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Abstract: Red mud (RM), a bauxite residue, contains hazardous radioactive wastes and alkaline
material and poses severe surface water and groundwater contamination risks, necessitating recycling.
Pretreated RM can be used to make adsorbents for water treatment. However, its performance is
affected by many factors, resulting in a nonlinear correlation and coupling relationship. This study
aimed to identify the best formula for an RM adsorbent using a mathematical model that examines
the relationship between 11 formulation types (e.g., pore-assisting agent, component modifier, and
external binder) and 9 properties (e.g., specific surface area, wetting angle, and Zeta potential). This
model was built using a back-propagation neural network (BP) based on single-factor experimental
data and orthogonal experimental data. The model trained and predicted the established network
structure to obtain the optimal adsorbent formula. The RM particle adsorbents had a pH of 10.16,
specific surface area (BET) of 48.92 m2·g−1, pore volume of 2.10 cm3·g−1, compressive strength (ST)
of 1.12 KPa, and 24 h immersion pulverization rate (ηm) of 3.72%. In the removal of total phosphorus
in flotation tailings backwater, it exhibited a good adsorption capacity (Q) and total phosphorous
removal rate (η) of 48.63 mg·g−1 and 95.13%, respectively.

Keywords: back-propagation neural networks; red mud; optimization formulations; wastewater treat-
ment

1. Introduction

Red mud (RM) is a bauxite residue produced in the alumina industry. On average,
1–1.5 tons of RM are produced for every ton of alumina produced [1,2]. The abandoned
RM not only occupies a large area of land but also contains thorium, potassium, and other
radioactive elements [3,4], which are hazardous solid wastes. In addition, the RM is an
alkaline material and the alkali dissolves in the rainwater and contaminates the surface
water and groundwater, causing severe environmental pollution [5]. Therefore, multichan-
nel and massive recycling of RM resources is necessary. RM has a small particle diameter
and a pore frame structure. It has a substantially larger pore ratio than typical soil with
a large specific surface area. Hematite, goethite, and other minerals can also be found in
the RM [6–8]. Pretreated RM can adsorb radioactive substances such as Co2+ and Sr2+ [9],
heavy metal ions such as Cu2+ and Pb2+ [10], non-metallic hazardous compounds such as
PO4

3− and As3+, and some organic contaminants [11,12]. It can also be used for wastew-
ater decolorization and clarity [13,14] and for calcination in the range of 500 ◦C–800 ◦C
to produce macroporous iron and carbon-combined calcined and carbon-calcined red
mud. The testing results show that RM calcined with iron and carbon additives achieved
the highest U adsorption capacity (59.45 mg·g−1) under proper calcination temperature
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(i.e., 600 ◦C), pH of 2.5, and optimum reaction conditions. Lyu, F, et al. [15] used a hydrother-
mal approach to modify RM by adsorbing Pb(II) ions in aqueous solutions using colloidal
silica and sodium hydroxide under mild conditions. According to the experimental results,
the saturated adsorption capacity of the modified RM for Pb(II) ion is ~564.97 mg·g−1, and
the Langmuir constant KL is 0.23, which suggests that the adsorption process is favorable.

Using RM as the primary adsorbent, a spherical RM particle adsorbent with a double-
layer structure was prepared in this study. The RM particle adsorbents have a high
adsorption capacity and strong mechanical properties for phosphorus in phosphate ore
flotation wastewater. The experimental results show that the composition of the raw
material has a great influence on the adsorption efficiency of the adsorbent. Many factors
affect the performance of the adsorbent, since most parameters of the adsorbent change
nonlinearly, traditional methods are inadequate to determine the optimal formulation for
adsorbents. The current material formulation optimization methods mainly include the
orthogonal experimental methods [16] and the response surface methodology (RSM) [17].
For complex systems with multivariable, nonlinear, and highly coupled variables, the
traditional data analysis methods cannot satisfy the requirements. In 1986, Romelhart and
McClelland proposed the error back-propagation (BP) algorithm. Since the training of
the multilayer feedforward network often uses this algorithm, the multilayer feedforward
network is often called the BP network. Many scientists [18–20] developed removal rate and
adsorption capacity models using artificial neural network methods. The results show that
these models can predict the removal rate and adsorption capacity of ferricyanide using
active RM by changing input variables. Jie [21] used RSM and artificial neural network
(ANN) to study the effects of HCl concentration, temperature, and time on the adsorption
of phosphorus by activated bauxite; the results show that the prediction accuracy of the
artificial neural network is better than that of RSM. Therefore, the BP neural network can
be well applied to multifactor formulation optimization, realizing the transformation from
a linear model to a nonlinear model, and can predict the experimental results well.

Research showed that many factors affect the adsorption of RM adsorbent, including
the preparation methods, raw material formulation, drug system, operating conditions, and
adsorption state. By establishing a multi-input and multi-output comprehensive evaluation
model based on a BP neural network model, the sensitive factors of the adsorption process
are obtained; this allows a comprehensive evaluation of the adsorption performance. With
regard to the parameter optimization for adsorption, it is a dynamic process with many
influencing parameters, using a neural network to optimize the parameters can greatly
reduce the number of tests, modify the test’s precision, and improve the efficiency.

In the adsorption theory of adsorbents, generally good adsorbents, along with the
research of adsorption, have to be considered for desorption, regeneration, and utiliza-
tion [22]. Judging the combined effect of the influencing factors on the RM adsorbent
is mainly based on the following: the adsorbent must have a large specific surface area,
high adsorption capacity and removal amount, and a certain degree of water resistance
strength, be capable of regeneration and reuse, cheap, and not pollute the environment.
Therefore, in this paper, fly ash (FA) is used to adjust the adsorption capacity, hydrogen
peroxide foaming agent is used to adjust the specific surface area, and surfactant is used
to adjust the wettability. In contrast, cement and sodium sulfate are used to enhance the
mechanical properties of red mud absorbent, so as to make the pulverization rate of red
mud in water lower, thus achieving the purpose of reuse. This paper presents an integrated
computational intelligence approach based on a hybrid strategy of neural networks and
a multiobjective evolutionary algorithm. The BP neural network was used to establish
a multi-input and multi-output neural network model to optimize the formulation. The
experimental data were trained to obtain a neural network model that reflected the non-
linear mapping relationship between the parameter vector space and target vector space
during parameter optimization. The trained neural network model was embedded into the
multiobjective evolutionary algorithm, which is used as the individual fitness evaluation
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function in the evolutionary process. Hence, the multiobjective evolutionary algorithm
could be directly applied in product parameter optimization design.

