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Abstract: Cardiovascular disease (CVD) stands as the foremost cause of patient mortality, and the
lack of early diagnosis and defined treatment targets significantly contributes to the suboptimal
prevention and management of CVD. Myocardial fibrosis (MF) is not only a complex pathogenic
process with no effective treatment currently available but also exerts detrimental effects on the
progression of various cardiovascular diseases, thereby escalating their mortality rates. Exosomes
are nanoscale biocommunication vehicles that facilitate intercellular communication by transporting
bioactive substances, such as nucleic acids and proteins, from specific cell types. Numerous studies
have firmly established that microRNAs (miRNAs), as non-coding RNAs, wield post-transcriptional
regulatory mechanisms and exhibit close associations with various CVDs, including coronary heart
disease (CHD), atrial fibrillation (AF), and heart failure (HF). MiRNAs hold significant promise in the
diagnosis and treatment of cardiovascular diseases. In this review, we provide a concise introduction
to the biological attributes of exosomes and exosomal miRNAs. We also explore the roles and
mechanisms of distinct cell-derived exosomal miRNAs in the context of myocardial fibrosis. These
findings underscore the pivotal role of exosomes in the diagnosis and treatment of cardiac fibrosis
and emphasize their potential as biotherapies and drug delivery vectors for cardiac fibrosis treatment.
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1. Introduction

According to the World Health Organization, it is estimated that, by 2030, cardio-
vascular disease (CVD) will claim the lives of approximately 25 million people [1]. CVD
continues to stand as the foremost threat to human health [2]. Numerous studies have
demonstrated that myocardial fibrosis, resulting from an imbalance in the synthesis and
degradation of the extracellular matrix (ECM), an imbalance in the proportions of various
collagen types, and disrupted arrangement, serves as an inevitable process leading to the
terminal stages of various clinical cardiovascular diseases such as atrial fibrillation, arrhyth-
mias, heart failure, and even sudden cardiac death. It serves as a primary manifestation of
cardiac structural remodeling. Therefore, the identification of novel targets for the early
diagnosis and prevention of myocardial fibrosis holds immense clinical significance.

Recent research has unveiled the involvement of exosomal intercellular communica-
tion in cardiac fibrosis [3,4]. Exosomes are a subtype of small extracellular vesicles (EVs)
that originate from the endosomal system and range in size from 30 to 200 nm [5]. These
exosomes serve as vital conduits for intercellular communication and can exert critical
regulatory functions in cardiovascular diseases by transporting bioactive molecules, such
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as microRNAs (miRNAs) [6]. Although exosomes have been implicated in the diagnosis
and treatment of various diseases in recent years, their role in myocardial fibrosis has
remained unclear. This article aims to review recent advances in research regarding the
interplay between exosomal miRNAs and cardiac fibrosis, explore potential mechanisms
through which exosomal miRNAs affect myocardial fibrosis, and assess their value in the
diagnosis and treatment of CVD.

2. Myocardial Fibrosis

CVD is a global public health concern characterized by increasing morbidity and
mortality rates each year. Among the various CVDs, heart failure (HF) represents the end
stage and final outcome, and myocardial fibrosis (MF) is closely associated with nearly all
CVDs, particularly HF. Myocardial fibrosis represents an inevitable progression in heart
conditions, including conditions such as hypertension, coronary heart disease, and car-
diomyopathy, ultimately leading to HF. It can manifest in the early stages of heart injury
and persist throughout the course of heart disease, making it a pivotal pathophysiological
process in the development of HF.

Fibrosis serves as a crucial mechanism for tissue remodeling in response to various
organ injuries and is a fundamental part of tissue repair. The accumulation of extracellular
matrix (ECM) components, such as collagens and fibronectin, is a normal and essential
process during the repair of minor or non-repetitive organ injuries. However, in cases
of severe or repetitive injuries, damaged tissue fibroblasts become overactive, leading to
an excessive buildup of ECM. This, in turn, results in pathological changes within the
interstitial tissue, leading to scarring, organ dysfunction, and, in some cases, organ failure.
Excessive fibrosis is a major contributor to several chronic diseases, including interstitial
lung disease, progressive cirrhosis, systemic sclerosis, diabetic nephropathy, diabetic eye
disease, and cardiovascular disease [7].

Myocardial fibrosis, characterized by the excessive accumulation of interstitial extra-
cellular matrix (ECM) and thickening of the basement membrane, represents a significant
pathological feature in various heart diseases and is a key contributor to cardiac dysfunc-
tion. Clinical data reveal elevated ECM deposition and myocardial fibrosis in the interstitial
heart tissues of patients suffering from advanced HF [8]. Consequently, it holds immense
significance to explore the mechanisms underlying the development of myocardial fibrosis,
diagnose and assess myocardial fibrosis at the earliest stages, and implement effective mea-
sures to delay or even prevent the progression of myocardial fibrosis. Multiple evidence
suggests that alleviating myocardial fibrosis can improve survival rates and enhance the
quality of life for patients dealing with various diseases (as illustrated in Figure 1).

2.1. Myocardial Fibrosis and Myocardial Infarction

Myocardial infarction (MI) continues to be a leading cause of morbidity and mortality
on a global scale. Following a myocardial infarction, various pathological changes occur
within the heart, with myocardial fibrosis playing a pivotal role in the regulation of cardiac
function. It influences the development of heart failure and has a significant impact on
the size, shape, and wall thickness of the ventricles [9–11]. Increasing evidence supports
the notion that excessive fibrosis can lead to ventricular dilation, worsen the extent of
infarction, and contribute to HF [12–14]. Consequently, the inhibition of myocardial fibrosis
holds promise for potential clinical therapeutic effects [15–17].

2.2. Myocardial Fibrosis and Duchenne Muscular Dystrophy

The most common form of these inherited disorders is Duchenne muscular dystrophy
(DMD) [18], a degenerative, X-linked disease affecting both skeletal and cardiac muscles,
caused by mutations in the dystrophin gene. With the advancement of patient care and
respiratory support technologies, myocardial fibrosis-induced cardiac hypertrophy im-
balance has become the leading cause of death in DMD patients [19]. A comprehensive
understanding of the occurrence, progression, and molecular regulatory mechanisms of
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myocardial fibrosis can aid in the identification of drug targets and the development of
effective therapeutic approaches to improve cardiac function in DMD.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. The relationship between myocardial fibrosis and various diseases. Excessive proliferation 
of cardiac fibroblasts or differentiation into myofibroblasts will cause increased extracellular matrix 
deposition. When the extracellular matrix environment is not balanced, myocardial fibrosis occurs, 
leading to various diseases. 

