar variants, PETaseD186A, PETaseD186V, PETaseD186I, PETaseD186L, PETaseD186M,
PETaseD186F, PETaseD186W, PETaseD186P, and PETaseD186G, only PETaseD186F showed en-
hanced hydrolytic activity as compared to that of PETaseWT, and the others showed re-
duced activities. In the polar variants, PETaseD186C, PETaseD186Y, PETaseD186S, PETaseD186T,
PETaseD186N, and PETaseD186Q, only PETaseD186N showed a 1.03-fold higher activity than
PETaseWT at both 30 and 40 ◦C. In contrast, the activity of PETaseD186Q was significantly
reduced to only 21% and 13% of that of PETaseWT at 30 and 40 ◦C, respectively. When
the D186 residue was mutated to charged amino acids (H, K, R and E), PETaseD186H ex-
hibited an increase in activity of 26% and 30% at 30 and 40 ◦C, respectively, as compared
with PETaseWT, while reduced activities were observed for PETaseD186K, PETaseD186R,
and PETaseD186E.
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of PETaseWT and its variants at 30 ◦C (a) and 40 ◦C (b) using BHET as a substrate, where the product
release was the concentration of MHET; PET film degradation activities of PETaseWT and its variants
at 30 ◦C and 40 ◦C for 24 h (c,d) and 72 h (e,f), where the released compounds were the sum of MHET
and TPA.

To further evaluate the effect of the mutations on PET degradation, the degradation
activity against PET films (crystallinity of 28.34 ± 2.54%, Figure S2) was measured at 30 and
40 ◦C (Figure 2c–f). As compared with PETaseWT, enhanced degradation activities against
PET films were observed at least once at the two temperatures by PETaseD186A, PETaseD186V,
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PETaseD186C, PETaseD186S, PETaseD186T, PETaseD186N, and PETaseD186H, while the other
variants always showed reduced activities. Among these seven variants, the highest
activity was obtained by PETaseD186N as compared with PETaseWT at the two temperatures.
PETaseD186N exhibited a 1.17- and 1.41-fold increase in activity at 30 ◦C for 24 h and 72 h,
respectively, as compared to the wild type (Figure 2c,e). This variant also showed 1.77- and
2.72-fold higher degradation activity at 40 ◦C for 24 h and 72 h (Figure 2d,f), respectively.
This suggested that the D186N mutant could not only improve the thermostability of
PETase, but also increase the PET degradation ability of PETase. However, higher activity
was obtained by PETaseD186H for BHET. This difference further demonstrated that the
hydrolysis of small molecule BHET by PETase can be different from its degradation activity
on rigid PET plastics [4,47,48]. After incubation at 40 ◦C for 72 h, PETaseD186A, PETaseD186V,
PETaseD186C, PETaseD186S, and PETaseD186T also showed 2.58-, 1.38-, 2.20-, 1.95-, and 1.38-
fold increased activities (Figure 2f), respectively, as compared to the wild type. The above
results suggest that D186 in the second shell plays a critical role in regulating the activity
of PETase.

2.3. Thermostability of D186 Variants

In order to evaluate how the mutations influence the stability of PETase, the Tm values
of the enzymes were measured by differential scanning fluorimetry (DSF) (Figure 3a).
An increase in Tm values was observed with nonpolar variants except for PETaseD186W

and PETaseD186P. PETaseD186V had the highest Tm value, which showed a Tm value of
59.49 ◦C, 12.91 ◦C higher than that of PETaseWT. The Tm values of most polar variants also
showed increases as compared with PETaseWT. In particular, PETaseD186C, PETaseD186S,
PETaseD186T, and PETaseD186N showed increases in Tm of 11.83, 9.61, 9.01, and 8.89 ◦C,
respectively. Among the charged amino acid mutations, only PETaseD186H had a markedly
improved Tm value of 8.76 ◦C. These results indicated that the D186 residue could be
substituted by some other amino acids to improve the thermostability of PETase, and it
could manipulate the thermostability of PETase to a wide extent. Moreover, the PETaseD186N

and PETaseD186H variants showed similarly higher Tm values than the wild type (Figure 3a),
suggesting that the differences in substrate degradation between the two variants (Figure 2)
were mainly attributed to the differences in activity.
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To assess the durability of PETase and its variants, the long-term degradation perfor-
mance of the enzymes was then conducted at 30 and 40 ◦C for 6 days using PET film as a
substrate. As shown in Figure 3b,c, most of the variants with improved stability (increased
Tm values) exhibited higher product concentrations at 40 ◦C than at 30 ◦C, whereas the
variants with poor stability (decreased Tm values) showed lower product concentrations at
40 ◦C than at 30 ◦C. This result further indicated that the thermostability of PETase was
important for its efficient degradation of PET.

