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Abstract: Major Depressive Disorder (MDD) is a complex mental disorder that involves alterations in
signal transmission across multiple scales and structural abnormalities. The development of effective
antidepressants (ADs) has been hindered by the dominance of monoamine hypothesis, resulting
in slow progress. Traditional ADs have undesirable traits like delayed onset of action, limited
efficacy, and severe side effects. Recently, two categories of fast-acting antidepressant compounds
have surfaced, dissociative anesthetics S-ketamine and its metabolites, as well as psychedelics such
as lysergic acid diethylamide (LSD). This has led to structural research and drug development
of the receptors that they target. This review provides breakthroughs and achievements in the
structure of depression-related receptors and novel ADs based on these. Cryo-electron microscopy
(cryo-EM) has enabled researchers to identify the structures of membrane receptors, including the
N-methyl-D-aspartate receptor (NMDAR) and the 5-hydroxytryptamine 2A (5-HT2A) receptor. These
high-resolution structures can be used for the development of novel ADs using virtual drug screening
(VDS). Moreover, the unique antidepressant effects of 5-HT1A receptors in various brain regions, and
the pivotal roles of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)
and tyrosine kinase receptor 2 (TrkB) in regulating synaptic plasticity, emphasize their potential as
therapeutic targets. Using structural information, a series of highly selective ADs were designed
based on the different role of receptors in MDD. These molecules have the favorable characteristics
of rapid onset and low adverse drug reactions. This review offers researchers guidance and a
methodological framework for the structure-based design of ADs.

Keywords: major depressive disorder; novel antidepressants; G protein-coupled receptors; cryo-
electron microscopy; virtual drug screening; structure-based drug design

1. Introduction

Major Depressive Disorder (MDD), a severe mental illness, exhibits a global lifetime
prevalence of approximately 15% [1]. Nevertheless, the diagnosis and treatment of de-
pression face challenges. The lack of well-defined pathological mechanisms and drug
targets often leads to traditional antidepressants (ADs) focusing on the monoamine system.
As a result, they frequently have severe side effects due to their non-specific binding to
multiple amine receptors [2,3]. These medications display an extended onset of action,
taking several weeks [4–6]. Additionally, one-third of patients experience inefficacy and
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a vulnerability to relapse, a condition termed “treatment-resistant depression (TRD)” [7].
Hence, the identification of the core nodes governing depression and the development of
effective compounds have emerged as primary goals [3,8,9].

Since the 1990s, advancements in high-throughput screening methods for cellular and
biochemical assays have expedited the discovery of high-affinity molecules [10]. However,
these compounds cannot achieve selective activation of specific receptor subtypes and
downstream signaling pathways [11]. Consequently, candidate molecules are frequently
excluded from rigorous clinical trials due to unforeseen adverse effects [12]. Since the
human G protein-coupled receptor (GPCR) was first resolved by X-ray crystallography
in 2007, a surge of targeted molecule discovery methods based on structural information
has ensued [13]. Furthermore, advancements in cryo-electron microscopy (cryo-EM) have
empowered researchers to acquire receptor structures in their activated state [14,15]. In
the meantime, the rapid expansion of drug libraries has enabled researchers to rapidly
design or screen desired molecules from the vast chemical space, a theoretical space that
encompasses all possible chemical substances, based on known ligand binding fingerprints
and molecular interactions [16,17].

A groundbreaking drug, S-ketamine, has received Food and Drug Administration
(FDA) approval for the treatment of patients with TRD and suicidal tendencies [18]. This
signifies the successful development of the first AD that is not based on the monoamine
hypothesis in 50 years. Similarly, psychedelics, such as psilocybin, have shown effective
antidepressant properties in clinical studies by activating 5-hydroxytryptamine (5-HT) re-
ceptors [19,20]. These compounds have garnered significant attention. Although these com-
pounds can have rapid and effective antidepressant effects at low doses, their inherent ad-
dictive and hallucinogenic properties pose challenges for their clinical endorsement [21–23].
Cryo-EM has provided the atomic coordinates of the pockets between novel ADs and their
main interacting receptors, the 5-HT2A receptor and the NMDAR [24–26]. Leveraging
these high-resolution structural insights, a series of pure, low-side-effect, directionally, and
highly selectively activating molecules have been designed [27].

In this review, the concrete manifestations of cross-scale abnormalities that contribute
to the unclear mechanisms of MDD are initially illustrated. Subsequently, we introduce the
advances in cryo-EM technology and VDS. Emphasis is placed on the explosive expansion
of virtual drug libraries and the application of artificial intelligence (AI) to structural
prediction. Finally, a comprehensive summary is presented, encompassing the mechanisms
and structural knowledge of receptors, as well as potential antidepressant compounds. The
drugs binding fingerprints of key receptors, including the N-methyl-D-aspartate receptor
(NMDAR), tyrosine kinase receptor 2 (TrkB) in the glutamate system, the 5-HT2A receptor,
the 5-HT1A receptor, and nitric oxide synthase (nNOS) in the monoamine system, are
summarized. The common and unique characteristics of drug development approaches in
utilizing structural information are discussed. It should be noted that this review does not
intend to completely summarize the mechanisms of all novel ADs but rather to indicate
the direction for the discovery of a new generation of structure-based ADs.

2. Challenges in MDD: Cross-Scale Abnormalities

MDD is widely recognized as a multifaceted syndrome and symptomatology, includ-
ing feelings of guilt, hopelessness, psychiatric and cognitive impairments, disturbances in
sleep and appetite, and various other manifestations [1]. Given the absence of diagnostic
biomarkers, distinguishing between heterogeneous patients with distinct pathophysio-
logical mechanisms poses a significant challenge [7]. Furthermore, these symptoms often
overlap with the diagnosis of other psychiatric disorders, resulting in a crude and difficult
formulation of treatment plans [28]. The hypothesis for depression crosses multiple sys-
tems, brain regions, and neurons [29–31]. The disruption of neural connectivity networks,
widespread structural changes in the brain, and abnormal neurotransmitter transmission
have been widely recognized as playing an important role in the onset of MDD [32]. With
the remarkable advancements in biological imaging and microscopy techniques, the scope
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of depression research has transcended from the macro- to the microscale and even delved
into the nanoscale [15,33].

At the scale of the endocrine system, the dysregulation of the hypothalamic–pituitary–
adrenal axis is a longstanding area of investigation. Stress induces excessive cortisol release
and disrupts feedback mechanisms, leading to a substantial rise in plasma cortisol levels
among patients [34]. However, the administration of glucocorticoid receptor antagonists
fails to elicit antidepressant effects in clinical settings [35,36]. Another aspect, the inflamma-
tory hypothesis, posits that the aberrant stimulation of the nervous system by the immune
system serves as a significant etiological factor of MDD. This perspective is based on the
increased inflammatory markers in patients, including Interleukin 6 (IL-6) and C-reactive
protein (CRP) [37,38]. Peripheral cytokines traverse the blood–brain barrier, exerting their
influence on neurons and support cells, thereby contributing to deleterious alterations in
brain structure and functionality [39,40]. Despite significant research efforts, establishing a
direct and conclusive link between these abnormalities and MDD remains a challenging
task. Furthermore, there is a shortage of ADs that are supported by substantial evidence
and that effectively target these abnormalities.