2.1. Myocardial Fibrosis and Myocardial Infarction 
Myocardial infarction (MI) continues to be a leading cause of morbidity and mortal-

ity on a global scale. Following a myocardial infarction, various pathological changes oc-
cur within the heart, with myocardial fibrosis playing a pivotal role in the regulation of 
cardiac function. It influences the development of heart failure and has a significant im-
pact on the size, shape, and wall thickness of the ventricles [9–11]. Increasing evidence 
supports the notion that excessive fibrosis can lead to ventricular dilation, worsen the ex-
tent of infarction, and contribute to HF [12–14]. Consequently, the inhibition of myocar-
dial fibrosis holds promise for potential clinical therapeutic effects [15–17]. 

2.2. Myocardial Fibrosis and Duchenne Muscular Dystrophy 
The most common form of these inherited disorders is Duchenne muscular dystro-

phy (DMD) [18], a degenerative, X-linked disease affecting both skeletal and cardiac mus-
cles, caused by mutations in the dystrophin gene. With the advancement of patient care 
and respiratory support technologies, myocardial fibrosis-induced cardiac hypertrophy 
imbalance has become the leading cause of death in DMD patients [19]. A comprehensive 
understanding of the occurrence, progression, and molecular regulatory mechanisms of 
myocardial fibrosis can aid in the identification of drug targets and the development of 
effective therapeutic approaches to improve cardiac function in DMD. 

2.3. Myocardial Fibrosis and Uremic Cardiomyopathy 
Uremic cardiomyopathy (UCM) is a complication of nephropathy, primarily charac-

terized by metabolic remodeling, cardiac hypertrophy, myocardial fibrosis, and cardiac 
inflammation [20,21]. When cardiomyocytes are exposed to uremic serum, macrophage 
infiltration occurs, leading to the transfer of miR-155 [22] from macrophage-derived exo-
somes to cardiomyocytes. This transfer inhibits the translation of forkhead transcription 
factor class O (FoxO3a) in cardiomyocytes, ultimately promoting cardiomyocyte 
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2.3. Myocardial Fibrosis and Uremic Cardiomyopathy

Uremic cardiomyopathy (UCM) is a complication of nephropathy, primarily charac-
terized by metabolic remodeling, cardiac hypertrophy, myocardial fibrosis, and cardiac
inflammation [20,21]. When cardiomyocytes are exposed to uremic serum, macrophage
infiltration occurs, leading to the transfer of miR-155 [22] from macrophage-derived exo-
somes to cardiomyocytes. This transfer inhibits the translation of forkhead transcription
factor class O (FoxO3a) in cardiomyocytes, ultimately promoting cardiomyocyte pyroptosis
and ameliorating uremic cardiomyopathy, which includes heart hypertrophy and fibrosis.

2.4. Myocardial Fibrosis and Atrial Fibrillation

Atrial fibrillation (AF) significantly increases the mortality and morbidity associated
with arrhythmias [23]. In recent years, mounting evidence supports the notion that in-
flammation, myocardial fibrosis, and cardiac remodeling may play crucial roles in AF.
However, there is still no definitive mechanism to explain the onset and progression of
this disease. AF is triggered by various factors, with cardiac remodeling serving as the
pathophysiological basis, and myocardial fibrosis [24] being a significant manifestation of
cardiac remodeling.

2.5. Myocardial Fibrosis and Cardiotoxicity of Antitumor Drugs

Numerous epidermal growth factors, including the receptor tyrosine protein kinase
ErbB2/HER2, exhibit upregulation during cancer development [25]. Trastuzumab (Trz)
was the pioneering monoclonal antibody designed to combat cancer by inhibiting the
ErbB2 pathway [26]. ErbB2 is also expressed in cardiomyocytes, and when stimulated by
neuregulin-1, a ligand from the receptor tyrosine kinase family, ErbB2 activates downstream
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signaling pathways such as ERK1/2-MAPK and PI3K-Akt, thereby promoting the survival
of stressed cardiomyocytes [27]. The combined treatment of Trz and Doxorubicin (Dox, an
anthracycline) has been shown to enhance treatment efficacy, albeit at the cost of increased
cardiotoxicity [28]. Research data suggest that overexpression of ErbB2 results in the
upregulation of antioxidant enzymes, reduces the levels of basal reactive oxygen species
(ROS), and mitigates the cardiotoxic effects of Dox [29]. However, Trz inhibits ErbB2,
potentially exacerbating cardiotoxicity [30]. Consequently, in clinical practice, Dox and
Trz are typically administered separately to manage cardiotoxicity such as myocardial
fibrosis [31].

2.6. Myocardial Fibrosis and Chronic Heart Failure

Chronic heart failure (CHF) ranks among the leading causes of high mortality at-
tributed to heart disease [32]. The pathophysiology of CHF is intricate, characterized by left
ventricular remodeling, which results in increased wall mass, chamber enlargement, and a
more spherical chamber configuration. These changes collectively contribute to the pro-
gressive decline in left ventricular performance and play a pivotal role in the development
of CHF [33,34]. Notably, among all the pathogenic processes involved in left ventricular
remodeling, myocardial fibrosis stands out as a key determinant.

2.7. Myocardial Fibrosis and Cardiac Remodeling

Cardiac remodeling is a crucial factor in the progression of HF, and one of its indicators
is the presence of cardiac fibrosis. Numerous studies have explored the potential of
various miRNAs as diagnostic markers for heart failure and as tools to gauge the disease’s
progression [35,36]. Furthermore, miRNAs encapsulated in serum exosomes have emerged
as pivotal players in the context of CVDs [37].

3. The Biogenesis and Composition of Exosomes

In 1981, EG Trams [38] discovered small vesicles surrounded by a bilayer membrane
in the supernatants of cultured sheep reticulocytes. These vesicles, later identified by
Johnstone [39] in 1987 as exosomes, were initially thought to be cellular waste bins or
discarded materials. Recent studies in the field of biological science have revealed that
exosomes play crucial roles in a variety of biological and pathological processes.