A detailed analysis of the long-term degradation experiments revealed that the degra-
dation activity of PETaseWT could be maintained for 5 days at 30 ◦C, whereas the degrada-
tion activity was completely lost within 1 day at 40 ◦C (Figure S3). For most of the variants
with improved thermostability, the PET degradation product concentration gradually
increased at 30 ◦C for 6 days. Consequently, the PET degradation product concentra-
tions of the PETaseD186N and PETaseD186H were 1.86- and 1.35-fold higher than that of
PETaseWT after 6 days, respectively (Figure 3b). At 40 ◦C, the product concentrations of
the PETaseD186N and PETaseD186H rapidly increased in the first 3 days (Figure S3), and
the product concentrations were 3.69- and 3.43-fold higher than that of PETaseWT after 6
days, respectively (Figure 3c). For PETaseD186V, the PET product concentration rapidly
increased at least in the first 5 days at 40 ◦C (Figure S3), which was mainly due to its
higher stability (Figure 3a), and the product concentration was 2.49-fold higher than that
of PETaseWT after 6 days (Figure 3c). In addition, it was worth noting that the product
concentration of PETaseD186A was 1.05- and 1.45-fold higher than that of PETaseD186H and
PETaseD186V, respectively, at 40 ◦C for 6 days. This phenomenon was attributed to the
higher thermostability of PETaseD186A (Tm = 58.42 ◦C) than PETaseD186H (Figure 3a) and the
significantly higher activity of PETaseD186A than PETaseD186V (Figure 2). Therefore, it could
be concluded that the higher product concentrations of PETaseD186N and PETaseD186H than
the wild type at both 30 and 40 ◦C, especially for PETaseD186N, were mainly attributed to
the superimposed effects of higher activity and thermostability. Meanwhile, the higher
product concentrations of PETaseD186V and PETaseD186A than the wild type were due to
their improved thermostability.

Based on the results of the catalytic activity and thermostability of the D186 variants,
the most active PETaseD186N, the most stable PETaseD186V, the stable and active PETaseD186H

and PETaseD186A, and the less stable and less active PETaseD186Q were selected for the
following molecular simulation studies to unravel the molecular mechanisms.

2.4. Molecular Mechanism of Enhanced Catalytic Activity by D186 Mutations

To explore the molecular insight into the effect of D186 mutations on the catalytic activ-
ity of PETase, the substrate model 2PET was docked into PETaseWT and its variants [46,49],
and then MD simulations were performed on enzyme-2PET complexes. From the binding
free energy between the substrate and enzymes calculated using molecular mechanics
Poisson−Boltzmann surface area (MM-PBSA) method (Figure 4a) [50], it was found that
the total binding free energy of PETaseD186N (−93.23 ± 1.03 kJ·mol−1) and PETaseD186H

(−90.98 ± 3.35 kJ·mol−1) were higher than that of PETaseWT (−88.23 ± 3.90 kJ·mol−1),
whereas the total binding free energy of PETaseD186A (−84.83 ± 2.43 kJ·mol−1), PETaseD186V

(−65.27 ± 5.41 kJ·mol−1) and PETaseD186Q (−62.19 ± 6.14 kJ·mol−1) were lower than that
of PETaseWT. This indicated that the D186N and D186H mutations promoted the substrate
binding to the enzyme and enhanced the catalytic activity, while the D186A, D186V, and
D186Q mutations were not beneficial for the substrate binding to the enzyme. Then, the
residues involved in the substrate binding were identified by analyzing the contribution of
each residue to the binding free energy. According to Figures 4b and S4a, the residues Y87,
W159, S160, M161, W185, and I208 had higher binding free energies as compared to other
residues in the enzymes, indicating that these six residues were crucial for the binding of
the substrate to the enzymes. This result was in good agreement with previous findings
that these residues are involved in substrate binding and catalysis, and that substitution of
these residues by Ala greatly reduces the catalytic activity of PETase [4,46,47,51]. Among
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the six residues, the binding free energies of Y87, W159, and I208 in PETaseD186H and
PETaseD186N were remarkably higher than those in PETaseWT, which could contribute to
the substrate binding and increase the catalytic activity of these two variants. In contrast,
the binding free energies of Y87, W159, M161, and I208 in PETaseD186Q, PETaseD186A and
PETaseD186V were lower than those in PETaseWT, which were unfavorable for the substrate
binding to the variants.
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Figure 4. MD simulations of enzyme-2PET complexes: total binding free energies of PETase and its
variants with the 2PET substrate (a); important residues for the 2PET-binding to PETaseWT and its
variants (b); the OC-CO torsion angle Ψ in the EG units of 2PET (c); binding modes of the substrate
2PET into the active sites of PETaseWT (d), PETaseD186H (e), and PETaseD186N (f). The results were
generated from six independent MD simulation runs.

The relative frequency distribution of the catalytic distance between the hydroxyl
oxygen of the catalytic serine (Ser 160) and the carbonyl carbon atom of 2PET was also calcu-
lated. As shown in Figure S4b, the catalytic distances in PETaseD186A (3.80 Å), PETaseD186V

(3.80 Å), PETaseD186Q (3.80 Å), PETaseD186N (3.75 Å), and PETaseD186H (3.70 Å) were similar
to that in PETaseWT (3.70 Å). So, catalytic distance change was not the cause for altering
the catalytic activity of the variants. Moreover, the OC-CO torsion angle Ψ in the EG
units of the substrate analysis showed that the PET chain could bind to PETaseD186N in the
trans conformation with a higher probability, while the PET chain could only bind to other
enzymes in the gauche conformation (Figures 4c–f and S4c–f). Recently, it was reported that
the ratio of gauche and trans conformations of PET chains was 9:1 in low crystallinity PET
films [52], and that a single mutation (S238A) in the loop connecting β8 and α6 could alter
the preference of PETase for the conformation of PET chains to increase the degradation
activity against PET films [53]. These findings could further explain the higher activity of
PETaseD186N as compared to PETaseD186H and other variants.