By means of autopsy and magnetic resonance imaging (MRI) of patients, abnormali-
ties in the cerebral regions that are associated with MDD have been shown to manifest in
the cortex and subcortex, including the hippocampus (HPC), amygdala (Amyg), nucleus
accumbens (NAc), and medial prefrontal cortex (mPFC) [41]. The atrophy of the HPC
volume is highly correlated with the course of depression, and transcranial stimulation of
the mPFC alleviates depressive symptoms [42,43]. In addition, the negative bias-related
memories that are associated with depression are linked to the HPC, Amyg, anterior cingu-
late cortex (ACC), mPFC, and NAc [44]. MRI has revealed atrophy in the mPFC and ACC
of patients [42]. The aberrations in the reward circuit are also key factors in triggering MDD.
In the reward circuit, NAc exerts a pivotal function in mediating emotional dysregulation
behavior by integrating excitatory glutamatergic neurons from the HPC, hypothalamus
(HT), and mPFC (Figure 1, process 1) [30,45]. Insufficient excitatory projections to the
NAc lead to reduced excitation and brain volume [46]. And the feedback loop between
mPFC-NAc-HT is also necessary to maintain brain reward states [30]. The ventral tegmen-
tal area (VTA)-NAc’s dopaminergic circuit has significant antidepressant properties after
optogenetic activation (Figure 1, process 2) [47].

Figure 1. Key neural circuits in MDD. Reward circuitry: NAc integrates excitatory neurotransmission
from HPC and mPFC to regulate emotions (process 1). The VTA-NAc dopaminergic pathway displays
antidepressant-like properties (process 2). LHb is linked to aversion and depressive states, stimulating
RMTg, which inhibits VTA dopaminergic neurons. LHb also directly suppresses the reward centers
VTA and DRN (process 3). 5-HTrgic neurons project from DRN to mPFC: the activation of 5-HT1A

autoreceptors in the DRN reduce serotonergic neuron activity, leading to decreased 5-HT release in
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the mPFC (process 4). The types of neurons in circuits are distinguished by the color of the arrows
and shown at the top left. The arrows of excitatory projection are triangular, and inhibitory projection
are prismatic. Abbreviations: PFC, prefrontal cortex; NAc, nucleus accumbens; HPC, hippocampus;
VTA, ventral tegmental area; RMTg, rostromedial tegmental nucleus; LHb, lateral habenula; DRN,
dorsal raphe nucleus.

The lateral habenula (LHb) occupies a unique position in depression, closely interact-
ing with all midbrain neuromodulatory systems, including the noradrenergic, serotonergic,
and dopaminergic systems [48–50]. The LHb can activate the rostromedial tegmental
nucleus (RMTg), which in turn can inhibit VTA neurons, ultimately leading to the emer-
gence of negative emotions (Figure 1, process 3) [48,51,52]. Studies have shown that
the optogenetic activation of LHb input induces strong avoidance behavior in mice [53].
Hence, depleting LHb neurotransmitters via deep brain stimulation to cancel the inhibition
of the VTA can reverse depression-like behavior [54]. Further studies have found that
LHb produces specific cluster discharges in depression animal models, strongly inhibiting
reward-related DRN and VTA (Figure 1, process 4) [55,56]. This discharge anomaly can
be improved by ketamine [57,58]. In addition, the development of new animal models
has shown that LHb does activate in response to psychosocial stress, which then leads to
depressive responses. In a mouse model of forced defeat due to low social status, reward
prediction errors strongly activated LHb and inhibited mPFC [59].

Although MDD involves abnormalities in multiple brain areas, there are two com-
mon patterns at the neuronal level: neuronal atrophy and discharge abnormalities. The
mechanism of neuronal atrophy can be explained by the synaptic plasticity hypothesis,
which suggests that the efficacy and size of dendritic spines vary significantly in response
to stimulation [60,61]. Hebbian plasticity is a positive feedback mechanism that operates
on a scale of seconds to minutes. When the axon repeatedly and continuously emits signals,
the dendritic spine responds to the same stimulus by increasing its efficiency, resulting
in long-term potentiation (LTP) [62,63]. In a healthy condition, the activation of TrkB
promotes the influx of Ca2+ and the expression of postsynaptic density (PSD) proteins,
including Calcium-/calmodulin-dependent protein kinase type II (CaMKII), postsynaptic
density protein 95 (PSD-95), and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid receptor (AMPAR). This process leads to the thickening of PSD and the enlargement
of dendritic spines [64–66]. In a depressive condition, persistent stress diminishes the
brain-derived neurotrophic factor (BDNF) levels and impairs LTP, leading to an imbalance
in plasticity, inducing synaptic dysfunction, and resulting in signal loss [67,68]. The loss
of synaptic plasticity is associated with the weakening of TrkB signaling. Traditional ADs,
ketamine, and psychedelics can all activate synaptic plasticity and synaptogenesis [69–71].
This means that synaptic plasticity is located at the hub for rapid antidepressant effects and
explains disorders at the subcellular and protein levels.

Abnormal discharges are manifested at the protein level as ion channel-mediated
abnormal ion influx. Since blocking 5-HT reuptake can alleviate depressive symptoms, the
traditional view is that MDD is associated with a loss of 5-HT receptor signaling [72,73].
Normally, activated 5-HT receptors activate downstream kinases, ion channels, and signal
transporters. This leads to Ca2+ release from the endoplasmic reticulum and the opening
of postsynaptic Ca2+ channels, thereby transmitting excitatory signals [74,75]. However,
since ketamine, as an ion channel antagonist, has effective antidepressant effects, the focus
of research on the mechanism of MDD has gradually shifted to the NMDAR [58,76,77].
The activation of Ca2+ channels in inappropriate brain regions and subcellular locations
(such as LHb and extrasynaptic sites) leads to pathological conditions [58,78]. The direct
binding of psychedelics to 5-HT receptors and ketamine to NMDARs prompted structural
biologists to tap into the mechanism of action of ADs at the nanometer and atomic scales.
This includes the biased activation of the 5-HT2A receptor by psychedelics and the NMDAR
antagonism of ketamine [25,26,79].

In summary, technological advancements will facilitate the exploration of mechanisms
underlying depression at the subcellular and even protein levels, transitioning from the
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macroscopic to the microscopic scale. Due to the involvement of multiple brain regions
and neurons, as well as multiple membrane receptors and downstream signaling proteins
in the 5-HT and glutamate systems, it is a challenge to design high-efficient and low-side-
effect ADs.