2. Results and Analysis
2.1. Network Training and Testing

In order to obtain a highly accurate BP neural network model, we configured the
parameters and input training data pairs to train the network; a partial of the training
input and output data are given in Tables 1 and 2. The network training processing is
shown in Figure 1, where Figure 1a is an 11 × 14 × 9 three-layer BP neural network model,
Figure 1b shows the epochs and MSE curve, Figure 1c,d shows the target–output and the
epochs–gradient, epochs–mu, and epochs–val fail curves. For a training time of 4 min
and 30 s at 10,000 epochs, the network error converged to 0.0010605, and the training
correlation coefficient R2 = 0.99879, gradient = 4.9169 × 10−6, mu = 1 × 10−9, val fail = 0,
and RMSE = 0.0235, which indicates that the model is not overfitted, the projected accuracy
was achieved.

Table 1. Partial input training data.

No. RM/g FA/% Water–Cement A2C/% HPMC/% Na2SiO4/% KH-602/% H2O2/% MnO2/% HCl/% SDBS/%

1 285 5.1 1:3 8 0.25 2 0.1 0 0 0 0
2 285 5.1 1:3 8 0.25 2 0.1 0.4 0.08 0 0
3 285 5.1 1:3 8 0.25 2 0.1 0.8 0.16 0 0
4 285 5.1 1:3 8 0.25 2 0.1 1.2 0.24 0 0
5 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0 0
6 285 5.1 1:3 8 0.25 2 0.1 2.0 0.4 0 0
7 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.25 0
8 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.5 0
9 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0
10 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 1 0
11 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 1.25 0
12 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0
13 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0.05
14 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0.1
15 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0.15
16 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0.2

Table 2. Partial output training data.

No. BET/m2·g θ/◦ ζ/mV Q/mg·g−1 η/% ST/KPa ηm/% K/% pH

1 19.28 18.9 −18.98 25.98 50.82 1.46 1.20 6.46 11.69
2 23.95 10.6 −8.01 35.13 68.72 1.32 1.50 8.42 11.55
3 25.79 10.6 −7.98 38.59 75.49 1.28 1.60 9.18 11.53
4 29.66 9.1 −6.47 42.13 82.41 1.21 2.70 11.47 11.49
5 31.45 6.6 −5.62 43.52 85.13 1.11 3.50 12.32 11.56
6 35.23 5.5 −5.41 44.67 87.38 0.92 4.20 14.48 11.43
7 39.87 11.0 −21.9 45.04 88.11 1.12 3.78 14.52 11.37
8 43.24 14.9 −13.23 46.16 90.30 1.08 4.00 15.11 10.98
9 47.72 10.0 −7.83 47.44 92.80 1.03 4.16 16.42 10.21

10 34.58 9.8 −7.05 44.23 86.52 0.99 4.22 17.16 10.01
11 34.17 8.1 −3.81 44.01 86.09 0.97 4.56 17.99 9.68
12 29.76 14.4 −13.44 42.44 83.02 1.22 4.15 16.23 10.24
13 30.84 11.7 −15.11 45.41 88.83 0.96 4.23 17.19 10.02
14 46.57 10.3 −15.38 47.12 92.18 0.95 4.22 16.56 10.31
15 48.16 8.5 −15.86 48.12 94.13 0.97 4.19 17.45 10.23
16 48.23 8.2 −17.15 48.53 94.93 0.94 4.20 18.01 10.42
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Figure 1. Training process: (a) 11 × 14 × 9 three-layer BP neural network model; (b) epochs–MSE
curve; (c) target–output curve and (d) epochs–gradient, epochs–mu, and epochs–val fail curves.

The trained network was tested using testing samples; a partial of the testing input
and output data are given in Tables 3 and 4, and the corresponding experimental values
are given in Table 5. By comparing the testing values and the experimental values in
Tables 4 and 5, the MSE = 0.0011, RMSE = 0.0326, and R2 = 0.99892. A comparison of testing
values and experimental values of the nine output parameters of the network is shown in
Figure 2a–i. The RMSE of each output parameter is shown in the last row of Table 4; it can
be seen that the fitting value is consistent with the experimental value, the network error
is modest, and the convergence is good, so the BP neural network model can be used for
parameter optimization and prediction [22].
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Table 3. Partial input testing data.

No. RM/g FA/% Water–Cement A2C/% HPMC/% Na2SiO4/% KH-602/% H2O2/% MnO2/% HCl/% SDBS/%

1 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0.25
2 285 5.1 1:3 8 0.25 2 0.1 0.8 0.16 0.25 0.10
3 285 5.1 1:3 8 0.25 2 0.1 0.8 0.16 0.50 0.15
4 285 5.1 1:3 8 0.25 2 0.1 0.8 0.16 0.75 0.20
5 285 5.1 1:3 8 0.25 2 0.1 0.8 0.16 1.00 0.25
6 285 5.1 1:3 8 0.25 2 0.1 1.2 0.24 0.25 0.20
7 285 5.1 1:3 8 0.25 2 0.1 1.2 0.24 0.50 0.25
8 285 5.1 1:3 8 0.25 2 0.1 1.2 0.24 0.75 0.10
9 285 5.1 1:3 8 0.25 2 0.1 1.2 0.24 1.00 0.15
10 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.25 0.25
11 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.50 0.20
12 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 0.75 0.15
13 285 5.1 1:3 8 0.25 2 0.1 1.6 0.32 1.00 0.10
14 285 5.1 1:3 8 0.25 2 0.1 2.0 0.40 0.25 0.15
15 285 5.1 1:3 8 0.25 2 0.1 2.0 0.40 0.50 0.10
16 285 5.1 1:3 8 0.25 2 0.1 2.0 0.40 0.75 0.25

Table 4. Partial output testing values.