2.5. Molecular Mechanism of Enhanced Thermostability by D186 Mutations

To explore the molecular insight into the effect of D186 mutations on the thermosta-
bility of PETase, the structural changes of PETaseWT and its variants were analyzed. The
changes in the secondary structure and tertiary structure of the enzyme variants were
examined by CD and fluorescence spectroscopy (Figure S5), respectively. The secondary
structure of the variants were slightly different from that of PETaseWT (Figure S5b), but
the tertiary structure of the variants were significantly changed from that of PETaseWT

(Figure S5c). The emission maxima (λmax) of PETaseD186N, PETaseD186H, PETaseD186A, and
PETaseD186V were blue shifted, in which PETaseD186V had the smallest λmax. However, the
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λmax of PETaseD186Q was red shifted. This result indicated that the overall structures of
PETaseD186N, PETaseD186H, PETaseD186A, and PETaseD186V became more compact and the
solvent exposure of some tryptophan and tyrosine residues was reduced, which could lead
to an improvement in structural stability, whereas the overall structure of PETaseD186Q

became looser, resulting in increased solvent exposure of some tryptophan and tyrosine
residues, which could reduce its structural stability [46,54].

Subsequently, MD simulations at different temperatures (303, 313, and 403 K) were
performed to analyze the overall/local structural stability and flexibility of the enzyme
variants. As shown in Figures S6 and S7, the root mean square deviation (RMSD) and radius
of gyration (Rg) values of PETaseD186Q were obviously higher than those of PETaseWT at 313
and 403 K during the simulations, indicating its looser structure than the wild type, which
was consistent with the results of fluorescence spectroscopy. For PETaseD186H, PETaseD186N,
PETaseD186A, and PETaseD186V, the RMSD values were comparable to or lower than that of
PETaseWT. Meanwhile, the Rg values of PETaseD186N, PETaseD186A, and PETaseD186V were
noticeably lower than that of PETaseWT at 403 K during the last 20 ns (Figure S7c). This
suggested that the overall structural rigidity of PETaseD186H, PETaseD186N, PETaseD186A,
and PETaseD186V were stronger than that of PETaseWT, which was also consistent with the
results of fluorescence spectroscopy (Figure S5c).

According to the average root mean square fluctuation (RMSF) analysis of the Cα

atoms of the enzyme variants (Figures 5 and S8), two main regions (residues P181-P197 and
residues N205-R222) of fluctuation changed in variants as compared with PETaseWT. The
average RMSF values of PETaseWT and its variants in these two regions were remarkably
different at 313 and 403 K (Figures 3 and S8b). PETaseD186H, PETaseD186N, PETaseD186A, and
PETaseD186V kept lower RMSF values than PETaseWT in these two regions, demonstrating
that their structures were more stable than that of PETaseWT. For PETaseD186Q, however,
the average RMSF values in these two regions were higher than those of PETaseWT, which
should be responsible for its poor thermostability. As shown in Figure 4, residue W185
of region P181-P197 and residue I208 of region N205-R222 were crucial for the binding of
the substrate to the enzyme (Figure 4), and the auxiliary catalytic residue D206 located on
region N205-R222 [22]. Therefore, reducing the RMSF and increasing the stability of these
two regions allow the enzyme to maintain its catalytic activity at high temperatures. The
analysis of mobility and structural fluctuation of PETaseWT and its variants by MDLovofit
also confirmed the results mentioned above (Figure S9).
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Figure 5. The RMSF of Cα atoms of PETaseWT and its variants in MD simulations at 313 K, where the
regions with significant differences in average RMSF are marked in dotted boxes (a). Corresponding
locations of the regions with notable changes of the RMSF in the structure of PETaseWT (b). Loop 10
is colored in red, Helix 6 is colored in blue, Loop 11 is colored in yellow, and the Cα atom of D186 is
shown as a red sphere. The RMSF was calculated from six independent MD simulation runs.