3. Controversial ADs: Psychedelics and Ketamine
3.1. Psychedelics: 5-HT2A Receptor Agonists

In the mid-20th century, classic psychedelics were used in psychedelic therapy and
psychotherapy to treat a variety of mental illnesses, including depression, anxiety, and
personality disorders [80]. Despite producing significant therapeutic effects, their strong
psychedelic experiences, such as visual distortions, falling illusions, and “oceanic” states of
consciousness led to their abuse during the hippie movement of the 1960s and subsequent
regulatory control by multiple countries [22,81,82]. The most famous regulation is the
United States’ Federal Controlled Substances Act (CSA). This led to a slump in psychedelic
research for 50 years. However, in the 1980s, psychedelics were confirmed to activate
the 5-HT2A receptor and exert an emotional regulation function [83,84]. In 2016, when
the enduring antidepressant effects of psychedelics were substantiated, this rekindled the
enthusiasm for further exploration of their therapeutic effects [19,85].

Psychedelics can be classified into two categories according to their sources: nat-
ural products such as psilocybin, N,N-Dimethyltryptamine (DMT), and mescaline and
synthetic and semi-synthetic drugs, represented by ergotamine derivatives [86–88]. They
can also be divided into three types according to their chemical structure: indoleamines,
phenylalkylamines, and semi-synthetic ergotamines [89]. Phenylalkylamines such as 2,5-
Dimethoxy-4-iodoamphetamine (DOI) and 4-Bromo-2,5-dimethoxyamphetamine (DOB)
are selective agonists of 5-HT2 receptors, with an affinity for 5-HT2 receptors that is 100 to
1000 times that of 5-HT1/5 receptors (Figure 2A) [90,91]. Indoleamines (such as psilocin and
psilocybin) and ergotamines, such as lysergic acid diethylamide (LSD), exhibit extensive
agonistic interactions with serotonin receptors, including 5-HT1/2/5/6 and 7 [92–94]. LSD,
as a representative of semi-synthetic psychedelics, has a very high psychedelic effect and
acts on other GPCR families [95,96]. The evolutionary relationships of the 5-HT receptor
family and the corresponding highly affinity G-protein members are summarized below
(Figure 2B).

Because of their tetracyclic structure, ergolines have the broadest range of 5-HT family
receptor binding capacity. Thus, there are 12 ergoline-binding structures, and the 5-HT2B
receptor, an alternative to the 5-HT2A receptor, was most comprehensively resolved and
obtained in multiple states of transducer-free, binding Gq and β-arrestin (Table 1) [97].
Psilocin showed antidepressant effects in indoleamines in clinical trials, and thus, the
psilocin-5-HT2A/C receptor was acquired [25,98]. Of the NBOMe series, 25CN-NBOH is
reported to be among the most potent and selective in vitro and in vivo. Therefore, the
25CN-NBOH-5HT2A receptor was compared with the partial agonist LSD to understand
the structural mechanisms of its activation strength [24].

Although psychedelics activate a wide range of 5-HT receptors, the hallucinogenic
effects are believed to arise from the activation of the 5-HT2A receptors [99]. Psychedelics ac-
tivate 5-HT2A receptors on cortical and subcortical brain areas, particularly on layer 5 pyra-
midal neurons [89,100]. Additionally, there is a perspective suggesting that psychedelics
demonstrate a common β-arrestin bias, which plays a role in the psychedelic experi-
ence [100,101]. Recently, it has been proposed that hallucinogenic effects result from the
simultaneous activation of G proteins and β-arrestin, and that designing biased partial
agonists could potentially reduce psychedelic responses [25].

However, indoleamines and ergotamines also exhibit a high affinity for the 5-HT1A
receptor. The hallucinogenic and antidepressant effects are thought to originate from
the 5-HT2A receptor, and the contribution of the 5-HT1A receptor is mentioned less fre-
quently [102–104]. In addition, the off-target effects of psychedelics on the 5-HT2B receptor
and the 5-HT2c receptor can, respectively, induce lethal heart valve and anorexia [105–107].
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And co-administration with other drugs targeting the serotonergic system can trigger
serotonin syndrome [108]. This symptom leads to abnormalities in the nervous system,
autonomic nervous function, and neuromuscular innervation, and can even be fatal.

Figure 2. Affinity and structural results of psychedelics for GPCRs. (A). Three chemical types
of psychedelics with different receptor binding affinities. LSD broadly activates multiple 5-HT
receptor subtypes with high affinity (receptor affinity > 8.0, displayed in orange) and dopamine
receptors (DRs). The two indoleamines have a low affinity, and the two phenylalkylamines have a
high affinity for 5-HT2 receptors. Data from ChEMBL (https://www.ebi.ac.uk/chembl, accessed
on 1 November 2023), receptor affinity = pKi. Abbreviations: LSD: lysergic acid diethylamide, 5-
MeO-DMT: 5-methoxy-N,N-dimethyltryptamine, DOI: 2,5-Dimethoxy-4-iodoamphetamine, DOB:
4-Bromo-2,5-dimethoxyamphetamine. (B). Phylogenetic tree of aminergic GPCRs, GPCR cluster
based on sequence similarity. The 5-HT receptors–coupled G protein subtypes are displayed as
dots, and the combinations that have been resolved are represented as stars. (C). Cryo-EM and
X-ray resolved growth trends of all and activated GPCRs (2017–2022). (B,C) data from GPCR DB
(https://gproteindb.org, accessed on 1 November 2023).

https://www.ebi.ac.uk/chembl
https://gproteindb.org
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Table 1. Key information on different classes of psychedelics.

Class Representation Compounds Binding Structure (PDB ID) Clinical Trials
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5-HT2BR-LSD (5TVN) 
5-HT2BR-ERG (4NC3) 
5-HT2CR-ERG (6BQG) 
5-HT5AR-methylergonovine (7UM7) 

a. LSD-assisted therapy with anxiety and rat-
ings of depression symptoms [109]. 
b. Single microdoses of orderly produced 
LSD, dose-related subjective effects [110]. 
c. The link between psychosis model and 
therapeutic model seems to lie in LSD mysti-
cal experiences [111]. 

  

DMT,  
5-MeO-DMT, psilocin, psilocybin 

5-HT2AR-psilocin (7WC5) 
5-HT2CR-psilocin (8DPG) 

a. Compared trial: psilocybin versus escital-
opram for depression [112]. 
b. Assisted therapy: psilocybin was given in 
the context of supportive psychotherapy 
[113]. 
c. Psilocybin for TRD [114]. 
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  Mescaline, DOM, DOI, DOB, 
NBOMes 

5-HT2AR-25CN-NBOH (6WHA) (none) 
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depression, global integration in the brain
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Psychedelics have multiple pharmacological effects on 5-HT receptors: system bias,
ligand bias, and receptor bias; these results in diverse physiological effects [116]. In recent
years, there has been investigation into the specific mechanisms of hallucinogenic effects to
separate antidepressant effects from hallucinogenic effects [25,117].