No. BET/m2·g θ/◦ ζ/mV Q/mg·g−1 η/% ST/KPa ηm/% K/% pH

1 43.239 84.591 0.930 3.842 42.240 16.240 11.420 −16.430 7.900
2 44.450 86.962 0.960 3.867 41.231 17.130 10.980 −16.120 7.400
3 43.169 84.453 0.920 3.772 41.319 17.210 10.290 −15.340 7.400
4 44.589 87.232 0.910 3.700 42.450 16.300 11.180 −15.390 7.500
5 46.120 90.229 0.940 3.886 44.560 15.980 10.880 −14.290 7.200
6 46.529 91.022 0.920 3.935 43.779 16.420 10.210 −14.280 7.100
7 47.117 92.175 0.930 4.018 43.390 16.890 10.170 −14.110 7.200
8 47.218 92.375 0.910 3.918 44.560 16.560 11.420 −14.270 7.300
9 47.317 92.576 0.960 3.649 45.110 17.110 10.980 −13.990 6.900

10 46.428 90.834 0.970 3.776 46.120 17.200 10.290 −13.720 6.800
11 48.360 94.621 0.980 4.027 47.295 17.250 10.705 −14.490 7.850
12 47.208 92.352 0.940 4.092 46.210 17.230 11.880 −13.430 7.100
13 48.438 94.754 0.920 3.630 47.480 17.500 10.210 −13.010 6.500
14 47.122 92.167 0.910 3.946 48.120 16.980 10.170 −12.410 6.400
15 47.586 93.097 0.880 3.959 48.251 17.230 10.120 −12.150 6.400
16 47.616 93.156 0.860 4.041 48.990 17.360 10.030 −11.070 6.300

RMSE 0.0033 0.0039 0.0031 0.0014 0.0120 0.0070 0.0891 0.0312 0.0200

Table 5. Experimental values corresponding to the testing data in Table 3.

No. BET/m2·g θ/◦ ζ/mV Q/mg·g−1 η/% ST/KPa ηm/% K/% pH

1 44.92 7.6 −17.21 46.39 90.75 0.95 3.91 18.33 10.28
2 42.24 7.9 −16.43 43.24 84.59 0.93 3.87 16.24 11.42
3 41.23 7.4 −16.12 44.45 86.96 0.96 3.92 17.13 10.98
4 41.32 7.40 −15.34 43.17 84.45 0.92 3.88 17.21 10.29
5 42.45 7.50 −15.39 44.59 87.23 0.91 3.67 16.30 11.18
6 44.56 7.20 −14.29 46.12 90.23 0.94 3.89 15.98 10.88
7 43.78 7.10 −14.28 46.53 91.02 0.92 3.95 16.42 10.21
8 43.39 7.20 −14.11 47.12 92.17 0.93 3.96 16.89 10.17
9 44.56 7.30 −14.27 47.22 92.37 0.91 3.97 16.56 11.42

10 45.11 6.90 −13.99 47.32 92.57 0.96 3.64 17.11 10.98
11 46.12 6.80 −13.72 46.43 90.83 0.97 3.72 17.20 10.29
12 46.43 7.20 −13.12 48.57 95.17 0.99 3.98 17.05 11.18
13 46.21 7.10 −13.43 47.21 92.35 0.94 3.99 17.23 11.88
14 47.48 6.50 −13.01 48.44 94.75 0.92 3.65 17.50 10.21
15 48.12 6.40 −12.41 47.12 92.17 0.91 3.94 16.98 10.17
16 48.25 6.40 −12.15 47.59 93.09 0.88 3.98 17.23 10.12
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Figure 2. Comparison of experimental and testing values of the output parameters: (a) adsorption
capacity (Q); (b) removal rate (η); (c) compressive strength (ST); (d) immersion pulverization rate
(ηm); (e) specific surface area (BET); (f) water absorption rate (K); (g) pH; (h) Zeta potential (ζ); and
(i) wetting angle (θ).

2.2. Performance Analysis of RM Particle Adsorbents

From the above analysis, the established BP neural network has good accuracy and
can be used to calculate and analyze each influencing factor on the performance of red
mud adsorbent [22]. According to the method in Section 3.4.4 and the data thresholds in
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Table 6, we carried out a multipoint calculation and prediction of FA, A2C, HPMC, H2O2,
HCl, and SDBS, respectively. Firstly, we divided the thresholds of each input factor into
five equal parts, took five single-factor experimental points, and calculated their adsorption
performance parameters, which were expressed as data points. Then, according to the
thresholds of the input factors, we took 150 points from the smallest to largest and then
calculated its adsorption performance parameters, fitting the synthesis curve. We studied
the adsorption properties such as Q, η, ST, ηm, BET, K, pH, θ, and ζ to find the optimum
dosage of chemicals according to the performance. Subsequently, we prepared the qualified
adsorbent of red mud particles according to the optimum dosage of chemical formulation
and further verified its performance. For example, when we study the effect of FA on
the performance of the adsorbent, we can observe that among the whole formulation, the
allowable addition of FA is wt 8.5%, as shown in Table 6. We first set the value of other
agents and examine their average points at 1.7%, 3.4%, 5.1%, 6.8%, and 8.5%. We input
these values into the trained BP neural network to calculate the performance value of
5 points. Subsequently, we calculate the performance value from 0 to 8.5%, considering
150 points for point-by-point calculation, and then fit the curve, see Figure 3, to find the
best dosage point. The latter influencing factors are calculated in the same way, and no
more examples are given.

Table 6. The range of the optimized parameters.