The hydrogen bonding was then analyzed as hydrogen bonds play an important role in
protein folding and thermostability [55]. It was reported that H186 could promote the water-
mediated hydrogen bond formation between E121 and N172 in PETaseS121E/D186H/R280A [17],
or H186 could form a water-mediated hydrogen-bonding network with E121 and N172 in
PETaseS121E/D186H/R280A/R224Q/N233K [21]. The residues P181-P197, N205-S213, and S214-
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R222 correspond to Loop 10, Loop 11, and Helix 6 in PETase, respectively (Figure 5b). So,
the interactions between residue 186 and surrounding residues were analyzed at first. For
PETaseWT, two hydrogen bonds were formed between D186 and S187 (D186OD1. . .S187N
and D186OD2. . .S187N) with the length of 3.2 Å and 3.3 Å at 313 K, respectively (Figure 6a).
However, the distance/angle between the N atom of S187 and the OD1/OD2 atoms of
D186 clearly increased/reduced in the last 20 ns at 403 K (Figures S10e and S11e), showing
that the two hydrogen bonds were unstable in PETaseWT [56]. The D186Q mutation could
only form a 3.5 Å hydrogen bond with S187 at 313 K and this unstable hydrogen bond
rapidly cleaved at 403 K (Figures 6b, S12e and S13e), indicating that this mutation enhanced
the flexibility of Loop 10 and decreased the stability of PETase. In contrast, the D186H
and D186N mutations introduced three stable hydrogen bonds in Loop 10, which could
result in higher Tm values of PETaseD186H and PETaseD186N than PETaseWT as revealed in
the experiment (Figure 3a). The three stable hydrogen bonds in PETaseD186H included a
hydrogen bond (H186ND1. . .S187N, 3.0 Å), a carbon–hydrogen bond (H186CD2. . .S188O,
3.3 Å), and a π–donor hydrogen bond (H186. . .S188N, 3.8 Å) (Figures 6c, S14 and S15).
For PETaseD186N, the three stable hydrogen bonds included N186OD1. . .S187N (2.9 Å),
N186ND2. . .S188O (3.2 Å) and N186ND2. . .S188N (3.4 Å) (Figures 6d, S16 and S17). There-
fore, the Tm value of PETaseD186H was similar to that of PETaseD186N (Figure 3a). In
addition, the occupancy rates of the conventional hydrogen bonds between residue 186
and surrounding residues were also analyzed [57]. According to Tables S3–S5, the occu-
pancy rates of the D186OD1. . .S187N and D186OD2. . .S187N in PETaseWT were similar to
those of Q186OE1. . .S187N and Q186NE2. . .S188O in PETaseD186Q, whereas the occupancy
rates of H186ND1. . .S187N in PETaseD186H and N186ND2. . .S188O and N186ND2. . .S188N in
PETaseD186N were always higher than those of PETaseWT and PETaseD186Q. Especially at 403
K, the occupancy rates of the conventional hydrogen bonds in PETaseWT and PETaseD186Q

were significantly lower than those of PETaseD186H and PETaseD186N. These results further
indicated that these hydrogen bonds were more stable in PETaseD186H and PETaseD186N

than in PETaseWT and PETaseD186Q.
In the structure of PETaseWT, there are nine hydrophobic (P120, M161, G164, I168,

P184, W185, T189, F191, and I218) and four neutral (S121, S187, S188, and S214) residues
within 5Å of the residue D186, which may cause D186 to conflict with the surrounding
residues (Figure 6a,g). This phenomenon has been described by Son et al. as a “collision
of polarity” [17]. By substituting the negatively charged residue D to the hydrophobic
residue A/V, stable π−alkyl hydrophobic interactions formed between A186/V186 and
F191 (Figure 6e,f, Figures S18 and S19), and the hydrophobic interactions between Loop 10
and its surrounding hydrophobic residues enhanced (Figure 6e,f). Furthermore, the D186A
and D186V mutations changed the region from hydrophilic to hydrophobic, leading to the
release of this collision of polarity (Figure 6a,e,f) and the reduction in the flexibility of Loop
10 in PETaseD186A and PETaseD186V (Figures 5a, S8 and S9). Among the 20 amino acids, Val
is considerably more hydrophobic than Ala, so the hydrophobic interactions were stronger
in PETaseD186V than those in PETaseD186A, which could lead to a higher Tm of PETaseD186V

than that of PETaseD186A (Figure 3a).
Next, the hydrogen bonds between Loop 10 and the two neighboring helixes, Helix 5

(residues S160-N173) and Helix 6, were analyzed in detail. Between Loop 10 and Helix 5
there were only two hydrogen bonds, W185O. . .S160O and Q182O. . .S160N. The occupancy
rates of the two hydrogen bonds were comparable as in PETaseWT and its variants, while
only the occupancy rate of W185O. . .S160O (76.4 ± 3.1%) in PETaseD186Q was obviously
lower than PETaseWT (87.3 ± 2.1%) at 403 K (Table S6).
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Figure 6. Molecular interactions between residue 186 and the surrounding residues in PETaseWT

and its variants. PETaseWT (a), PETaseD186Q (b), PETaseD186H (c), PETaseD186N (d), PETaseD186A

(e), PETaseD186V (f), and collision of polarity between D186 and the surrounding residues (5 Å)
(g). The residue 186 and surrounding residues are shown as sticks and colored according to the
elements (C: cyan/grey, N: blue, O: red, S: yellow). The protein surfaces are colored according to
hydrophilicity, where the most hydrophilic are colored blue and the most hydrophobic are colored
orange. Each typical structure was obtained by RMSD-based clustering analysis (cutoff = 0.075 nm)
of six independent MD simulation runs.