3.1. Exosomal Biogenesis

The release of extracellular vesicles (EVs), which are particles separated by lipid
bilayers and incapable of self-replication, is a universal phenomenon observed in all cells [5].
EVs can be roughly composed of ectosomes and exosomes [40]. Ectosomes are vesicles that
form from outward budding of the plasma membrane surface, encompassing microvesicles,
microparticles, and large vesicles ranging in size from approximately 50 nm to 1 µm in
diameter. Exosomes (as illustrated in Figure 2) are small, membrane-bound vesicles and
a unique class of EVs by virtue of their biogenesis, ranging in size from 30 to 200 nm
and originating from multivesicular endosomes (MVEs), also known as multivesicular
bodies (MVBs). The cell membrane initially internalizes to generate endosomes, from
which a portion of the endosomal membrane invaginates, forming small vesicles and
eventually leading to the formation of MVBs. Ultimately, MVBs fuse with the membrane,
releasing the intraluminal endosomal vesicles into the extracellular space where they
become exosomes [41].

3.2. Exosomal Composition

Exosomes serve as vehicles for transferring macromolecules derived from various
tissues and organs, encompassing a wide array of proteins, nucleic acids, and lipids.
These components predominantly facilitate cellular communication between different
cell populations within multicellular organs, contributing to the maintenance of cellular
homeostasis. Exosomes typically contain a repertoire of proteins, including membrane
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transport proteins such as RAB GTPases, annexins, flotillins, ALIX from multivesicular
bodies (MVBs), and TSG101. Additionally, exosomes house tetraspanin transmembrane
proteins, such as CD9, CD63, and CD81, and heat shock proteins, including HSP60 and
HSP90. Furthermore, exosomes encapsulate various nucleic acids, such as miRNA, mRNA,
lncRNA, tRNA, snRNA, snoRNA, and circRNA, which act as regulators of gene expression
and hold potential as biomarkers [42–45].
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Figure 2. The composition of exosome. Exosomes ranging in size from 30 to 200 nm contain a large
number of proteins, including membrane transport proteins such as RAB GTPases, annexins, flotillins,
ALIX from multivesicular bodies (MVBs), and TSG101. In addition, exosomes host tetraspanin
transmembrane proteins, such as CD9, CD63, and CD81, and heat shock proteins, including HSP60
and HSP90. Furthermore, exosomes encapsulate a variety of nucleic acids, such as miRNA, mRNA,
lncRNA, tRNA, snRNA, snoRNA, and circRNA, and lipids.

Although it was initially considered that the primary function of exosomes was to
eliminate cellular waste, with the increasing understanding of exosomal structural and
physiological functions, an important focus in exploring the pathobiology of disease is to
dig into cell-specific exosomes. Based on the wide range of contents packaged in exosomes,
the regulation of exosome contents is a potential therapeutic strategy for the treatment of
heart disease.

4. Exosomal miRNA

MiRNA, first discovered in 1993, is an endogenous non-coding RNA consisting of
19–25 nucleotides [46,47]. MiRNAs primarily bind to the 3′ untranslated region (3′UTR) of
target gene mRNA, thereby regulating the expression of these target genes and subsequently
influencing various physiological processes [48].

4.1. Exosomal miRNA Transport

MiRNA constitutes a significant portion of the contents within exosomes, and the
phospholipid bilayer of exosomes safeguards miRNA from degradation. When exposed to
different cellular microenvironments, cells actively and selectively encapsulate miRNAs,
releasing them into the extracellular environment within exosomes in response to various
stimuli. Stoorvogel et al. [49] have confirmed the sequential process of exosomal miRNA
transport as follows: (1) miRNA is selectively encapsulated within multivesicular bodies
(MVBs); (2) MVBs fuse with the cell’s plasma membrane, releasing intraluminal vesicles
(ILVs) into the extracellular environment, forming exosomes; (3) Exosomes merge with the
plasma membrane of target cells, which subsequently internalize the exosomes through
endocytosis; (4) Then exosomes specifically deliver miRNA to the 3′UTR end of target
mRNA, consequently suppressing the expression of target genes (as illustrated in Figure 3).
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Figure 3. The secretion of exosomal miRNA. Firstly, miRNAs are selectively encased in MVBs,
and then MVBs fuse with the donor cell membrane to release exosomes into the extracellular envi-
ronment. Secondly, the target cells internalize the exosomes attached to the cell membrane through
endocytosis, and finally release their contents into the cell. The released miRNA specifically binds to
the 3′UTR of the target mRNA and inhibits the expression of the target gene.

4.2. Exosomal miRNA Function

The functions of exosomal miRNA can be broadly categorized into two groups. First,
there is the conventional function [50], which involves regulating gene expression within
cells through precise binding with target genes. The second category [51] is the ligand-like
function, where miRNAs act as direct agonists of specific receptor families, interacting
with proteins. MiRNAs enclosed within exosomes facilitate information transfer between
cells, either through active cell secretion or the paracrine pathway. They exert direct or
indirect influences on cellular functions, actively participating in the development and
progression of diseases. In particular, they play a pivotal regulatory role in the context of
CVDs [52]. This significance stems from both the inherent stability of exosomal miRNA
and the protective effect offered by the exosome membrane. These factors contribute to the
study of exosomal miRNA function and its potential applications in the diagnosis of CVDs.

5. Exosomal miRNAs from Different Sources and Myocardial Fibrosis

Emerging evidence suggests that most cardiac, vascular, and stem cells [53–57] release
exosomes. Any alterations in the signaling molecules carried within exosomes or in the
exosomal machinery can disrupt physiological homeostasis and ultimately lead to heart
disease. Exosomes play a central role in many cardiac conditions, including myocardial
infarction (MI), hypertrophic cardiomyopathy (HCM), and ischemia [58]. Recent studies
indicate that the communication between cardiac cells via exosomes is disrupted during
fibrosis, a key mediator of heart diseases [59]. These findings have spurred active research
efforts aimed at comprehending the role of extracellular vesicles released by fibroblasts, as
well as exosomes originating from various cell types, in contributing to cardiac dysfunction
during fibrosis.

In this review, we provide a comprehensive summary of the roles of miRNAs in
myocardial fibrosis, specifically focusing on the diverse roles of miRNAs found in exosomes
derived from different cell types (as illustrated in Table 1).
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Table 1. Regulatory-different cell-derived miRNAs associated with cardiac fibrosis.