3.2. Ketamine: An Antagonist of the NMDAR

The need for anesthetics during wars in the last century prompted the synthesis of
ketamine. It offered the advantage of a rapid onset of action compared to its prototype,
promazine [118]. However, ketamine has serious side effects, and overdosing can lead to
respiratory arrest and even death, accompanied by mental poisoning and symptoms of
schizophrenia [119]. Its excitatory effects on the sympathetic nervous system can cause
tachycardia and hypertension, and its activation of opioid receptors leads to “dissociative
sensations”, a state of separation of consciousness and sensation [120–122]. Therefore, it
has been classified as a controlled substance by several countries.

It was discovered in the last century that subanesthetic doses of ketamine have the
potential to relieve psychiatric disorders and depression [123,124]. However, the lack
of clear effects on the monoamine system, which was the mainstream hypothesis for
depression at the time, limited its further development. And it was shelved with the
promulgation of the ban. Clinical studies in the early 21st century reawakened the use
of ketamine [76]. Under double-blind and placebo-controlled conditions, ketamine can
reduce depression scores within four hours and has a lasting effect of three days, while its
harmful effects disappear rapidly after infusion. This means that ketamine has significant
clinical value, which has spurred multiple clinical studies on TRD, with results showing
that ketamine has rapid and long-lasting antidepressant effects [125–127].

Ketamine has been identified as a non-competitive NMDAR antagonist [128]. As
a calcium-permeable receptor of ion channels, the NMDAR has a calcium permeability
that is four times that of the same type of receptor, the AMPAR [129]. The high sensi-
tivity and slow desensitization of NMDAR glutamate make it the main carrier of Ca2+

transport. Ketamine, when used as an anesthetic in clinical practice, is a racemic mixture
of S-ketamine and R-ketamine. Although only S-ketamine is approved as a prescription
drug, many clinical studies have shown that R-ketamine also has a rapid onset of an-
tidepressant action [130,131]. After ketamine enters the body, it is further metabolized
into 2R,6R-hydroxynorketamine (R-HNK) [132], which does not bind to the NMDAR,
and its antidepressant effect is mediated by synaptic plasticity from AMPAR and TrkB
activation [133,134].

4. Advancements in Cryo-EM and VDS
4.1. Cryo-EM: Resolving Active Receptors

Although over 85% of protein structures in databases are provided by X-ray [116], the
resolution of cryo-EM has surpassed 5 Å since 2013 following advancements in electron
detectors and image analysis techniques [117,135–138]. This has provided an advantage in
analyzing highly dynamic membrane proteins and large complexes. This stems from sev-
eral advantages of the imaging method: (1) it does not require crystallization, making it not
limited by molecular weight; (2) it allows for direct imaging in artificial membrane mimics,
which aids in resolving membrane proteins; and (3) three-dimensional classification algo-
rithms can elucidate highly dynamic active protein structures [139–141]. In drug discovery,
cryo-EM has advanced the imaging of membrane proteins, particularly GPCRs. Following
the publication of the first cryo-EM structure of the calcitonin receptor coupled with Gs
in 2017, there has been a growth in the availability of accessible GPCR structures [140].
Cryo-EM has a lower threshold for resolving active GPCR structures than X-ray, and a
lower protein quality and purity can achieve a higher resolution. The development of
agonists is more attractive than antagonists, and the conformation of agonist-bound GPCRs
that are resolved by X-ray is in an intermediate state between active and inactive [142–144].
Since 2017, 811 GPCR structures have been published, and cryo-EM has obtained 472 active
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structures (Figure 2C) [145]. The mechanisms of and advancements in cryo-EM technology
have been thoroughly summarized [15].

4.2. Molecular Docking and Virtual Drug Libraries

Although the concept of molecular docking and structure-based drug design was
proposed in the late 19th century and the 1970s, it was not widely used for drug screening
until the past decade. This was because the first human GPCR structure was only solved in
2007, and the first 5-HT2 receptors’ family structure was solved in 2013 [143,146]. Prior to
this, GPCR structures were modeled based on rhodopsin and were not accurate [147]. In
addition, the available chemical space was relatively limited, with the initial version of the
ZINC database in 2005 containing only 5 million molecules. Today, the number of molecules
that can be directly used has reached billions [148,149]. Molecular docking technology aims
to predict ligand-target protein binding modes and affinities through computer calculations,
replacing traditional screening methods such as cell assays (e.g., bioluminescence resonance
energy transfer, cell viability, reporter genes, microscopy screening) or biochemical assays
(e.g., fluorescence resonance energy transfer, surface plasmon resonance, nuclear magnetic
resonance) [150]. This will save significant time and costs and increase the number of
screening objects by several orders of magnitude [151].

The main steps of molecular docking include sampling and scoring. First, a large
number of possible binding modes are generated by docking, and then, they are scored
using a physical and experimentally calibrated scoring function to obtain the most likely
result [152]. The most popular docking programs that are used are the open-source program
DOCK, developed in the 1980s, and the commercial program Schrodinger’s Glide [153,154].
In comparative studies of multiple programs, different programs have advantages for differ-
ent types of proteins [155]. In addition, accurate model construction, molecular dynamics
simulations (MDSs) to obtain multiple conformational energies, and wet experiments
providing binding sites effectively enhance docking accuracy [156,157]. This assumes the
limitations of molecular docking. In cases where the structure and reference binding modes
are lacking, the results can only offer limited guidance.

Virtual screening is the large-scale application of molecular docking, which involves
docking millions or even billions of molecules with target proteins and selecting high-
scoring molecules for synthesis and validation. The general steps include (1) the design of
chemical libraries, (2) the selection and preparation of receptor structures, (3) the evaluation
of docking performance, (4) docking screening and compound selection, (5) experimental
evaluation, and (6) hit-to-lead optimization [9]. The design of chemical libraries and the
selection and preparation of receptor structures have made significant progress in recent
years and are explained here. The precautions for the remaining parts and the practical
guidelines for large-scale virtual screening have been summarized [9].

The most significant advancement in chemistry libraries in recent years is the increased
number of molecules. The version update of the ZINC database boosts the number of
compounds from millions to billions. [149,158]. Most of the added molecules come from
on-demand synthesis: these molecules have not yet been synthesized, but they can be easily
synthesized using a large number of optimized reactions and composition modules. As the
largest REadily AccessibLe (REAL) drug library supplier in ZINC, Enamine’s drug space
can produce more than 11 billion drug-like compounds through on-demand synthesis.

A study generated 170 million custom molecules from 130 well-characterized reactions
in Enamine’s REAL library and docked them against targets [16]. The expansion of the
docking library was found to effectively increase hit rates, with an astonishing 453,000
ligands docked successfully. Of the newly discovered chemical types, 30 molecules showed
submicromolar activity, which means that expanding the chemical space through custom
synthesis will help discover high-affinity molecules with novel scaffolds. Further screening
results were obtained by comparing the results of docking a massive database of 1 billion
virtual molecules with those of a stock database of 3.5 million synthesized molecules [17].
This showed that the results of docking a super large database no longer favored bio-like
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molecules, which were reduced by 19,000 times compared to the stock database. This
suggests that expanding the screening space is advantageous for discovering ligands with
new chemical types.