According to the typical structures obtained by RMSD-based clustering analysis
(cutoff = 0.075 nm) (Figure 7a), the hydrogen bonds P184O. . .S214OG, F191N. . .S221OG,
and S192OG. . .S221O formed between Loop 10 and Helix 6 in PETaseD186H, PETaseD186N,
PETaseD186A, and PETaseD186V. For PETaseWT and PETaseD186Q, only a hydrogen bond
F191N. . .S221OG was observed in Loop 10 interacting with Helix 6. The occupancy rates
of the hydrogen bonds F191N. . .S221OG and S192OG. . .S221O in PETaseWT and its variants
were similar at temperatures below 403 K (Figure 7b and Table S7). However, the occupancy
rates of P184O. . .S214OG in PETaseWT and PETaseD186Q were always lower than those of
the other four variants (Figure 7b,c and Table S7). At 313 K, the occupancy rates of the
P184O. . .S214OG in PETaseD186H (22.2 ± 3.8%) and PETaseD186N (21.9 ± 4.7%) were similar,
which were lower than that of PETaseD186A (30.3 ± 5.4%) and PETaseD186V (38.0 ± 4.2%)
(Figure 7b). This indicated that the more robust the hydrogen bond P184O. . .S214OG was,
the higher the thermostability of the variants would be (Figure 3a). Furthermore, the
occupancy rates of the three hydrogen bonds in PETaseWT and PETaseD186Q were obviously
lower than those of the other four variants, and PETaseD186Q had the lowest occupancy
rates of the three hydrogen bonds at 403 K (Figure 7c). These results showed that the
hydrogen bonds P184O. . .S214OG, F191N. . .S221OG, and S192OG. . .S221O in PETaseD186H,
PETaseD186N, PETaseD186A, and PETaseD186V were more robust than those in PETaseWT,
whereas these hydrogen bonds in PETaseD186Q were more unstable than those in PETaseWT.
Therefore, locking the flexible Loop 10 and Helix 6 with more robust hydrogen bonding
increased the interactions between these two regions and reduced the flexibility of the
amino acid backbone, which led to the improved thermostability of the four PETase variants.
In addition, the auxiliary catalytic residue D206 is located on the flexible Loop 11, and Helix
6 connects to one end of Loop 11; thus, the stabilizing effect of Helix 6 was transferred to
Loop 11, leading to the flexibility decrease in the loop (Figures 5 and S8b). The flexibility
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decrease (or rigidity increase) of Loop 11 could stabilize the auxiliary catalytic residue D206,
and further enhance the thermostability of the variants [22].
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Figure 7. Molecular interactions between Loop 10 and Helix 6 in PETaseWT and its variants. The
hydrogen bonds between Loop 10 and Helix 6 in PETaseWT and its variants determined by MD
simulations (a). The occupancy rate of the hydrogen bonding analysis at 313 K (b) and 403 K (c),
where only hydrogen bonds with occupancy rates > 10% were considered. Each typical structure was
obtained by RMSD-based clustering analysis (cutoff = 0.075 nm) and the average occupancy rates
were calculated from six independent MD simulation runs.

3. Materials and Methods
3.1. General Information

Bis-2(hydroxyethyl) terephthalate (BHET) and terephthalic acid (TPA) of analytical
grade were purchased from Aladdin (Shanghai, China). Mono(2-hydroxyethyl) tereph-
thalate (MHET) of analytical grade was purchased from MOLBASE (Shanghai, China).
PET films (transparent, 0.25 mm thickness) were obtained from Goodfellow (Cambridge,
England). All other chemicals and reagents of at least reagent grade were purchased
from commercial sources and used without further purification unless otherwise stated.
TransStart® FastPfu DNA polymerase, DMT enzyme, pEASY®-Basic Seamless Cloning and
Assembly Kit were purchased from TransGen Biotech (Beijing, China). Escherichia coli (E.
coli) BL21 (DE3) and expression vector pET-22b (+) were obtained from Solarbio (Beijing,
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China). The primer synthesis and DNA sequencing analysis were conducted by GENEWIZ
and Tsingke (Tianjin, China).

3.2. Site-Directed Mutagenesis, Protein Expression, and Purification

The gene encoding PETase from Ideonella sakaiensis 201-F6 (GenBank accession number:
GAP38373.1) was commercially synthesized by GENEWIZ (Beijing, China), and then
subcloned into pET-22b (+) vector between Nde I and Xho I restriction sites. The final
construct vector pET-22b: PETase was transformed into E. coli BL21 (DE3).

The site-directed mutagenesis was constructed by PCR using a recombinant plasmid
pET22b (+) containing the PETase gene as a template. The PCR procedure was as follows:
95 ◦C for 2 min, (95 ◦C for 20 s, 56 ◦C for 20 s, 72 ◦C for 3.5 min) with 35 cycles and
extension at 72 ◦C for 5 min. The PCR reaction mixture contained 32 µL distilled water,
10 µL 5× buffer, 4 µL 2.5 mM dNTPs, 1 µL each forward and reverse primer (10 µM), 1 µL
recombinant plasmid, and 1 µL TransStart®FastPfu DNA polymerase (TransGen Biotech,
Beijing, China). The PCR products were digested with 1 µL DMT enzyme at 37 ◦C for 1 h
and then separately transformed into E. coli BL21 (DE3) cells for protein expression. Residue
D186 was substituted by the other 19 canonical amino acids by this method (Table S2), and
the sequences were verified by DNA sequencing.