The Origin of
Exosomes miRNA Target

Gene/Pathway Role Disease Models References

Endothelial
progenitor cells

miR-1246,
miR-1290 ELF5 and SP1 Anti-fibrosis Myocardial infarction [60]

miR-133 YBX-1 Anti-fibrosis Hypoxia/reoxygenation [61]

miR-218-5p,
miR-363-3p p53 and JMY Anti-fibrosis Myocardial infarction [62]

Mesenchymal
stromal cells

miR-29c TGF-β Anti-fibrosis Duchenne muscular
dystrophy [63]

miR-22 Mecp2 Anti-fibrosis Ischemic heart disease [64]

miR-126 Unknown Anti-fibrosis Acute myocardial
infarction [65]

miR-146a EGR1/TLR4/NFκB Anti-fibrosis Acute myocardial
infarction [66]

miR-210 HIF-1α Anti-fibrosis Myocardial infarction [67]

miR-24 Bim Anti-fibrosis Myocardial infarction [68]

miR-671 TGFBR2 Anti-fibrosis Myocardial infarction [69]

Macrophages miR-155 FoxO3a Pro-fibrosis Uremic cardiomyopathy [70]

Endothelial cells
miR-19a-3p Akt/ERK Anti-fibrosis Myocardial infarction [71]

miR-10b-5p Smurf1 and
HDAC4 Anti-fibrosis Ischemic heart disease [72]

Cardiomyocytes

miR-208a Dyrk2 Pro-fibrosis Fibrosis [73]

miR-494-3p PTEN Pro-fibrosis Fibrosis [74]

miR-378 MKK6/P38 MAPK
pathway Anti-fibrosis Fibrosis [75]

miR-29b, miR-455 MMP9 Anti-fibrosis Type 2 diabete [76]

miR-210-3p GPD1L/PI3K/AKT
signaling pathway Pro-fibrosis Atrial fibrillation [77]

miR-23a Unknown Pro-fibrosis Atrial fibrillation [78]

Cardiosphere-
derived cells miR-92a BMP2 Anti-fibrosis Duchenne muscular

dystrophy [79]

Cardiac
progenitor cells

miR-133a Bim, Bmf, bFgf
and Vegf Anti-fibrosis Myocardial infarction [80]

miR-146a-5p
Traf6, Smad4,
Irak1, Nox4,

and Mpo
Anti-fibrosis Doxorubicin/trastuzumab-

induced cardiac toxicity [81]

Pluripotent
stem cells

miR-290-295 cluster Unknown Anti-fibrosis acute myocardial
infarction [55]

miR-373 GDF-11 and
ROCK-2 Anti-fibrosis Myocardial infarction [82]

Immune cells miR-142-3p APC/WNT Pro-fibrosis Myocardial infarction [83]

Serum

miR-21 Smad7, PTEN
and MMP2 Pro-fibrosis Myocardial infarction [84]

miR-320a PIK3CA/Akt/mTOR
signaling pathway Pro-fibrosis Chronic heart failure [85]

miR-425, miR-744 TGF-β1 Anti-fibrosis Heart failure [86]

miR-124-3p
AXIN1/WNT/β-
catenin signaling

pathway
Pro-fibrosis Atrial fibrillation [87]

Adipocytes miR-23a-3p RAP1 Pro-fibrosis Fibrosis [88]

Others
miR-29b Unknown Anti-fibrosis Myocardial infarction [89]

miR-450a-2-3p MAPK1 Anti-fibrosis Atrial Fibrillation [90]
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5.1. Endothelial Progenitor Cells-Derived Exosomal miRNA
5.1.1. miR-1246, miR-1290

Huang et al. [60] conducted a study in which they isolated exosomes from endothelial
progenitor cells (EPCs) and observed a significant upregulation in the expression of EPC-
derived exosomal miR-1246 and miR-1290. Mechanistically, miR-1246 and miR-1290 from
EPC-derived exosomes were found to induce the upregulation of ELF5 and SP1 by targeting
the promoter regions of their respective genes. This, in turn, promoted the transition of
fibroblasts into endothelial cells and stimulated angiogenesis and proliferation of human
cardiac fibroblasts (HCFs). The findings from this study suggest that miR-1246 and miR-
1290 within EPC-derived exosomes enhance angiogenesis in the context of myocardial
infarction. These improvements may facilitate the repair of post-myocardial infarction
cardiac damage and the mitigation of cardiac fibrosis.

5.1.2. miR-133

Lin et al. [61] previously discovered that exosomes derived from EPCs promote
mesenchymal-endothelial transition (MEndoT) following hypoxia/reoxygenation (H/R)
of EPCs. However, the underlying mechanism remained unclear. To address this, the
researchers isolated EPCs from human peripheral blood and fibroblasts from rat hearts to
investigate the relationship between EPC-derived exosomes, fibrosis, and MEndoT. The
study revealed that H/R stimulation induces the upregulation of miR-133 within EPCs and
their derived exosomes. This upregulated miR-133 is then incorporated into the exosomes
with the assistance of YBX-1, and subsequently delivered to cardiac fibroblasts, promoting
angiogenesis in cardiac fibroblasts and MEndoT.

5.1.3. miR-218-5p, miR-363-3p

Numerous studies have demonstrated the potential of EPC-derived exosomes (EPC-
Exos) in ameliorating myocardial fibrosis. In a study by Ke et al. [62], differentially ex-
pressed miRNAs between EPCs and exosomes were identified through miRNA-Seq data.
The authors used quantitative real-time polymerase chain reaction (qRT-PCR) to confirm
the differential expression of miRNAs identified in the miRNA-Seq data. The study re-
vealed a significant increase in the expression of miR-363-3p and miR-218-5p in EPC-Exos
following MI. MiR-218-5p and miR-363-3p were found to upregulate p53 expression by
binding to the p53 promoter region and binding to the 3′UTR of junction-mediating and
regulatory protein (JMY), leading to the downregulation of JMY expression, subsequently
promoting mesenchymal-endothelial transition and inhibiting myocardial fibrosis.

5.2. Mesenchymal Stem Cell-Derived Exosomal miRNA
5.2.1. miR-29c

Numerous lines of evidence suggest that mesenchymal stem cell (MSC) therapy
holds promise as a potential treatment for DMD [91]. MSCs exert their therapeutic effects
primarily through paracrine mechanisms, which involve the secretion of cytokines and
extracellular vesicles [92]. Bier et al. [63] isolated mesenchymal stem cells derived from the
placenta (PL-MSCs) and their secreted exosomes (PL-MSCs-Exos). They discovered that PL-
MSCs-Exos promoted the differentiation of human myoblasts, suppressed the expression
of fibrosis-related genes in myoblasts from DMD patients, reduced the expression of TGF-β
in mdx mice, and alleviated fibrosis. These beneficial effects were attributed to the transfer
of miR-29c from the exosomes.