Name of Component RM/g FA/% Water–
Cement A2C/% HPMC/% Na2SiO4/%

Range 275–300 1.7–8.5 1:3 2–10 0.05–0.25 2

Name of component KH-602/% H2O2/% MnO2/% HCl/% SDBS/%

Range 0.1 0.4–2 0.08–0.4 0.25–1.25 0.05–0.25
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2.2.1. Effect of FA on Adsorbent Properties

Fixing the amount of other agents, according to the threshold interval [0 wt 8.5%] of fly
ash in Table 6, from small to large in accordance with a certain step size, we take 150 points
into the optimized BP neural network for the calculation and inverse normalization and fit
the synthetic curve, as shown in Figure 3. As shown in Figure 3a–d, after adding FA to RM,
the removal rate of total phosphorus gradually increased, but FA reduced the adhesion
and strength of the adsorbent. When the amount of FA added was 8.5%, the removal
rate of total phosphorus reached 78.27%, while the pulverization rate reached 94.30%. As
can be seen, the specific surface area and water absorption increased with an increase in
FA content. As the FA content increased to 8.5%, the specific surface area increased to
26.98 m2·g−1, and the water absorption increased to 14.17%. FA is an acidic secondary
ash with fine particles and a large specific surface area [23]; the addition of FA results in
a smaller wetting angle, enhanced hydrophilicity, and reduced pH value. Furthermore,
the Zeta potential decreased first and then increased in the positive direction, which is
not conducive to the stability of a solution system but is beneficial to the adsorption of
anions [24,25].

2.2.2. Effect of Enhanced and Anti-Chalking Agents on the Adsorbent Properties

Fixing the amount of other agents, according to the threshold interval from wt 2% to
wt 8.5% of A2C in Table 6, from small to large in accordance with a certain step size, we take
150 points into the optimized BP neural network for the calculation and inverse normaliza-
tion and fit the synthetic curves as shown in Figure 4a–d. The enhanced and anti-chalking
agents used in this work are mainly the combined reagent A2C/HPMC/Na2SiO4/KH-602.
The influence of A2C on the performance of the adsorbent when the dose of fixed coupling
agent KH-602 was 0.1% is shown in Figure 4. When the dose of A2C was increased from 2%
to 10%, the compressive strength of the adsorbent increased from 0.58 KPa to 0.81 KPa, and
the pulverization rate decreased from 5.60% to 3.50%. Meanwhile, the adsorption capacity
of A2C for total phosphorus decreased from 37.22 mg·g−1 to 31.01 mg·g−1, and the removal
rate decreased from 72.81% to 60.66%; with additional A2C, the specific surface area of the
adsorbent and water absorption rate decrease. Adding A2C to the adsorbent increases the
pH and the wetting angle and weakens the hydrophilicity, while also increasing the Zeta
potential in a negative direction and weakening anion adsorption.

By fixing the additional amount of A2C to 8% and adding 2% Na2SiO4 and 0.1%
KH-602, a certain amount of HPMC was added to further adjust the mechanical properties
of the particle adsorbents. The influence of HPMC on the adsorbent properties is shown
in Figure 5a–d. Under identical conditions, the addition of HPMC had a great effect on
adsorbent performance. With the increase in the amount of HPMC added, the adsorption
capacity of the adsorbent for total phosphorus decreased. When the dose of HPMC
increased from 0.05% to 0.25%, the adsorption capacity of total phosphorus decreased from
30.56 mg·g−1 to 25.98 mg·g−1, and the removal rate decreased from 59.78% to 50.82%. But
the strength increased from 0.93 kPa to 1.46 kPa, and the pulverization rate of the particles
decreased significantly. When the dose of HPMC was 0.25%, the 24 h pulverization rate
decreased to 1.2%. The effects of HPMC on the specific surface area and water absorption
rate were similar to those of A2C. HPMC has little influence on pH, but it does raise
the wetting angle, weakens the hydrophilicity, increases the Zeta potential in a negative
direction, and develops the system in a stable direction, which is unfavorable adsorption.
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2.2.3. The Effect of Non-Thermal Pore-Forming Agent H2O2 on Adsorbent Properties

Fixing the amount of other agents, according to the threshold interval from wt 0.4%
to wt 8.5% of H2O2 in Table 6, from small to large in accordance with a certain step size,
we take 150 points into the optimized BP neural network for the calculation and inverse
normalization and fit the synthetic curves as shown in Figure 6. As can be seen from
Figure 6a–d, when the dose of H2O2 was 0.4–2%, the adsorption capacity of the adsorbent
on total phosphorus increased from 35.13 mg·g−1 to 44.67 mg·g−1, and the removal rate
increased from 68.72% to 87.38%, but the strength decreased from 1.32 kPa to 0.92 kPa.
Further, the water-immersion pulverization rate of the particles decreased, and the soaking
pulverization rate increased from 1.5% to 4.2%. The oxidation and foaming effects of H2O2
led to a rapid increase in the specific surface area of the adsorbent. When the dose of
H2O2 increased from 0.4% to 2.0%, the specific surface area of the adsorbent increased
from 23.95 m2·g−1 to 35.23 m2·g−1; thus, the water absorption rate also increased because
of the formation of more pores. With an increase in H2O2, some basic substances were
oxidized [23], and the pH value of RM tended to decrease; furthermore, the surface tension
decreased, and the surface energy increased. The liquid formed a continuous phase on
the solid surface, the wetting angle became smaller, and the Zeta potential changed in the
positive direction, which was beneficial for the adsorption of anionic pollutants.
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Figure 6. Influence of H2O2 on various adsorbent properties: (a) adsorption capacity (Q) and removal
rate (η); (b) compressive strength (ST) and immersion pulverization rate (ηm); (c) specific surface area
(BET) and water absorption rate (K); (d) pH, wetting angle (θ), and Zeta potential (ζ).

2.2.4. Effect of HCl on Adsorbent Properties

Calculating the properties of the adsorbent with the addition of hydrochloric acid
using the same method as mentioned above, the properties of the HCl-modified particle
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adsorbents are shown in Figure 7a–d. After adding H2O2 and MnO2 foaming agents, HCl
was added to activate the adsorbent, which further improved the porosity of the adsor-
bent [26]. When the dose of HCl was 0.75%, the adsorption capacity of total phosphorus
was 47.44 mg·g−1, and the removal rate was 92.80%. The strength was 1.03 kPa, and the
24-h immersion pulverization rate was 4.16%. HCl is a strong inorganic acid and can
release a large amount of H+ in the binder. With an increase in the HCl dose, the adsorption
capacity of the adsorbent first increased and then decreased, and the adsorption effect was
significant when 0.75% HCL was added. Thereafter, as the dose of HCl was further in-
creased, the adsorption capacity and strength decreased, and the immersion pulverization
rate increased. When HCl content exceeds 0.75%, OH− and H+ in the system are neu-
tralized by acid and base, respectively, resulting in increased pores and partially forming
through pores, which increases the desorption capacity of the system and decreases the
adsorption capacity. When HCl was added, the water absorption increased with an increase
in HCl dose, but the specific surface area increased initially and then decreased [27,28].
When the dose of HCl was 0.75%, the specific surface area of the adsorbent increased to
47.72 m2·g−1. Thereafter, as the dose of HCl further increased, the specific surface area
began to decrease. The addition of HCl introduced a large amount of H+, reducing the
pH, and the wetting angle increased initially and then decreased, and the Zeta potential
changed in the positive direction, which was conducive to the adsorption of anions.