A single colony of wild type or variants was picked and incubated in a 5 mL LB
medium containing 100 µg·mL−1 ampicillin at 37 ◦C and 220 rpm for 12 h. Then, 2 mL of
the preculture cells were inoculated into 200 mL of LB medium containing 100 µg mL−1

ampicillin at 37 ◦C and 220 rpm. When the optical density at 600 nm was between 0.8 and
1.0, 0.5 mM isopropyl-β-D-1-thiogalactoside (IPTG) was added to the LB medium. The cul-
tures were then incubated for another 24 h at 16 ◦C and 160 rpm for protein overexpression.
The cells were harvested by centrifugation (5000× g, 30 min) at 4 ◦C, and the cell pellet
was resuspended in lysis buffer (50 mM Na2HPO4-HCl, 100 mM NaCl, 20 mM imidazole,
pH 7.0).

The resuspended cells were disrupted by ultrasonication in an ice-water bath for
30 min. Insoluble cell debris was removed by centrifugation (12,000× g, 30 min, 4 ◦C)
and filtrated through a 0.45 µm syringe filter. The supernatant was loaded onto a 5 mL
Ni-NTA FF column (GE Healthcare, Solingen, Germany), and the affinity column was pre-
equilibrated with lysis buffer. Non-specific adsorbed proteins were removed by washing
with lysis buffer, and the target enzyme was eluted with elution buffer (50 mM Na2HPO4-
HCl, 100 mM NaCl, 300 mM imidazole, pH 7.0). The protein fractions were then transferred
into desalting buffer (50 mM Na2HPO4-HCl, 100 mM NaCl, pH 7.0) by size-exclusion
chromatography on an AKTA Basic system with a Superdex200 Increase 10_300 GL column
(GE Healthcare, Germany). All purification steps were conducted at 4 ◦C. The purified
enzyme was checked by SDS-PAGE, and the concentration of the enzyme was quantified
by BCA Protein Assay Kit (Solarbio, Beijing, China).

3.3. Enzyme Activity Assay for BHET and PET Film Degradation

The activities of the wild-type PETase and its variants were first determined at 30 and
40 ◦C by monitoring the hydrolysis of BHET to MHET and EG using a high-performance
liquid chromatography (HPLC) system (1100 Series HPLC, Agilent, Santa Clara, CA, USA),
as reported previously [46,58]. The reaction mixture contained 910 µL reaction buffer
(80 mM Na2HPO4−HCl, 40 mM NaCl, pH 7.0), 80 µL BHET substrate (2.5 g·L−1), and
10 µL enzyme solution (5 µM). The enzyme reaction was terminated by adding an equal
volume of 160 mM phosphoric acid solution (20% (v/v) DMSO, pH 2.5) and heating at 85 ◦C
for 10 min. Then, the reaction mixture was centrifuged at 13,000× g for 10 min, and the
supernatant was filtered through a 0.22 µm membrane for HPLC analysis. Enzyme activity
was defined as the concentration (µM) of MHET released by enzyme (50 nM) catalyzed
degradation of the BHET substrate (200 mg·L−1) for 30 min, as previously reported [46,58].

The PET film was used as a substrate to determine the degradation activity of PET by
the wild-type PETase and its variants. The PET film has a crystallinity of 28.34 ± 2.54%
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(Figure S1) and was cut into a circular form with a diameter of 6 mm. The PET film was
soaked with 12.5 µL of enzyme (5 µM) in 300 µL of glycine-NaOH buffer (50 mM, pH 9.0)
at 30 and 40 ◦C for 1 to 6 days. After removing the PET film from the reaction mixture, the
reaction was terminated by adding an equal volume of 160 mM phosphoric acid solution
(20% (v/v) DMSO, pH 2.5) and heating at 85 ◦C for 10 min. Then, the reaction mixture
was centrifuged at 13,000× g for 10 min. The supernatant was filtered through a 0.22 µm
membrane and analyzed by HPLC.

3.4. Assay of Enzyme Thermostability

To analyze the thermostability of the wild-type PETase and its variants, the melting
temperature (Tm) was determined by differential scanning fluorimetry (DSF). The concen-
tration of purified protein was diluted to 5 µM with desalting buffer (50 mM Na2HPO4-HCl,
100 mM NaCl, pH 7.0). The SYPRO Orange dye 5000× (Sigma-Aldrich, Shanghai, China)
was diluted to 100× with pure water. The diluted protein solution (20 µL) was mixed with
5 µL of diluted SYPRO Orange dye and loaded onto a 96-well PCR plate (Roche, Shanghai,
China). DSF experiments were performed using a Light Cyder480 real-time PCR system
(Roche, Santa Clara, CA, USA). The 96-well PCR plate was heated from 25 to 100 ◦C at
a rate of 1.8 ◦C·min−1. The excitation and emission wavelengths were set at 465 nm and
580 nm, respectively. A single fluorescence measurement was taken every 0.03 s. The
apparent Tm was determined from the first derivative curve.

3.5. CD and Fluorescence Spectroscopy

CD spectroscopy was used to assess the second structure of the wild-type PETase and
its variants. The concentration of protein was diluted to 0.143 mg·mL−1 with desalting
buffer. CD studies were then carried out using the J-810 CD spectrometer (JASCO, Tokyo,
Japan) in a 1.0 mm quartz cell at 25 ◦C. The spectra were recorded at a far-UV wavelength
from 190 to 260 nm with a bandwidth of 1 nm at a speed of 100 nm·min−1. The spectra of
the desalting buffer were subtracted as background.