5.2.2. miR-22

Recent studies have highlighted the potential of MSCs to confer beneficial effects
through paracrine mechanisms, whereby they release advantageous factors [93]. Exosomes
play a pivotal role in the transport of these paracrine factors, and the miRNAs encapsulated
within exosomes can orchestrate various biological processes in recipient cells [42]. In a
particular study by Feng [64], it was observed that MSCs, after ischemic preconditioning
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(IPC), release exosomes enriched with miR-22. Subsequently, when these exosomes are
internalized by cardiomyocytes, miR-22 exerts its function by directly targeting methyl
CpG binding protein 2 (Mecp2), thereby inhibiting cardiomyocyte apoptosis. In vivo exper-
iments further validated the capacity of MSC-derived exosomes (MSC-Exos) to significantly
mitigate cardiac fibrosis.

5.2.3. miR-126

Recent studies have demonstrated that adipose-derived stem cells (ADSCs) possess the
capacity to secrete numerous cytokines and growth factors, which contribute to their repar-
ative potential following stem cell mobilization or transplantation—a valuable approach
for treating MI [94]. However, when ADSCs are transplanted into the inflammatory and
ischemic microenvironment of acute myocardial infarction (AMI), the outcomes have often
been suboptimal [95,96]. In a study by Luo [65], it was observed that overexpressing miR-
126 in ADSC-derived exosomes had a beneficial impact on hypoxia-induced cardiomyocyte
injury. This effect was achieved by not only downregulating the expression of inflammatory
factors in cardiomyocytes but also inhibiting the expression of fibrosis-related proteins in
H9c2 cells. Furthermore, it significantly facilitated microvascular generation and migration.

5.2.4. miR-146a

Several studies have demonstrated that early growth response factor 1 (EGR1) can
trigger myocardial damage following AMI. Through bioinformatics analysis, it has been
revealed that miR-146a has the potential to regulate the expression of EGR1. In a study
conducted by Pan et al. [66], exosomes derived from ADSCs were isolated. These exo-
somes, enriched with miR-146a, exhibited a significant capacity to suppress AMI-induced
apoptosis, inflammation, and fibrosis. MiR-146a exerts its effects by interacting with the
3′-UTR of EGR1, leading to the downregulation of post-transcriptional EGR1 expression
and ultimately mitigating AMI or hypoxia-induced TLR4/NFκB signaling.

5.2.5. miR-210

Hypoxic preconditioning has been shown to enhance the biological activity of MSCs,
thus improving the effectiveness of MSC transplantation in treating MI [97–99]. In a past
study [67], the researchers explored whether exosomes derived from hypoxia-treated MSCs
(ExoH) outperformed those from normal-oxygen-treated MSCs (ExoN) in terms of myocar-
dial repair. The results indicated that ExoH significantly increased the survival rate of mice
with MI, reduced infarct size, and improved cardiac function. Following microarray-based
miRNA profiling of ExoH and ExoN and reference to the published literature, the study
focused on miR-21, which is highly upregulated under hypoxic conditions. According to
literature reports, neutral sphingomyelinase 2 (nSMase2) serves as a critical regulator of
exosome biogenesis and secretion [100]. To ascertain whether hypoxia-enhanced exosomal
miR-210 expression is modulated in an nSMase2-dependent manner, the authors inhibited
nSMase2 activity in MSCs under hypoxic conditions using the selective inhibitor GW4869.
Subsequently, they observed a dose-dependent reduction in miR-210 levels in exosomes
following treatment with GW4869. Notably, the expression of neutral sphingomyelinase 2
(nSMase2) in ExoH was significantly elevated, leading to an increase in the expression of
miR-210. This upregulation of miR-210 resulted in heightened vascular density, reduced
cardiomyocyte apoptosis, decreased fibrosis, and enhanced recruitment of cardiac progeni-
tor cells in the infarcted heart. The authors postulate that the enhanced cardioprotective
effect of exosomes derived from hypoxia-treated MSCs can be attributed to the increased
expression of miR-210.

5.2.6. miR-24

Shao [68] found that miR-24 is a major component of umbilical cord mesenchymal stem
cell (UMSC)-derived exosomes by miRNA sequencing, and a bioinformatics analysis sug-
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gested that Bim may be a target gene for miR-24. Their results suggest that UMSC inhibits
cardiac fibrosis and restores cardiac function through the exosome/miR-24/Bim pathway.

5.2.7. miR-671

miR-671 [69] contained in exosomes derived from ADSCs inhibited Smad2 phospho-
rylation by targeting the transformation of growth factor β receptor 2 (TGFBR2), improved
cardiomyocyte viability, reduced cardiomyocyte apoptosis, and alleviated myocardial
fibrosis and inflammation.

5.3. Macrophages-Derived Exosomal miRNA
miR-155

Inflammation plays a crucial role in heart damage. Wang et al. [70] observed an in-
crease in miR-155 expression within cardiac macrophages and fibroblasts in mice following
MI. Notably, the primary miR-155 transcript (pri-miR-155) was exclusively expressed in
macrophages. Macrophage-derived exosomes facilitate the transfer of miR-155 to cardiac
fibroblasts. Once in fibroblasts, miR-155 binds to the 3′UTR terminus of Son of Sevenless 1
(Sos1), a dual guanine nucleotide exchange factor crucial for cell growth regulation and in-
teraction with Ras [101]. This interaction enhances ERK activity by increasing the formation
of the Grb2-Sos1 complex [102], consequently promoting cell proliferation. However, miR-
155 downregulates the level of Sos1 protein in cardiac fibroblasts, thereby inhibiting the
proliferation of cardiac fibroblasts. Simultaneously, it promotes inflammation by reducing
the expression of Suppressor of Cytokine Signaling 1.

5.4. Endothelial Cells-Derived Exosomal miRNA
5.4.1. miR-19a-3p

Low-energy shock wave therapy (SWT) is a highly effective non-invasive method,
well-documented for its efficacy in inducing fibroblast angiogenesis [103] and its associated
benefits. While there is a wealth of literature on the positive effects of SWT, there remains
limited understanding of the underlying mechanisms at play. Recently, a study [104]
proposed that RNA release via exosomes may underpin the actions of SWT. Another
article [71] discovered that mechanical stimulation of ischemic muscle with SWT triggers the
release of extracellular vesicles by endothelial cells. Upon characterization of these vesicles,
the researchers identified exosomes with angiogenic properties, promoting endothelial
angiogenesis and cell proliferation by activating protein kinase B (Akt) and extracellular-
signal regulated kinase (ERK).

Through miRNA and transcriptomic sequencing of these exosomes, the authors pin-
pointed miR-19-3a as the key molecule within them. Injecting miR-19-3a into the my-
ocardium of mice undergoing left anterior descending (LAD) artery ligation induced
angiogenesis, inhibited fibrosis, and improved cardiac function following ischemia.