Molecules 2024, 29, x FOR PEER REVIEW 13 of 22 
 

 

wetting angle increased initially and then decreased, and the Zeta potential changed in the 
positive direction, which was conducive to the adsorption of anions. 

This is because the H+ in HCl is more active. In the process of granulation, HCl dis-
solves k+, Ca2+, Na+, Fe2+, and Al3+ in the adsorbent, eliminating the original interlayer 
bonding force. The laminar crystal lattice is cracked [22]. Coupled with the fact that after 
the activation of the HCl-activated mineral-like substances, there is a change in the struc-
ture of the pores and the voids, and the acid removes impurities from them, so the pore 
channels are unclogged, which is favorable for the Pollutant molecules to enter and ad-
sorb. When the amount of addition increases, the OH− and H+ in the system for acid–base 
neutralization, the pore further increase. Part of the formation of through holes increases 
the desorption capacity of the system, reducing the adsorption capacity. At this time, the 
adsorbent is relatively flimsy, the strength of the adsorbent is reduced, and the rate of 
leaching chalking is increased [22]. 

  

  

Figure 7. Influence of HCl on various adsorbent properties: (a) adsorption capacity (Q) and removal 
rate (η); (b) compressive strength (ST) and immersion pulverization rate ( mη ); (c) specific surface 
area (BET) and water absorption rate (K); (d) pH, wetting angle (θ), and Zeta potential (ζ). 

2.2.5. Effect of the Surfactant on the Adsorbent Properties 
The adsorbent properties after the addition of surfactant SDBS are shown in Figure 

8a–d. When the SDBS dose was increased from 0.05% to 0.25%, the adsorption capacity 
and removal rate of total phosphorus first increased and then decreased. The adsorption 
performance was reduced as the amount of SDBS was increased due to the formation of 
wide pores caused by the increased foaming of microbubbles. When the SDBS dose was 
0.2%, the adsorption capacity of total phosphorus reached 48.53 mg·g−1, and the removal 

0.2 0.4 0.6 0.8 1.0 1.2 1.4
43.0

43.5
44.0

44.5

45.0

45.5

46.0
46.5

47.0

47.5
48.0

48.5

49.0

49.5

50.0

 Q
 η

HCl/%

Q
/m

g·
g-1

85

86

87

88

89

90

91

92

93

94

 η
/%

0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14
 ST
 ηm

HCl/%

ST
/K

Pa

3.8

4.0

4.2

4.4

4.6

η m
/%

0.2 0.4 0.6 0.8 1.0 1.2 1.4
32

34

36

38

40

42

44

46

48  BET
 K

HCl/%

BE
T/

m
2 ·g

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

K
/%

(a) 
(b) 

(c) 

(d) 

Figure 7. Influence of HCl on various adsorbent properties: (a) adsorption capacity (Q) and removal
rate (η); (b) compressive strength (ST) and immersion pulverization rate (ηm); (c) specific surface area
(BET) and water absorption rate (K); (d) pH, wetting angle (θ), and Zeta potential (ζ).

This is because the H+ in HCl is more active. In the process of granulation, HCl
dissolves k+, Ca2+, Na+, Fe2+, and Al3+ in the adsorbent, eliminating the original interlayer
bonding force. The laminar crystal lattice is cracked [22]. Coupled with the fact that after
the activation of the HCl-activated mineral-like substances, there is a change in the structure
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of the pores and the voids, and the acid removes impurities from them, so the pore channels
are unclogged, which is favorable for the Pollutant molecules to enter and adsorb. When the
amount of addition increases, the OH− and H+ in the system for acid–base neutralization,
the pore further increase. Part of the formation of through holes increases the desorption
capacity of the system, reducing the adsorption capacity. At this time, the adsorbent is
relatively flimsy, the strength of the adsorbent is reduced, and the rate of leaching chalking
is increased [22].

2.2.5. Effect of the Surfactant on the Adsorbent Properties

The adsorbent properties after the addition of surfactant SDBS are shown in Figure 8a–d.
When the SDBS dose was increased from 0.05% to 0.25%, the adsorption capacity and
removal rate of total phosphorus first increased and then decreased. The adsorption
performance was reduced as the amount of SDBS was increased due to the formation of
wide pores caused by the increased foaming of microbubbles. When the SDBS dose was
0.2%, the adsorption capacity of total phosphorus reached 48.53 mg·g−1, and the removal
rate reached 94.93%. SDBS is an anionic surfactant with a certain foaming effect. The
addition of SDBS led to a further increase in the micropores, specific surface area, surface
activity, and water absorption and resulted in good hydrophilicity. On the contrary, it
caused a decrease in the surface wetting angle. With the addition of SDBS, the pH of the
adsorbent fluctuated within a small range; the wetting angle decreased with an increase in
the SDBS dose, and the Zeta potential changed in the negative direction with an increase in
the SDBS dose. Furthermore, the adsorbent became stable.
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rate (ηm); (c) specific surface area (BET) and water absorption rate (K); (d) pH, wetting angle (θ), and
Zeta potential (ζ).
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2.3. Preparation and Test of the Active RM Adsorbent with the Optimal Formulation

After the optimization ratio calculation is completed, the adsorbent is prepared ac-
cording to the optimized formulation, and the performance of the adsorbent is verified
to determine the optimized formulation finally. H2O2, HCl, and SDBS were found to be
the important agents affecting adsorption capacity. The synergistic effect of these three
agents increased the specific surface area of the adsorbent, reduced the wetting angle,
and changed the wettability of the surface. The key agents affecting the strength were
HPMC and aluminate cement, whose synergistic effect enhanced the compressive strength
and water-immersion pulverization rate. However, during non-thermal activation, there
is a tradeoff between the regulation of adsorption capacity and mechanical properties.
The evaluation results of the BP neural network can better guide the optimization of the
adsorbent formulation in the field.