Fluorescence spectroscopy was used to determine the conformational change in the
wild-type PETase and its variants. The concentration of the sample was maintained at
3 µM. The intrinsic fluorescence spectra were performed on a luminescence spectrometer
(PerkinElmer, Shelton, CT, USA) with a 1 cm quartz cell at 25 ◦C. The excitation wavelength
was set at 280 nm, and the emission spectra were recorded from 285 nm to 450 nm. The
slit widths of excitation and emission were both set to 5.0 nm, and the scanning speed of
emission spectra was set to 200 nm·min−1 [59].

3.6. Molecular Docking and Molecular Dynamics (MD) Simulations

The three-dimensional structure of the wild-type PETase was obtained from the Protein
Data Bank (PDB ID: 6EQE) [60]. The structure of variants (D186Q, D186H, D186N, D186A,
D186V) was constructed by the mutate module of Pymol software (https://pymol.org/
(accessed on 1 October 2023), with the structure of the wild-type PETase as a template.
The MD simulations of wild type and variants were performed using GROMACS 5.1.4
software with the AMBER99SB-ILDN force field [61–63]. The enzymes were placed in
the center of a cubic box at a distance of 10 Å from the edge of the box. The six systems
were then solvated with the TIP3P water model and Cl- ions were added to keep all the
systems neutral. All the systems were minimized for 50,000 steps until the maximum force
reached 1000 kJ·mol−1·nm−1 using the steepest descent algorithm. Then, the systems were
heated from 0 K to 303 K through v-rescal under NVT ensemble for 100 ps with a time-step
of 2 fs. Subsequently, the systems were equilibrated for 100 ps under NPT ensemble at
the constant temperature of 303 K and pressure of 1.0 atm using the Parrinello–Rahman
thermostat. After this, the restraints for the protein were removed and six independent
50 ns MD simulations were performed for each system under NPT ensemble. The MD
simulations for the wild-type PETase and its variants at 313 K and 403 K were performed
using the same protocol as that at 303 K.

https://pymol.org/
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The typical structures obtained from the above simulations were used for subsequent
docking. The model substrate, consisting of two repeating units of ethylene terephthalate
(2PET) [46,49], was docked into the wild-type PETase and its variants by Autodock [64].
The MD simulations for the enzyme-substrate complexes were performed at 303 K for
50 ns, using the same protocol as that described above. Six independent simulations were
performed for each system.

The linear constraint solver (LINCS) algorithm was used to constrain the bonds. The
particle-mesh Ewald (PME) algorithm was used to calculate the electrostatic interactions.
The cutoffs of the neighboring atom list, Lennard-Jones (LJ) potential and Coulomb po-
tential energies were all set as 12 Å. The trajectories analysis were performed using the
Gromacs package and VMD 1.9.3 software [65].

3.7. Measurement of PET Crystallinity

The percentage of crystallinity (Xc) for PET film was analyzed by the differential
scanning calorimetry (DSC) instrument (Q20, TA instrument, New Castle, DE, USA) with
the methods reported previously [17,46,66]. Approximately 2–3 mg of the PET sample
was cooled to 0 ◦C and equilibrated for 1 min. Then, the sample was heated to 300 ◦C
(10 ◦C·min−1) and maintained at 300 ◦C for 1 min. The sample was then cooled from 300 ◦C
to 0 ◦C (10 ◦C·min−1). The percentage of crystallinity was calculated using the equation:

Xc(%) =

[
∆Hm − ∆Hc

∆H f

]
× 100 (1)

where ∆Hm is the value of melting enthalpy (J·g−1), ∆Hc is the value of cold crystallization
(J·g−1), and ∆H f is the melting enthalpy of 100% crystalline PET (140.1 J·g−1).

3.8. HPLC Analysis

The supernatant of reaction solution (20 µL) was analyzed by an Agilent 1100 series
LC system (Agilent, USA) equipped with an Ultimate XB-C18 column (4.6 × 250 mm,
5 µm, Welch Materials, Shanghai, China) at 25 ◦C. The mobile phase consisted of 70% (v/v)
distilled water, 20% (v/v) acetonitrile, and 10% (v/v) formic acid. The flow rate was set
at 1.0 mL·min−1, and the detection wavelength for aromatic products (BHET, MHET, and
TPA) was set at 254 nm.