5.4.2. miR-10b-5p

Current approaches to treating cardiac fibrosis mainly revolve around cell-based
therapies. In a recent study [72], researchers explored changes in the antifibrotic effects of
ECFC-derived exosomes under hypoxic conditions and the underlying mechanisms. They
collected ECFC-derived exosomes under normal oxygen conditions (nor-exo) and hypoxia
(hyp-exo) regulation. Their findings revealed a significant reduction in the content of miR-
10b-5p in hyp-exo compared to nor-exo. Moreover, the expression of N-SMase2 was also
markedly decreased. A dual-luciferase reporter gene assay confirmed that fibrosis-related
genes, SMAD-specific E3 ubiquitin protein ligase 1 (Smurf1) and histone deacetylase 4
(HDAC4), were downstream targets of miR-10b-5p. This suggests that hypoxia inhibited
the expression of miR-10b-5p, consequently diminishing its anti-fibrotic effects.
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5.5. Cardiomyocytes-Derived Exosomal miRNA
5.5.1. miR-208a

Recent studies have revealed that the pathogenesis of cardiac fibrosis is not solely
associated with activated cardiac fibroblasts [70], as cardiomyocytes may also play a crucial
role [105]. Nevertheless, the specific role and mechanisms of cardiomyocytes in cardiac
fibrosis following myocardial infarction remain unclear.

In a study by Yang [73], a key gene, miR-208a, was identified through a comparison
of differentially expressed cardiac-specific miRNAs in Doxorubicin-induced fibrotic rat
models and LAD coronary ligation-induced fibrotic rat models. The researchers then
transferred exosomes isolated from cardiomyocytes in the fibrosis model into rats, where
they observed an upregulation of miR-208a in both cardiomyocytes and cardiomyocyte-
derived exosomes in the two cardiac fibrosis models. Notably, these exosomes can be
transferred to cardiac fibroblasts, binding to the target gene, dual-specificity tyrosine-
phosphorylation-regulated kinase 2 (Dyrk2), thereby promoting fibroblast proliferation
and myofibroblast differentiation, ultimately contributing to cardiac fibrosis.

5.5.2. miR-494-3p

Recent research [73] has highlighted the role of cardiomyocyte-fibroblast cross-talk
in MI-induced heart failure. Cardiomyocytes have been identified as key contributors
to cardiac fibrosis through the secretion of exosomes containing specific miRNAs. Previ-
ous studies [106] have established that miRNAs from cardiomyocytes regulate Pellino1
(Peli1)-mediated NF-κB and AP-1 activation. In an extension of this work, Tang et al. [74]
discovered that the absence of Peli1 in cardiomyocyte-derived exosomes mitigates pressure
overload and mechanical stretch-induced cardiac fibrosis. Through miRNA microarray
analysis and qPCR of exosomes released by cardiomyocytes, the researchers identified
miR-494-3p as a downstream target of Peli1. Mechanistically, Peli1 facilitated the expression
of miR-494-3p via NF-κB/AP-1 in cardiomyocytes. Subsequently, miR-494-3p induced
activation in cardiac fibroblasts by inhibiting PTEN and enhancing the phosphorylation of
AKT, SMAD2/3, and ERK, thus promoting fibrosis.

5.5.3. miR-378

Another study investigated the impact of exosomes released by cardiomyocytes on
fibroblasts in a model of fibrosis induced by transverse aortic constriction (TAC) and stretch-
ing silicon dishes [75]. The research revealed that introducing miR-378 mimics (Agomir)
into cardiomyocytes and co-culturing cardiomyocytes with fibroblasts effectively sup-
pressed fibrotic responses in both models. These responses included mitigating myocardial
fibrosis, reducing fibroblast proliferation, and decreasing the expression of collagen and
matrix metalloproteinases (MMPs) at the protein and gene levels. The study unveiled that
miR-378 derived from cardiomyocytes is conveyed in extracellular vesicles, thereby inhibit-
ing p38 (mitogen-activated protein kinase) MAPK phosphorylation in fibroblasts through
the targeting of MKK6. This process contributes to the attenuation of myocardial fibrosis.

5.5.4. miR-29b, miR-455

Exercise has been demonstrated to alleviate diabetes complications, including heart
dysfunction in individuals with diabetes [107]. Studies have shown that the deletion of
the matrix metalloproteinase-9 (MMP9) gene can enhance the contractile function [108]
of cardiomyocytes in diabetic patients, thereby promoting cardiac repair processes [109].
Consequently, the molecular mechanism underlying the positive effects of exercise may be
associated with the reduction of MMP9 levels in the aorta [110].

Exosomes are known to play a pivotal role in heart repair and are considered promis-
ing therapeutic candidates. As a result, some researchers [76] argue that the molecular
mechanism behind the benefits of exercise could be linked to the release of exosomes
containing miRNAs during physical activity. These miRNAs are believed to inhibit the
expression of MMP9. In a study by Chaturvedi et al. [76], it was found that miR-455
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and miR-29b present in exosomes secreted by cardiomyocytes could bind to the 3′UTR of
MMP9, leading to the downregulation of MMP9 expression. This downregulation helps
alleviate the detrimental effects of MMP9 on extracellular matrix remodeling and reduces
fibrotic responses.

5.5.5. miR-210-3p

In a study by Hao et al. [77], miRNA sequencing analysis revealed a significant
increase in the expression of miR-210-3p in exosomes secreted by atrial myocytes and the
serum of patients with AF. Knocking down miR-210-3p was found to reduce the incidence
of AF, inhibit the proliferation of atrial fibroblasts, and reduce collagen synthesis, thus
improving Ang II-induced atrial fibrosis. Further analysis through mRNA sequencing and
dual-luciferase reporter gene assays identified glycerol-3-phosphate dehydrogenase-like
(GPD1L) as the downstream target of miR-210-3p. GPD1L was shown to regulate atrial
fibrosis through the phosphoinositide-3-kinase (PI3K)/AKT signaling pathway.

5.5.6. miR-23a

Exosomes derived from atrial myocytes of Ang II-treated mice with overexpressed
NRON were isolated and co-cultured with RAW264.7 macrophages. Subsequently, mouse
fibroblasts were cultured using the medium conditioned by RAW264.7 macrophages treated
as described above. In a study conducted by Li [78], it was observed that NRON reduced
the levels of miR-23a in exosomes derived from atrial myocytes by inhibiting NFATc3
nuclear transport. This led to the polarization of M2 macrophages, downregulation of
fibrosis markers in atrial fibroblasts, and the mitigation of atrial fibrosis.