Table 7 lists the optimization results of the outputs. The formulation of RM particle
adsorbents is as follows: According to the following mass ratio, the primary material
(RM 95% + FA 5.2%), admixture (water–cement ratio 0.33 + cement 8.2% + HPMC 0.25%
+ sodium silicate 2% + coupling agent 0.01% + H2O2 1.64% + MnO2 0.33% + HCl 0.75%
(concentration: 37%) + SDBS 0.21%) and 9% nucleated particle proppant were mixed to
prepare 30 kg of RM particle adsorbents, with a pH of 10.16, the specific surface area of
48.92 m2·g−1, pore volume of 2.10 cm3·g−1, compressive strength of 1.12 kPa, 24 h pulver-
ization rate of 3.72%, and true density of 1530 kg·m−3. The prepared RM particle adsorbents
were used to adsorb the total phosphorus in recycling water continuing flotation tailings.
When the initial concentration of total phosphorus was 127.8 mg·L−1, the amount of RM
particle adsorbents was 25 g·L−1, and the adsorption time was 14 h, and the adsorption
capacity and removal rate of total phosphorus were 48.63 mg·g−1 and 95.13%, respectively.

Table 7. Performance parameters of RM particle adsorbents.

BET/m2·g−1 Zeta Potential/mV Wetting Angle/◦ Immersion
Pulverization Rate/% pH

48.92 −8.23 6.1 3.79 10.16

Adsorption capacity of
phosphorus/mg·g−1

Removal rate of
phosphorus/%

Compressive
strength/KPa Water absorption/%

48.63 95.13 1.12 16.58

3. Materials and Methods
3.1. Test Materials

RM, fly ash (FA), aluminate cement (A2C), and manganese dioxide (MnO2) are the
main raw materials of the particle adsorbents in this study. The moisture content of RM
was 30%. After drying at 50 ◦C for 12 h, the RM was ground by a ball mill and screened
using a 0.075 mm sieve. For FA, the burning loss was ≤5%, SiO2 content was ≥30%, and
SO3 content was ≤2%; for the aluminate cement, Al2O3 accounted for 50%; CaO, 30%; SiO2,
10%; and Fe2O3, 3%. MnO2 was of industrial grade, with a purity of 97%.

The main reagents used in the test were hydrogen peroxide (H2O2), HCl (concentration
36–38%), ICP test standard solution, HNO3 (concentration 68%), sodium dodecyl benzene
sulfonate (SDSB), and sodium silicate (Na2SiO4), all of which were analytically pure.
Furthermore, commercially pure hydroxypropyl methylcellulose (referred to as HPMC,
2 million mPa·s) and KH-602 silane-coupling agent were used. The adsorption activity
site of the adsorbent was improved by adding FA [29,30], which was rich in Fe and Al
compounds and larger than the surface. Foaming catalysts like H2O2 [31] and MnO2 [32]
were added to increase the specific surface area of the adsorbent. The pH value, Zeta poten-
tial, and pore size distribution of the adsorbent were changed due to HCl [33] activation.
The anionic surfactant and wetting agent sodium dodecylbenzene sulfonate (SDBS) [34]
were used to alter the adsorbent’s wettability and surface activity, while also increasing its
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adsorption capacity. Combining the reinforcing agent (A2C + HPMC + Na2SiO4 + KH-602)
enhanced the adsorbent’s strength and immersion loss rate [35,36].

For the test, phosphorus-containing wastewater was collected from a phosphate ore
dressing plant in Guizhou, China. The recycling water containing flotation tailings was
collected; this water contained 1278 mg·L−1 of phosphorous. To prepare RM particle
adsorbents, the recycling water containing flotation tailings diluted 10 times was selected
as the test water. This choice is based on the measurement range of the ICP instrument
(Thermo Fisher Scientific, Waltham, MA, USA, model ICP-7400).

The test equipment included a PQ10 granulating disk, electronic balance (model:
BL-2000F), ball mill (XMGB Φ 305 × 3.5), SHBY-40B constant temperature and humidity
standard curing box, SHBY-40B water bath thermostatic oscillator, JJ-1 enhanced electric
agitator, HY-4 speed-regulating multipurpose oscillator, and self-made dynamic adsorption
and desorption integrated equipment.

3.2. Preparation Method of the RM Adsorbent

Preparation of the main material for the adsorbent powder: RM and aluminate cement
were added to the agitator with a mass ratio of 6:4. After mixing the materials evenly,
the mixture was placed in a granulating disk, and deionized water was sprayed into the
agitator while rotating until the mixture was formed. Subsequently, a 1 mm sieve was
used to remove circular particles. After sieving, the mixture was dried in a 40 ◦C electric
blast-drying oven till the water content was less than 5%, resulting in the formation of
nucleating granule support. In the high-speed powder-dispersing machine, the adsorbent
powder was prepared by adding RM, 1.7–8.5% FA, 2–10% A2C, 10–20% MnO2, and other
powders according to the ratio.

Preparation of the active binder: KH-602, hydroxypropyl methylcellulose (HPMC),
and Na2SiO4 powders were added into the deionized water with a water–binder ratio
of 3:1, with mass ratios of 0.1–0.4%, 0.5–2.5%, and 2–4%, respectively. Thereafter, the
mixture was magnetically stirred for 5 min, and then it was kept standing for ~24 h for
later use; subsequently, H2O2 was added according to the mass ratio of 0.4–2.0%, followed
by magnetic stirring for 5 min and standing for ~24 h; HCl and SDBS were added with
mass ratios of 0.25–1.2% and 0.05–0.25%, respectively, followed by magnetic stirring for
5 min and standing for ~24 h, resulting in the formation of the active binder.