To improve the efficiency of large-scale virtual screening, the VirtualFlow virtual
screening platform can scale linearly with a higher CPU number, allowing for the docking
of a billion compounds to be shortened to two weeks when 10,000 CPUs are used [159].
Another study used a modular collaborative evolution method, V-SYNTHEs, for the parti-
tioned structural screening [160]. Initially, flat compounds that represent all compounds
were pre-docked to determine the best scaffold–synthetic compound combination, and
then, iterative elaboration was performed to select the best molecules. Predicting the best
compounds requires docking of less than 1.0% of members. This method increased the
speed and success rate by 5000 times compared to complete screening.

Based on the favorable results of virtual screening of a massive database, selective
agonists for the melatonin receptor 1 (MT1), rather than the MT2 receptor, were discovered
from 150 million drug-like compounds in ZINC15 [161]. The newly obtained agonist
advanced the phase of the mouse circadian clock by about 1.5 h. Another study determined
the structure of the sigma-2 receptor, resident in the endoplasmic reticulum, and obtained
highly selective molecules that activate the sigma-2 receptor rather than the sigma-1 re-
ceptor from 490 million molecules [162]. The molecule caused a decrease in mechanical
hypersensitivity in a neuropathic pain model, confirming the unique role of the sigma-2
receptor in pain, independently of the sigma-1 receptor. This indicates that large-scale
virtual screening can help obtain chemical probes to confirm unclear receptor functions.

In addition to discovering subtype-selective ligands, designing low-side-effect small
molecules holds further interest. This requires precise control of the activation strength
and downstream pathway selection [163]. A super large virtual screening for non-sedative
analgesic molecules targeting the alpha-2A adrenergic receptor (a2AAR) obtained 20 million
fragment compounds and 280 million drug-like compounds [164]. The results showed
that fragment molecules accounted for 90% of the final results, which means that for
target proteins with smaller binding pockets, fragment molecules are more likely to have a
high affinity than drug-like molecules that are commonly used for docking. The obtained
agonists preferentially activated Gi, Go, and Gz subtypes, rather than G proteins, and
β-arrestin was widely activated by traditional analgesics. Cryo-EM was used to obtain
the structure of a newly coupled molecule of the a2AAR, leading to the discovery of a
more potent compound—PS75. In animal experiments, these agonists effectively alleviated
pain behavior in various pain experiments, even at high doses, without causing sedation.
Another screening, conducted during the same period, utilized a rare chemical scaffold to
target 5-HT2A receptors and designed non-hallucinogenic antidepressant molecules, which
are described in detail below [165].

4.3. Predicting Structures via Artificial Intelligence

In the early 21st century, molecular docking was conducted to discover selective antag-
onists within the 5-HT2 receptor family [166]. This study was based on homology modeling
using the rhodopsin receptor. Even earlier, 5-HT1A receptor agonists were designed based
on basic charge characteristics [167]. However, due to the unavailability of the real structure,
the designed molecules often exhibited broad binding. In subsequent optimizations, mul-
tiple tests were required to analyze pharmacophore functionality, resulting in significant
costs [168,169].

The need for unknown target protein–ligand binding structures led to the organization
of the Critical Assessment of Structure Prediction (CASP) competition [170]. The organizers
provided the names of the unreleased target protein and their corresponding ligands and
released the actual structure after the participants completed the modeling, scoring the
accuracy of the prediction. Before 2018, most teams had an accuracy of less than 50%.
However, the inclusion of the artificial intelligence (AI) programs AlphaFold V1.0 and
AlphaFold 2 led the DeepMind team to win the championship, achieving accuracy rates
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of 70% and over 90%, respectively, due to the advantages of neural network algorithms
over traditional homology modeling [171,172]. First, the database is more comprehensive,
including multi-species macro-genomic data and all the structures that are included in the
Protein Data Bank (PDB), with multiple rounds of iterative optimization. Then, AlphaFold
can extract co-evolutionary information from multiple sequence alignments, identifying
residue pairs that are distant in sequence but interact in three-dimensional space. This
capability is particularly valuable for GPCRs that lack homologous templates [172,173].
Moreover, homology modeling necessitates redocking multiple obtained structures with
known ligands to select the model with the highest affinity, which can introduce structural
bias and reduce repeatability [174].

However, there are still limitations in AI structure prediction. Reproducing known
ligand–GPCR structures using predictive models revealed that AlphaFold demonstrates
high accuracy for the main chain but relatively low accuracy for the side chains [175]. This
stems from the reshaping of flexible residues in the pocket by the ligand and the mixture of
different states of GPCRs in the database. For GPCRs with extensive extracellular structures,
accurate fixed structures were established for both the extracellular and transmembrane
domains. However, relative positioning displacement occurred because of uncertainties at
the junctions. This is because the disordered sequences at the junctions are often highly
dynamic and can be stabilized through the construction of GPCR dimers or multimers and
the use of nano-antibodies in experiments. Additionally, comparing transmembrane helix
6 (TM6), TM7, and key motifs revealed that Alphafold tends to overlap active and inactive
states, limiting its use for drug screening.

To enable the application of Alphafold for the directed prediction of multiple confor-
mations of GPCRs under physiological states, various modifications have been attempted
in the Alphafold process, including (1) selecting a small subset of sequences for a more
shallow multiple sequence alignment [176]; (2) masking or mutating segments of the se-
quences that may introduce bias toward specific conformations [177]; and (3) supplying
Alphafold with homologous templates from annotated active state databases [178]. In addi-
tion to algorithm modifications, MDSs are used as auxiliary methods to provide insights
into the specific physiological states of intermediate proteins [179,180]. MDSs can operate
at atomic resolution over timescales ranging from microseconds to milliseconds. While
these methods effectively yield active and inactive conformations, the direct generation of
conformations under varying signal strengths and with distinct molecular partners remains
a challenge.

Another important issue is whether AI can be used for the construction of protein
complexes or for predicting protein–protein interactions. By combining the monomer
structures that were predicted by Alphafold with cryo-EM maps, the nuclear pore was
reconstructed at a high resolution from an intermediate resolution, and Alphafold effec-
tively identified the key interactions between subunits [181]. Another study used multiple
sequence alignments of 8.3 million pairs of yeast proteins to screen for 1505 pairs of po-
tentially interacting proteins [182]. Alphafold was iteratively optimized by the Multimer
algorithm to predict complex structures, which showed higher accuracy than docking [183].
Similarly, Alphafold-Complex completed the construction of large complexes without the
need for pairwise sequence alignment [184]. Can artificial intelligence quickly pair and
assemble members through simple inputs of GPCRs and transporters and provide bind-
ing pockets for drug discovery with functional selectivity? Or can it resolve the GPCR–G
protein-coupled receptor kinase (GRK) rapid dynamic enzyme reaction system [185]? These
will be the main topics of the next stage [27,186].