5.6. Cardiosphere-Derived Cells-Derived Exosomal miRNA
miR-92a

After heart injury, Cardiosphere-derived cells (CDCs) are known to initiate the repair
process aimed at mending the damaged heart [111,112]. Clinical studies have demon-
strated that CDCs exert their therapeutic effects by releasing extracellular vesicles, in-
cluding exosomes, which stimulate anti-inflammatory, anti-fibrotic, pro-angiogenic, and
pro-cardiogenic pathways [113]. This has positioned CDCs as potential candidates for en-
hancing biological activity and treating various diseases. However, the role of CDCs can be
inconsistent, and the underlying molecular mechanisms remain unclear, posing challenges
to their clinical applications. In a study by Ibrahim [79], transcriptomic analysis of CDCs
obtained from human donors revealed a correlation between the therapeutic efficacy of
CDCs and the Wnt/β-catenin signaling pathway, along with the levels of β-catenin pro-
tein. Additionally, significantly increased expression of miR-92a, a known enhancer of the
Wnt/β-catenin pathway, was observed in exosomes derived from CDCs. Transplantation
of skin fibroblasts that overexpress β-catenin and the transcription factor Gata4 into mdx
mouse models of DMD resulted in improvements in skeletal-muscle fibrosis.

5.7. Cardiac Progenitor Cells-Derived Exosomal miRNA
5.7.1. miR-133a

Transplantation of mature cells or stem cells is a widely adopted approach for the
treatment of cardiovascular diseases [114]. Among these, the use of cardiac stem/progenitor
cells (CSCs/CPCs) with specific surface markers and substantial differentiation potential
holds promise [115]. MiR-133a [80] is a muscle-specific miRNA whose expression increases
progressively during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs).
Overexpression of miR-133a confers protection upon CPCs by targeting the pro-apoptotic
genes Bim and Bmf, preventing cell death. In a rat model of myocardial infarction, the
secretion of miR-133a by CPCs (miR-133a-CPCs) significantly enhances cardiac function by
reducing fibrosis and hypertrophy, promoting angiogenesis, and increasing cardiomyocyte
proliferation. Notably, these beneficial effects of miR-133a-CPCs are attributed to the
transportation of miR-133a within exosomes.
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5.7.2. miR-146a-5p

The exosomes released by cardiac resident mesenchymal progenitor cells (CPCs) are
enriched with miR-146a-5p, which plays a vital role in promoting cardiac repair following
AMI and ischemia-reperfusion injury [116]. In contrast, the combined administration of
Dox and Trz induced myocardial fibrosis, CD68+ inflammatory cell infiltration, increased
inducible nitric oxide synthase expression, and led to left ventricular dysfunction in rats.
However, treatment with isolated CPCs [81] and purified exosomes obtained from patients
undergoing cardiac surgery successfully reversed these adverse changes. This reversal
can be attributed to the abundance of miR-146a-5p in exosomes, which suppresses the
expression of genes encoding key signaling mediators within the inflammatory and cell-
death pathways, including Traf6, Smad4, Irak1, Nox4, and Mpo; promotes the survival of
cardiomyocytes; and mitigates cardiotoxicity.

5.8. Pluripotent Stem Cell-Derived Exosomal miRNA
5.8.1. miR-290-295 Cluster

Pluripotent stem cells with unparalleled differentiation potential include embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs), offering substantial promise
for cardiac regeneration [117]. Currently, exogenous stem cell therapy is a prominent
approach for treating cardiovascular diseases.

Mouse embryonic stem cell-derived exosomes (mESC Ex) transport miR-294 [55] from
ESCs to CPCs, thereby enhancing the survival and proliferation of CPCs. These exosomes
also promote angiogenesis and cardiomyocyte survival, reduce post-infarction fibrosis, and
mitigate the risks associated with the direct transplantation of embryonic stem cells or their
derivatives, such as teratoma formation.

5.8.2. miR-373

IPSCs possess the capacity to differentiate into various progenitor cell types, paving
the way for the advancement of cell therapies. Cardiac progenitors derived from iPSCs
have been utilized in both MI animal models [118] and human subjects [119], showing
promising outcomes through the secretion of EVs containing multiple miRNAs, proteins,
and other factors that mediate cardiac protection. In this study [82], the authors generated
pluripotent CPCs from human-induced pluripotent stem cells (hiPSCs) using the small
molecule ISX-9, known for its antioxidant and regenerative properties. It was observed
that ISX-9-induced CPCs secreted EVs (160–170 nm in diameter) enriched with exosome-
specific markers such as Tsg101, CD9, Hsp70, flotillin-1, and calnexin (referred to as
EV-CPCISX-9). Furthermore, miR-373, highly abundant in EV-CPCISX-9, was found to
target two genes, growth differentiation factor 11 (GDF-11) and Rho Associated Coiled-Coil
Containing Protein Kinase 2 (ROCK-2), thereby inhibiting the expression of fibrosis-related
genes (MMP-2, TIMP-2, TIMP-1, FN1, CTGF, and MMP-9), suppressing fibroblast-to-
myofibroblast transdifferentiation, and exerting significant anti-fibrotic effects.

5.9. Immune Cells-Derived Exosomal miRNA
miR-142-3p

Sustained inflammation mediated by the infiltration of CD4+ T cells into the heart is
strongly associated with the progression of cardiac fibrosis and dysfunction [120]. Studies
have also indicated that the deactivation of CD4+ T cells can mitigate cardiac hypertrophy
and fibrosis induced by pressure overload [121]. These findings suggest that activated
CD4+ T cells contribute to adverse cardiac remodeling, but the specific mediators of this
process require further investigation.

miR-142-3p, enriched in exosomes (referred to as CD4-activated exosomes) from acti-
vated CD4+ T cells, directly targets and inhibits the expression of adenomatous polyposis
coli (APC). APC is a known negative regulator of the WNT signaling pathway. By inhibit-
ing APC, miR-142-3p activates the WNT signaling pathway and subsequently stimulates
myoblasts [83]. This activation, however, can induce the transformation of myocardial
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fibroblasts into myofibroblasts, exacerbating myocardial fibrosis and contributing to post-
infarction dysfunction.

5.10. Serum-Derived Exosomal miRNA
5.10.1. miR-21

Human peripheral blood-derived exosomes are particularly promising for use as a
drug delivery system due to their ability to carry miRNAs, ease of obtainment, and ap-
plicability in this context. One miRNA of significant interest is miRNA-21, which plays
a crucial role in the development of cardiac fibrosis in response to MI. It achieves this
by targeting various molecules, including SMAD family member 7 (Smad7), sprout RTK
signaling antagonist 1 (SPRY1), and phosphatase and tensin homolog (PTEN) [122–124].
MiRNA-21 has also been demonstrated to enhance fibrosis in a mouse MI model [84],
making it an ideal candidate for therapeutic applications due to its role in regulating gene
expression during fibrosis.