Preparation of RM particle adsorbents: First, 10–20% nucleating particle support
was added to the granulating disk, and the adsorbent powder was added while rotating.
The active binder was slowly sprayed in continuously till the adsorptive active coating
attained a certain thickness. After rotating for another 10 min, the adsorbent was screened
and placed in the cement concrete standard curing box under constant temperature and
humidity for 3 days and finally dried at 40 ◦C in the electric blast-drying oven. Thus, the
RM particle adsorbents were obtained.

The purpose of this study is to build a neural network model using the limited
experimental data available from the experiment and then predict more data points by
the model, so the experiment mainly obtains limited data points. The model can achieve
non-linear interpolation through the relationship of these data points; the input training
data of the network are single-factor test data and orthogonal test data of the RM particle
adsorbents, and the output data are performance test data of non-thermal activated RM
particle adsorbents. In all, 131 sets of training data were used. Among them, the first 31
groups of training data were single-factor test data. In the single-factor test, 300 g of RM
with a water–cement ratio of 1:3, 2% Na2SiO4, and 0.1% KH-602 were used as blank tests.
They were added as indicated in Table 8. After the #02 to #06 tests, the amount of RM
added was set to 285 g, and the FA concentration was set to 5.1%. Then, the concentrations
of A2C, HPMC, H2O2, MnO2, and HCl were determined as 8%, 0.25%, 1.6%, 0.32%, and
0.75%, respectively. The last 100 groups of training data were 11-factor 5-level orthogonal
test data, where the concentrations of aluminate cement and Na2SiO4 were determined as
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8% and 2%, respectively. Then, the orthogonal test was performed by changing the amount
of RM, FA, H2O2, MnO2, HPMC, HCl, and SDBS, with a water–cement ratio of 1:3.

Table 8. Single-factor test data table.

#02–#06 #07–#11 #12–#16 #17–#21 #22–#26 #27–#31

RM/g FA/% A2C/% HPMC/% H2O2/% MnO2/% HCl/% SDBS/%

295 1.7 2 0.05 0.4 0.08 0.25 0.05
290 3.4 4 0.10 0.8 0.16 0.5 0.1
285 5.1 6 0.15 1.2 0.24 0.75 0.15
280 6.8 8 0.20 1.6 0.32 1.00 0.2
275 8.5 10 0.25 2.0 0.4 1.25 0.25

In order to obtain the ideal BP neural network prediction model, there must be a
sufficient number of input and output data pairs. In this study, a total of 131 adsorbents of
red mud particles were prepared by arranging one-way and orthogonal tests based on the
input and output data pairs of the BP neural network and formulation requirements.

3.3. Performance Tests of the RM Adsorbent

After the preparation of the adsorbent, it is necessary to test nine properties—specific
surface area (BET), wetting angle (θ), Zeta potential (ζ), adsorption capacity (Q) [27], com-
pressive strength (ST) [37], removal rate (ηm) [38], immersion pulverization rate(K), water
absorption rate, and pH—of the adsorbent, of which the adsorption capacity, compressive
strength, removal rate, and pulverization rate are the important basic indexes to measure
the particle adsorbents. Zeta potential [39] is a useful metric for determining the adsorption
system’s stability and electrochemical properties. Colloids with high Zeta potential are
stable, while those with low Zeta potential tend to flocculate. The pH value [40] is the main
influencing factor of Zeta potential. There is a good correlation between wettability and
adsorption capacity, and the better the wettability [41] of the adsorbent surface, the better
the adsorption effect. The larger specific surface area [42] is beneficial to the adsorption
effect of the adsorbent, and the specific surface area is related to the water absorption [43]
and adsorption capacity.

The removal rate η of phosphorus in the solution, the adsorption capacity Q of the
adsorbent, the pulverization rate of the adsorbent ηm, and the water absorption rate K of
the adsorbent were calculated according to Equations (1) and (4) as follows:

η =
C0 − Ci

C0
× 100% (1)

Q =
V(C0 − Ci)

m
× 100% (2)

ηm =
m − mi − ms

m
× 100% (3)

K =
m1 − m

m
× 100% (4)

where η (%) represents the removal rate of phosphorus in the solution; C0 (mg·L−1) rep-
resents the concentration of phosphorus in the solution before adsorption; Ci (mg·L−1)
represents the concentration of phosphorus in the solution after adsorption; Q (mg·g−1)
represents the adsorption capacity of adsorbent per unit mass; V (L) represents the volume
of the solution; m (g) represents the mass of the adsorbent after drying; ηm (%) represents
the pulverization rate of the adsorbent; mi (g) represents the drying mass of the adsor-
bent after adsorption; ms (g) represents adsorbing capacity; K (%) represents the water
absorption rate; m1 (g) represents the mass of deionized water absorbed by the adsorbent.
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Micro metrics measured the specific surface area of particle adsorbents ASAP2020 N2
adsorption/desorption physical adsorption instrument (BET), and the specific surface area
(SBET) was calculated using the Brunauer–Emmett–Teller method.

The Zeta potential (ζ) on the surface of the adsorbent before and after adsorption
was determined using the nanoparticle size/Zeta potential analyzer (Beckman Coulter,
Pasadena, CA, USA, model: DELSA Nano C). The test sample was put into a beaker, and
a certain volume of deionized water was added. The suspension was prepared with a
water–cement mass ratio of 100:1. After magnetic stirring for 10 min, the suspension was
fully dispersed and then left standing for 6 h. Subsequently, the supernatant was collected
into the sample cell and placed in a potentiometer to determine the Zeta potential.

The wetting angle of the particle adsorbents was measured by the LAUDA wetting
angle measuring instrument/contact angle measuring instrument (LAUDA Scientific,
GmbH, Germany, model: LSA60). Since a block sample reflects the real wetting angle of the
mineral better than a powder-pressed sample, 1 × 1 × 1 cm cubic mineral blocks that were
ground with sandpaper, washed with distilled water, and dried naturally before being used
were adopted for all the wetting angle tests. An ore cube was immersed in the solution to
be tested for 30 min and then taken out to measure the wetting angle by the floating bubble
method. The measurement was repeated five times to obtain the average value.

Particle strength ST (KPa) was measured by the APT-3 particle strength tester.
The pH value of the solution is affected by the content of the adsorbent formulation.