Although the first structure-based prescription drug has yet to emerge, considering
three mainstream drug targets reveals challenges: (1) kinases, with their dynamic activa-
tion loop and phosphorylation process, hinder the identification of specific fingerprints;
(2) GPCRs were not characterized in their active state until 2017; and (3) ion channels, often
forming multimeric complexes, present difficulties in terms of structural utilization. More
importantly, the process from discovering potential molecules to ultimately launching them
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on the market takes 10–20 years of animal and clinical trials [187]. Nonetheless, there are
compelling reasons to anticipate that, in the foreseeable future, numerous first-in-class
drugs, unearthed through the integration of cryo-EM and deep learning, will emerge.
These compounds are expected to offer advantages in terms of safety and efficacy that
are currently absent in traditional drugs. Especially in the field of psychedelic therapy for
depression, this ideal is being realized. Here, we summarize widely used and recently
developed virtual screening tools (Table 2).

Table 2. Large virtual screening tools for GPCRs and their websites.

Name Website * Introduction Reference

Virtual drug libraries

ZICN
15/20/22

https://zinc15.docking.org,
https://zinc20.docking.org
https://cartblanche22.docking.org/

Zinc 15/20 contains over 980 million compounds, of
which 230 million are available for purchase. ZINC-22
focuses on make-on-demand compounds and has about
37 billion molecules in 2D and 4.5 billion in 3D.

[149,158,188]

ChEMBL https://www.ebi.ac.uk/chembl/

ChEMBL is a manually curated database of bioactive
molecules with drug-like properties. It brings together
chemical properties and bioactivity and includes 2.4
million compounds and 1.5 million assays.

[189]

Drugbank https://go.drugbank.com/
DrugBank is a web resource containing detailed drug,
drug target, drug action, and drug interaction
information about FDA-approved drugs.

[190]

Protein structure databases

EMDB https://www.ebi.ac.uk/emdb/

EMDB is a public repository for electron
cryo-microscopy volume maps and tomograms of
macromolecular complexes and subcellular structures,
which contains more than 26,000 entries.

[191]

RCSB PDB https://www.rcsb.org/

RCSB PDB is an archive of 3D structure data for large
biological molecules (proteins, DNA, and RNA). It
contains more than 203,863 experimental structures and
1,068,577 computed structure models.

[116]

GPCRdb https://gpcrdb.org/

GPCRdb contains all human non-olfactory GPCRs (and
>27,000 orthologs), G-proteins, and arrestins. It includes
drugs, in-trial agents, and ligands, with activity and
availability data. GPCRdb annotates all published
GPCR structures and provides structure models.

[145]

Protein structure prediction programs

Alphafold2
(v2.3.0)

https://alphafold.com/ (database)
https://github.com/deepmind/
alphafold (program)

AlphaFold utilizes a machine learning method, enabling
prediction of a protein’s 3D structure from its sequence.
The database has released 200 million protein structure
predictions, covering virtually all proteins.

[192]

Rosettafold https://github.com/
RosettaCommons/RoseTTAFold

Rosettafold accurately predicts protein structures and
interactions using a 3-track neural network. The
simultaneous processing of sequence, distance, and
coordinate information by the three-track architecture
assists with incorporating constraints and
experimental information.

[193]

GPCRdb https://gpcrdb.org/

GPCRdb contains all human non-olfactory GPCRs (and
>27,000 orthologs), G-proteins, and arrestins. It includes
drugs, in-trial agents, and ligands, with activity and
availability data. GPCRdb annotates all published
GPCR structures and provides structure models.

[145]

https://zinc15.docking.org
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://www.ebi.ac.uk/emdb/
https://www.rcsb.org/
https://gpcrdb.org/
https://alphafold.com/
https://github.com/deepmind/alphafold
https://github.com/deepmind/alphafold
https://github.com/RosettaCommons/RoseTTAFold
https://github.com/RosettaCommons/RoseTTAFold
https://gpcrdb.org/
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Table 2. Cont.

Name Website * Introduction Reference

Molecular docking tools

Dock (3.6) https://dock.compbio.ucsf.edu/
DOCK3.6/

The DOCK algorithm addresses rigid body docking
using a geometric matching algorithm to superimpose
the ligand onto a negative image of the binding pocket.
It is suitable for tackling large library screens.

[194]

Schrödinger
Glide (2023-4)

https://www.schrodinger.com/
products/glide

Glide is a commercial docking software from
Schrödinger. It can perform flexible ligand docking.
Glide offers multiple speed vs. accuracy options for
scoring modes.

[195]

VirtualFlow https://virtual-flow.org/

VirtualFlow, a highly automated and versatile
open-source platform, scales linearly with the number of
CPUs that can prepare and efficiently screen ultra-large
libraries of compounds.

[159]

V-SYNTHES https://github.com/katritchlab/V-
SYNTHES

A modular synthon-based approach—V-SYNTHES—for
performing hierarchical screening. V-SYNTHES
identifies the best scaffold–synthon combinations as
seeds and iteratively elaborates these seeds to select
complete molecules.

[160]

* All websites in stable accessed on 1 November 2023.

5. Non-Hallucinogenic Psychedelics
5.1. Functionally Directed Approach and Fluorescence Sensors

The two non-hallucinogenic psychedelic analogs, tabernanthalog (TBG) and AAZ-A-
154, were not designed based on structural information [196,197]. The prototype of TBG is
the non-classical psychedelic ibogaine, which possesses the ability to counteract addiction
and depression through synaptic plasticity [198,199]. However, its strong inhibition of
hERG potassium ion channels can cause cardiac toxicity, even leading to death [200,201]. A
functionally directed approach was used to simplify ibogaine and obtain TBG by removing
the quinoline ring, which significantly reduces its lipophilicity and prevents binding to
hERG channels. TBG has lower hallucinogenic effects, induces synaptic plasticity, and
exhibits antidepressant and anti-addictive properties. TBG selectively binds to the 5-HT2
receptors and acts as an agonist of the 5-HT2A receptor and an antagonist of the 5-HT2B
receptor, avoiding heart valve damage caused by 5-HT2B receptor activation [105].

AAZ-A-154 was designed during the development of fluorescence sensors [197,202]
to address the issue of the limited in vitro detection methods for psychedelic drugs and
bridge the gap between cell-based assays and human behavioral studies. The chemical
probe psychLight was synthesized, which replaced the intracellular loop 3 (ICL3) se-
quence of the 5-HT2A receptor with the circularly permuted green fluorescent protein
(cpGFP) to emit a fluorescent signal upon allosteric activation [203]. This probe was
used to screen molecules that compete with 5-HT but only activate the 5-HT2A receptor
to a low level, thus avoiding hallucinogenic effects. The 5-methoxyindole derivative
AAZ-A-154 was obtained, which exhibits rapid and long-lasting antidepressant effects
after a single dose.