4. Conclusions

In the present study, a non-active key amino acid residue in the second shell, D186,
was identified using a crystal structure- and sequence-based strategy. The effects of this
residue on the catalytic activity and thermostability of PETase were investigated by mu-
tating D186 to the other 19 canonical amino acids. Among the variants, the Tm values
of PETaseD186V and PETaseD186A increased by 12.91 and 11.84 ◦C, respectively, and their
degradation efficiency of PET were 2.49 and 3.62 times higher than that of PETaseWT at
40 ◦C. PETaseD186N and PETaseD186H showed both improved thermostability and activity
in PET degradation. PETaseD186N had the highest degradation efficiency against PET, being
1.86 and 3.69 times higher than the wild type at 30 and 40 ◦C, respectively. These results
indicated that this key non-active amino acid was important for modulating the catalytic ac-
tivity and thermostability of PETase. The structural analysis and MD simulations revealed
that the D186 mutations (1) altered the tertiary structure rather than the secondary structure
of the enzyme molecule, (2) elevated the binding free energy of the substrate to the enzyme
and changed the substrate binding mode, resulting in the increase in catalytic activity of
the enzyme, and/or (3) reduced the flexibility of Loop 10 mainly by hydrogen bonding
and hydrophobic interactions, and locked flexible Loop 10 and Helix 6 by robust hydrogen
bonding, leading to the enhanced enzyme thermostability. It is anticipated that this finding
can be applied as a rational design strategy to improve thermostability of PET hydrolases
and other enzymes, and it suggests that other non-active site residues in the second shell
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may be targeted as hot spots to further improve the catalytic activity and thermostability
of PETase.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules29061338/s1, Table S1: Engineered PETases for improved ther-
mostability [15,17,20–22,31,67–69]. Table S2: The sequences of primers for site-directed mutation.
Table S3: The occupancy rates of the conventional hydrogen bonds between residue 186 and surround-
ing residues at 303 K. Table S4: The occupancy rates of the conventional hydrogen bonds between
residue 186 and surrounding residues at 313 K. Table S5: The occupancy rates of the conventional
hydrogen bonds between residue 186 and surrounding residues at 403 K. Table S6: The occupancy
rates of the hydrogen bonds between Loop 10 and Helix 5. Table S7: The occupancy rates of the
hydrogen bonds between Loop 10 and Helix 6. Figure S1: Spatial distribution of point mutations
that influence the thermostability of PETase. Figure S2: The differential scanning calorimetry (DSC)
spectrum of PET film. Figure S3: PET film degradation activities of PETaseWT and its variants at 30 ◦C
and 40 ◦C for 6 days. Figure S4: Molecular dynamics (MD) simulations of enzyme-2PET complexes.
Figure S5: The crystal structure of PETase, the circular dichroism spectra and the intrinsic fluorescence
spectra of PETaseWT and its variants at 25 ◦C. Figure S6: Root mean square deviation (RMSD) of the
Cα atoms of PETaseWT and its variants in the MD simulations. Figure S7: Radius of gyration (Rg)
of the Cα atoms of PETaseWT and its variants in the MD simulations. Figure S8: Root mean square
fluctuations (RMSF) of the Cα atoms of PETaseWT and its variants in the MD simulations. Figure S9:
The mobility and structural fluctuations of the Cα atoms of PETaseWT and its variants obtained with
MDLovofit. Figure S10: The distance between the atom OD1 or OD2 of D186 and the atom N of S187,
and the relative frequency of these two distances in PETaseWT during the MD simulations. Figure S11:
The angle between the acceptor atom (D) of D186OD1 or D186OD2, the hydrogen atom (H), and the
donor atom (A) of S187N, and the relative frequency of these two angles in PETaseWT during the MD
simulations [56]. Figure S12: The distance between the atom OE1 of Q186 and the atom N of S187, the
distance between the atom NE2 of Q186 and the atom O of S188, and the relative frequency of these
two distances in PETaseD186Q during the MD simulations. Figure S13: The angle between the acceptor
atom (A) of Q186OE1, the hydrogen atom (H), and the donor atom (D) of S187N, the angle between
the acceptor atom (A) of S186O, the hydrogen atom (H), and the donor atom (D) of S186NE2, and the
relative frequency of these two angles in PETaseD186Q during the MD simulations [56]. Figure S14:
The distance between the atom ND1 of H186 and the atom N of S187, the distance between the
atom CD2 of H186 and the atom O of S188, the distance between the centroid of imidazole ring of
H186 and the N atom of S188, and the relative frequency of these three distances in PETaseD186H

during the MD simulations. Figure S15: The angle between the acceptor atom (A) of H186ND1, the
hydrogen atom (H), and the donor atom (D) of S187N, the angle between the acceptor atom (A) of
S186O, the hydrogen atom (H), and the donor atom (D) of H186CD2, and the relative frequency of
these two angles in PETaseD186H during the MD simulations [56]. Figure S16: The distance between
the atom OD1 of N186 and the atom N of S187, the distance between the atom ND2 of N186 and
the atom O of S188, the distance between the atom ND2 of N186 and the atom N of S188, and the
relative frequency of these two distances in PETaseD186N during the MD simulations. Figure S17:
The angle between the acceptor atom (A) of N186OD1, the hydrogen atom (H), and the donor atom
(D) of S187N, the angles between the donor atom (D) of N186ND2, the hydrogen atom (H), and the
acceptor atom (A) of S188O or S188N, and the relative frequency of these three angles in PETaseD186N

during the MD simulations [56]. Figure S18: The distance between the centroid of alkyl of A186 and
π ring of F191, and the relative frequency of this distance in PETaseD186A during the MD simulations.
Figure S19: The distance between the centroid of alkyl of V186 and π ring of F191, and the relative
frequency of this distance in PETaseD186V during the MD simulations.
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