The pH value of the phosphorus-containing wastewater after adsorption is measured using
a pH meter.

3.4. Establishment and Application of the BP Neural Network Model

The main objective of adsorbent formulation optimization was to improve the me-
chanical adsorbent properties while satisfying the adsorption capacity. The preparation
conditions clearly indicate that there exists certain coupling and nonlinearity among the
various adsorbent properties, and the orthogonal test method cannot satisfy the formulation
optimization. Therefore, the neural network was used for nonlinear formulation optimiza-
tion to obtain the relationship between the appropriate ratio and the optimal performance.

3.4.1. Determination of Input and Output Training Datasets

The design of 131 red mud adsorbent formulations according to Section 3.2 was used
as input data for the BP neural network, and the performance tested in Section 3.3 was
used as output data. When the input value is too large, the neurons will be in a saturated
state, thus losing the ability to learn. Therefore, the input value should be normalized, and
the input value should be processed from 0 to 1. The normalized function is shown in
Equation (5) [44].

x′ = (x − xmin)/(xmax − xmin) (5)

The input and output data sets were normalized. Similarly, the predicted results
were normalized and then output. The training parameters were set after normalizing
the training data. Among the 131 experimental data, 84 data were randomly selected
as training data for neural network training and 47 data were used as testing data for
network testing.

3.4.2. Establishment of a BP Network Optimization Model

The BP neural network optimization model of the nonthermally active RM particle
adsorbents is shown in Figure 9. The model has an 11-input-9-output structure. The
designed neural network has a three-layered structure, including the input layer, output
layer, and hidden layer, where X is the input layer, representing the parameter change of
each formulation. Y represents the amount of change in each performance index caused by
a change in X and is used to investigate the influence of the change amount of each factor
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on the performance index of the adsorbent. The following formulation was used to select
the number of neurons in the hidden layer in Equation (6) [44].

l =
√

m + n + α (6)

where m represents the number of nodes in the input layer; l represents the number of
nodes in the hidden layer; n represents the number of nodes in the output layer; and α is a
constant between 1 and 10; in this paper, m = 11, n = 9, α= 10, l = 14.
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The input–output relationship is represented as follows:
X = {RM, FA, Water–Cement Ratio, A2C, HPMC, Na2SiO4, KH-602, H2O2, MnO2,

HCl, SDBS},
Y = {specific surface area, wetting angle, Zeta potential, adsorption capacity, removal

rate, compressive strength, immersion pulverization rate, water absorption rate, pH}.
The output layer transfer function chooses the linear function. In this paper, the

Sigmoid function is selected as an intermediate layer transfer function, and the training
strategy is a gradient reduction method [45].

3.4.3. Training and Testing

While the BP neural network model is built, the network is programmed and trained,
and MATLAB R2022b software was used to set parameters as follows: numberOfSam-
ple is 84, numberOfTestSample is 47, numberOfForcastSample is 9, numberOfHidden-
Neure is 14, inputDimension is 11, outputDimension is 9, net.trainParam.show is 10,
net.trainParam.epochs is 10,000, net.trainParam.lr is 0.035, net.trainParam.goal is 10−3,
and net.divideFcn is ‘’. After the network is trained, the network is tested with 47 sets of
test samples, and the testing data are given in Table 3. The network is evaluated using
mean square error (MSE, Equation (7)), root mean square error (RMSE, Equation (8)), and
coefficient of determination (R2, Equation (9)) [46].

MSE =
1
n∑n

i=0(ŷi − yi)
2 (7)

RMSE =

√
1
n∑n

i=0(ŷi − yi)
2 (8)

R2 = 1 −
1
n ∑n−1

i=0 (ŷi − yi)
2

dx 1
n ∑n−1

i=0 (y − yi)
2 (9)

where n is the number of input/output data pairs; ŷi is the predicted value; yi is the
experimental value; and y is the average of predicted values.
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3.4.4. Formulation Optimization

While the network has been trained and tested, the model can be used to predict
and analyze the results of the experiment [44]. During formulation optimization, 11 input
parameters and 9 output parameters were optimized. By fixing the ratio of 11 agents and
changing the dosage of the agent to be optimized, the value was calculated according to
the range of the dosage from small to large with a certain step size, and the changes in
the output parameters at each change point were compared. Then, according to the target
output value of the RM particle adsorbents, the optimal ratio was derived. The range of
the optimized parameters is shown in Table 6.

4. Conclusions and Future

(1) A novel approach to optimize the formulation of RM adsorbent by establishing a BP
neural network model is proposed. From the single-factor test and orthogonal test,
learning samples of the BP neural network were obtained, thereby reducing the num-
ber of experiments and ensuring the representativeness of the learning samples. The
application of the BP neural network compensates for the limitation of the orthogonal
test and simulates and predicts the strength and adsorption capacity of RM adsorbent
over a wide range to obtain the optimal formulation of the adsorbent.

(2) After formulation optimization based on the BP neural network, granulation was
performed according to the preparation and curing method of RM particle adsor-
bents, and the adsorbent was prepared with a pH of 10.16, specific surface area of
48.92 m2·g−1, pore volume of 2.10 cm3·g−1, compressive strength of 1.12 kPa, and
24 h immersion pulverization rate of 3.72%. The prepared adsorbent was used to
adsorb total phosphorus from phosphorus-containing wastewater. When the initial
concentration of total phosphorus was 127.8 mg·L−1, the amount of the adsorbent
was 25 g·L−1 and the adsorption time was 14 h. The adsorption capacity and removal
rate of total phosphorus were 48.63 mg·g−1 and 95.13%, respectively, indicating a
significant phosphorus removal effect.

(3) The verification results prove that the prediction results of the established prediction
model are reliable, and it is feasible and effective to predict the strength and adsorption
capacity and optimize the formulation of RM adsorbent via the BP neural network,
which provides reference and scientific guidance for the experimental design of RM
adsorbent. However, the application of neural networks in the optimization of mate-
rial formulation is still in the exploratory stage, and further study and improvement
are required.

In this study, although success was achieved in multi-input and multi-output recipe opti-
mization using BP neural networks, the experimental data points are still insufficient and the
coupling relationship and interactions between parameters need to be further investigated.
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