Subsequent studies by the same group confirmed that psychedelics produce antide-
pressant effects by specifically activating intracellular subgroups of the 5-HT2A receptor [71].
This highlights how cellular sublocalization bias can influence the diverse physiological
effects that are induced by various ligands. A contradiction exists, as 5-HT, a full agonist of
G proteins and β-arrestin, has no hallucinogenic effect [204]. This is attributed to the subcel-
lular localization bias of 5-HT and psychedelics, which leads to the activation of receptors
in distinct subcellular sites. As a polar molecule, 5-HT relies on the serotonin transporter
(SERT) for transport into the cell, while the N-methylation modification of psychedelics
enables them to enter more easily [71,205]. The 5-HT2A receptor is enriched on the Golgi

https://dock.compbio.ucsf.edu/DOCK3.6/
https://dock.compbio.ucsf.edu/DOCK3.6/
https://www.schrodinger.com/products/glide
https://www.schrodinger.com/products/glide
https://virtual-flow.org/
https://github.com/katritchlab/V-SYNTHES
https://github.com/katritchlab/V-SYNTHES
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apparatus, where there is a slightly acidic microenvironment, allowing psychedelics to
bind and protonate to maintain their long-term efficacy [206]. By modifying the structure
of 5-HT or overexpressing SERT in the cortex to increase the inward transport of 5-HT, it
was found that 5-HT leads to similar activation of synaptic plasticity and the head-twitch
response (HTR) as psychedelics.

Therefore, the inherent perspective that psychedelics exert their main functions in the
plasma membrane is subverted. Producing synaptic plasticity effects must depend on the
activation of the intracellular 5-HT2A receptor, although its downstream association with
synaptic plasticity pathways is still unclear. This explains why blocking the 5-HT2A receptor
on the plasma membrane does not affect the antidepressant effect of psilocybin [207]. Inter-
estingly, this conflicts with the traditional monoamine hypothesis, as the overexpression of
SERT triggers rapid antidepressant effects of 5-HT in this research. Therefore, it is necessary
to reexamine the contributions of different signaling pathways that are activated by ADs to
determine whether exciting 5-HTergic neurons or inducing synaptic plasticity is the key
mechanism of antidepressant efficacy [208–210].

While functionally directed molecular design and fluorescence sensors have led to
the discovery of non-hallucinogenic antidepressant compounds, the number of candidate
molecules remains relatively limited, comprising only 14 and 83 compounds, respectively.
Furthermore, the synthesized compounds still bear a resemblance to psychedelic drugs
and are constructed based on a simplified model of GPCR activation and deactivation. The
5-HT2A receptor-binding psychedelic structures provide insights that subsequently guide
the development of antidepressant molecules using VDS.

5.2. Structures of the 5-HT2A Receptor

Due to the low expression of the 5-HT2A receptor during protein synthesis, the highly
homologous 5-HT2B receptor has been used as an alternative model to study the effects
of psychedelics. The first members of the 5-HT receptor family to be determined were the
5-HT1B and 5-HT2B receptors, which bind ergotamine (LSD-like Parkinson’s drug) [143,144].
The first LSD-binding structure was subsequently released [211]. The simpler secondary
pharmacophore LSD allows the extracellular loop 2 to form a “lid” that closes the drug-
binding pocket and inhibits the slow dissociation of LSD, leading to biased activation of
β-arrestin. This also explains the persistent effects of LSD.

The structures of 5-HT2A receptor-binding LSD (partial agonist), 25-CN-NBOH (high-
potency phenethylamine agonist), and methiothepin (inverse agonist) were released at
the same time [24]. All three ligands interact with W6.48 (Ballesteros–Weinstein number-
ing) [212]. For class A GPCRs, the Ballesteros–Weinstein numbering scheme means that
residues in a TM helix (X) are numbered relative to the most conserved amino acid, which is
defined as X.50. The most critical one is the conformation of the 25-CN-NBOH-5-HT2AR-Gq
active complex (Figure 3A). Alignment showed that 25-CN-NBOH has a larger binding
pocket than LSD, resulting in several helices shifting outward. 25-CN-NBOH produces
tighter contact and occupancy, inducing a conformational change in the key switch PIF mo-
tif, as well as other key GPCR motifs, E/DRY, NPxxY, and toggle switch, which transform
to active conformation [213]. In terms of secondary structure, TM6’s outward movement
allows for Gq embedding, and hydrophobic residues at the bottom of TM6 interact with Gq.
The most critical contact comes from ICL2, which, in the inactive conformation, presents a
rigid helical turn after stabilizing Gq. This result is consistent with a large-scale MDS study
of GPCRs and G proteins: GPCRs have a conserved sequence that binds to G proteins at the
bottom, as well as variable specificity recognition sequences, resulting in different subtypes
of G protein selectivity [214].

To further understand the structure at various activated stages, the structures of
the 5-HT2B receptor linking to LSD in the transducer-free, Gq-coupled, and β-arrestin-
coupled states were determined simultaneously (Figure 3B) [97]. The structure coupled to
β-arrestin showed greater TM6 outward movement and strong hydrogen bond contacts
whose binding to Gq was disrupted. The key motifs were in an intermediate state between
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transducer-free and Gq-coupled. This demonstrates that when binding to different down-
stream transducers, GPCRs can flexibly undergo conformational changes to adapt their
embedding. If ligands are designed to selectively recruit transducers, they will effectively
reduce the undesired side effects of broad recruitment [11,215].

5.3. Removal of Hallucinogenic Effects

Unlike LSD, psilocin adopts a unique binding pose in the 5-HT2A receptor, with the
lipid monoolein occupying the side-extended pocket (SEP), resulting in psilocin binding
to the extended binding pocket (EBP) but not to the orthosteric binding pocket (OBP) [25].
This binding mode plays a critical role in the recruitment of β-arrestin. Mice with a key
binding residue mutation in the EBP for LSD do not experience hallucinations; instead, they
exhibit an antidepressant response. This suggests that the hallucinogenic effects result from
the efficient co-activation of both G protein and β-arrestin. It is speculated that a relatively
less efficient β-arrestin bias activation will produce antidepressant activity while avoiding
hallucinogenic effects. By not occupying the lipid insertion site, a β-arrestin-biased 5-HT2A
receptor agonist, IHCH-7086, was designed (Figure 3C), which has both antidepressant
effects and does not induce hallucinations even at high doses. Although examples are
rare, a single isomerization site was confirmed in the TM3-5 intracellular region, which can
accommodate lipid molecules like monoolein [216,217]. The role of membrane lipids in
GPCR conformational changes needs further exploration [218].

Besides modifying drugs based on known binding modes, virtual screening is another
effective strategy [9,150,219]. However, the lack of high-resolution structures and extensive
databases has limited the utility of prior screenings for 5-HT2 receptors [220,221]. The
scaffold THP, which exists in natural derivatives such as LSD and anti-migraine drugs,
is underrepresented in commercial drug libraries. To address this issue, a virtual library
containing 75 million THP scaffold molecules was constructed using on-demand synthesis
methods [117]. Two high-affinity nitrogen heterocyclic analogues, R-69 and R-70, were
discovered through large-scale virtual screening. The docking results of both molecules,
after MDS optimization, closely align with cryo-EM findings. The R-69-induced conforma-
tional changes by W6.48 and PIF resemble those of LSD, and R-69 binding to residues deep
within the OBP occurs. R-69 exhibits antidepressant effects that are equivalent to SSRI at a
1/40th of the dose. Furthermore, R-69 does not contact W3.28, which is believed to mediate
hallucination and β-arrestin recruitment (Figure 3C). This leads to a distinct signaling bias
for R-69 compared to IHCH-7086, as R-69 prefers to activate Gq while recruiting β-arrestin
less efficiently.