5.10.2. miR-320a

In Wang’s study [85], serum exosomes from 10 patients with CHF and 5 healthy
individuals were analyzed. The results revealed that CHF patients exhibited higher levels
of serum miR-320a expression and soluble growth stimulation expressed gene 2 (sST2) in
comparison to the healthy controls. Notably, the levels of serum miR-320a were found to
be correlated with clinical markers of CHF. Furthermore, miR-320a expression in exosomes
was also notably elevated in CHF patients when compared to healthy individuals. In
HEH2 cells, the overexpression of serum exosomal miR-320a was observed to promote the
proliferation of myocardial fibroblasts by upregulating the expression of collagen I, collagen
III, α-smooth muscle actin (α-SMA), and phosphorylated (p)-mTOR (ser 2448)/mTOR,
p-Akt (ser 473)/Akt, p-Akt (thr 308)/Akt, as well as the phosphoinositide-3-kinase catalytic
α polypeptide gene (PIK3CA), thus activating the PIK3CA/Akt/mTOR signaling pathway.
The findings suggest that miR-320a in serum exosomes may hold promise as a potential
biomarker for CHF.

5.10.3. miR-425, miR-744

In a recent investigation [86], researchers investigated the expression of nine candidate
miRNAs within plasma exosomes from heart failure patients. Their observations revealed
distinct alterations in the levels of miR-21, miR-425, and miR-744. Moreover, the study
revealed that the downregulation of miR-425 and miR-744, which are associated with
elevated expression of collagen 1 and α-SMA, also manifested in Ang II-stimulated cardiac
fibroblasts. This implies that miR-425 and miR-744 may serve pivotal roles in the processes
of cardiac fibrosis and heart failure. They do so by modulating the expression of TGFβ1,
consequently influencing collagen production and the overall fibrotic response.

5.10.4. miR-124-3p

In a study by Zhu [87], miR-124-3p with functional significance was discovered in
exosomes extracted from the plasma of three patients with atrial fibrillation and three
patients with sinus rhythm (SR). This miRNA directly targets AXIN1, leading to a reduction
in its expression. As a result, miR-124-3p upregulates the expression of collagen I and
α-SMA by modulating the WNT/β-catenin signaling pathway, enhancing the viability and
proliferation of myocardial fibroblasts and exacerbating myocardial fibrosis.

5.11. Adipocyte-Derived Exosomal miRNA
miR-23a-3p

Ang II binds to its heart-specific receptor, Ang II receptor type 1 (AT1R), stimulating
the differentiation of fibroblasts into myofibroblasts and promoting collagen secretion by
cardiac fibroblasts, thus contributing to the progression of myocardial fibrosis [125,126].
Adipose tissue plays a significant role in the development and progression of cardiovascular
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diseases by producing various hormones and cytokines that regulate the function of distant
organs [127,128]. Specifically, epididymal white adipose tissue (eWAT) releases pro-fibrotic
cytokines and adipokines that can accelerate heart aging [129].

Under the influence of Ang II, exosomes derived from adipocytes transport miR-
23a-3p to CFs and target RAP1, which promotes excessive collagen deposition and the
transformation of fibroblasts into myofibroblasts. These processes actively contribute to the
pathogenesis of myocardial fibrosis and cardiac dysfunction [88].

5.12. Others
5.12.1. miR-29b

After implanting a biocompatible microneedle (MN) patch loaded with exosomes
containing miR-29b mimics with anti-fibrotic activity into a mouse MI model [89], the
inflammation in the infarcted heart reduced, the infarct size diminished, the expression of
fibrosis-related proteins decreased, fibrosis was inhibited, and cardiac function improved.

5.12.2. miR-450a-2-3p

Exosomes extracted from pericardial fluid (PF) surrounding the heart are enriched with
LINC00636 and miR-450a-2-3p [90], both of which are involved in the anti-fibrotic process.
Overexpression of miR-450a-2-3p inhibits the expression of MAPK1 in cardiac fibroblasts,
thereby inhibiting the expression of α-SMA, collagen I, and collagen III, preventing the
proliferation of cardiac fibroblasts and alleviating myocardial fibrosis.

6. Conclusions and Prospect

Myocardial fibrosis is closely associated with high cardiovascular mortality and a
low survival rate. It serves as a hallmark of heart remodeling and represents a critical
pathological basis for the development of heart diseases and the deterioration of heart
function. Effectively managing myocardial fibrosis is of paramount importance for pre-
venting and treating heart diseases and enhancing patients’ quality of life. Exosomes, as
emerging mediators of intercellular communication, play a pivotal role in the initiation and
progression of myocardial fibrosis by delivering miRNAs and regulating protein expression
in target cells. Although there is a relatively low abundance of miRNA in EVs, there
is approximately one miRNA per 10–100 EVs [130,131], its functions of regulatory [42],
being biomarkers [132], and delivering drugs [133] have been well documented. Given
the significant influence of miRNAs on both adaptive and maladaptive heart remodeling
and the potential of exosomes as carriers for these miRNAs, exosomal miRNAs hold great
promise as a burgeoning research avenue in the field of myocardial fibrosis treatment and
cardiovascular medicine as a whole, thus offering a promising novel approach for the
diagnosis and treatment of cardiovascular diseases.

Nevertheless, in the treatment of complex CVDs, the versatile biological functions of
exosomal miRNAs introduce an element of therapeutic variability. Exosomes, as carriers
for targeted biological therapies, offer the advantage of multi-directional target regulation
and hold significant promise. Conversely, several challenges related to precise expression
and targeted delivery must still be addressed. Furthermore, exosomes carry a multitude of
variable miRNAs that regulate intricate signal transduction pathways, exerting a global
regulatory influence on recipient cells. Yet, due to the complexity of this regulation, fully
comprehending the functions of exosomal miRNAs remains a challenge.

Currently, various methods for exosome isolation exist, but it is important to recognize
that different purification strategies may influence the detection of exosomal miRNA.
Therefore, future investigations should explore the measurement of miRNA-enriched
exosome subsets and conduct quantitative studies to determine functional thresholds
for exosome miRNAs. A deeper comprehension of the biological functions of exosomal
miRNAs and their regulatory mechanisms in myocardial fibrosis could lay the foundation
for their clinical translation.
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