These two studies employed drug modification and drug screening strategies to
design non-hallucinogenic antidepressant compounds. A balanced model was proposed
to explain how a molecule that activates the 5-HT2A receptor produces hallucinogenic
or antidepressant effects, or both. LSD and psilocin cause high-efficiency co-activation
of G protein and β-arrestin, resulting in simultaneous hallucinogenic and antidepressant
effects. However, when highly selective activation of one pathway is achieved, such as the
β-arrestin-specific activator IHCH-7086 or the Gq activator R-69, the 5-HT2A receptor is no
longer overloaded, and its hallucinogenic effects are stripped away [25,165]. This theory
will help re-examine the design of GPCR-targeting drugs, and GPCRs should be viewed as
conformational microprocessors rather than simple on–off switchers.
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Figure 3. Structure–function mechanism of psychedelic activation of 5-HT2A receptor. (A). 5-HT2A

receptor binds an agonist, 25CN-NBOH [green, PDB: 6WHA], and an inverse agonist, methiothepin
[gray, PDB: 6WH4], exhibiting active and inactive conformations, respectively [24]. The active
conformation of 5-HT2A receptors TM5 and TM6, moving outward, and ICL2, transitioning from
a free loop to an incomplete helix. The details in the dashed line box are shown on the right, the
same below. (B). 5-HT2B receptor snapshots of linked β-arrestin [green, PDB: 7SRS] and Gq [gray,
PDB: 7SRR] [97]. Embedding Gq and β-arrestin relies on the outward mobility of TM5 and TM6.
β-arrestin, leads to more significant outward movement, accompanied by a downward shift of helix
8 (H8). (C). LSD [yellow, PDB: 7WC6] occupies both the OBP and EBP, contacting key residues S5.64
and W3.28 in both pockets, respectively. IHCH-7086 [red, PDB: 7WC9] is mainly located in the SEP
pocket, while the other pharmacophore avoids the OBP, leaving room for lipid occupancy [25,165].
Most of the body of R-69 [blue, PDB: 7RAN] is in the OBP and does not contact W3.28.
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6. Designing ADs for the 5-HT1A Receptor
6.1. Structure of the 5-HT1A Receptor

Three structures of the 5-HT1A receptor were released simultaneously, including
the apo structure, the 5-HT-bound structure, and the aripiprazole (antipsychotic drug)-
bound structure [222]. The structural mechanism of lipid-regulated activation of the
5-HT1A receptor and the high selectivity for activation of apripiprazole are revealed. The
distinctive feature that is shared by the three structures is that Ptdlns4P plays a vital
role in stabilizing the active conformation of the 5-HT1A receptor, which is the precursor
of phosphatidylinositol and a key synthesis mediator of the second messenger diacyl
glycerol (DG) [223–225]. Ptdlns4P has been identified as a positive allosteric modulator that
mediates Gi recruitment. It is worth noting that cholesterol in the surrounding area inserts
itself into the crack between TM1 and TM7 and directly participates in shaping the ligand
pocket. This results in the 10–1000 times higher affinity of aripiprazole for the 5-HT1A
receptor than for other subtypes, which matches the role of cholesterol in the functional
regulation of the 5-HT1A receptor [226,227]. Furthermore, the 5-HT1A receptor exhibits
high basal activity in a physiological state due to the structured water molecules in the
ligand-binding pocket, mimicking 5-HT in activating the receptor [228].

This study reveals the important roles of lipids and water molecules in regulating
the 5-HT1A receptor, including their roles as allosteric modulators, agonist mimics, and
pocket shapers. This feature, which is not observed in other 5-HT1 receptor subtypes,
underscores the significance and functional diversity of the 5-HT1A receptor [222,229].
While the utilization of this structure remains infrequent, it can be speculated that the
conformational flexibility of the 5-HT1A receptor allows for diverse and even opposite
functions in varying membrane and cellular environments [230].

6.2. Structure of the Aripiprazole-5-HT2A Receptor

Another antidepressant 5-HT1A receptor agonist, IHCH7041, was designed based
on the unique binding mode of the third-generation antipsychotic drug aripiprazole to
the 5-HT2A receptor. Aripiprazole has less significant side effects compared to traditional
antipsychotic drugs, which is believed to be due to its activation of the D2 dopamine
receptor (DRD2) and antagonism/partial activation of the 5-HT2A receptor [231,232]. In
the resolved structure, aripiprazole is inserted into the binding pocket in an unexpected
inverted helical posture [24,233]. The spatial hindrance by its secondary pharmacophore
resulted in low affinity for the 5-HT2A receptor. This inspired the development of
IHCH7041, which is derived from a larger nitrogen-containing ring replacing the primary
molecule of aripiprazole. IHCH7041 does not bind to the 5-HT2A receptor and exhibits
highly selective activation of the DRD2, improving the symptoms of schizophrenia,
cognitive impairment, and depression. Its antidepressant effect has been demonstrated to
come from the activation of the 5-HT1A receptor. This study indirectly proves that specific
activation of the 5-HT1A receptor will produce antidepressant effects independently of
the 5-HT2A receptor.

6.3. Brain Region Specificity of the 5-HT1A Receptor

As the earliest confirmed member of the 5-HT1 receptor family, the 5-HT1A receptor
plays an important role in the 5-HT system, regulating emotion, cognition, motor coordina-
tion, and other areas. It is distributed in multiple brain regions such as the dorsal raphe
DRN, HPC, Amyg, HT, and basal ganglia [73,234]. The 5-HT1A receptor at the postsynaptic
site in the HPC and cortex has antidepressant effects, while the 5-HT1A autoreceptor at the
presynaptic site in the DRN inhibits signal transmission and 5-HT synthesis after activation,
which amount to negative feedback [235–237]. The delayed onset of action of SSRIs is
attributed to the reciprocal modulation of synaptic pre- and postsynaptic 5-HT1A receptors
during the initial stages of treatment. After several weeks to months of administration,
desensitization of presynaptic 5-HT1A receptors occurs, allowing the antidepressant effects
of postsynaptic 5-HT1A receptors to become evident [238,239]. Differences in 5-HT1A re-
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ceptor’s affinity for drug molecules in various brain regions may result from the binding
pocket reshaping, which is mediated by transducers. For instance, 5-HT1A receptors pre-
dominantly couple with Gαo in the HPC and with Gαi in the DRN [240–242]. Therefore,
designing tissue-specific molecules that target only the postsynaptic 5-HT1A receptor may
have fast antidepressant effects.

Although long-chain aromatic piperazines, represented by buspirone, have been de-
veloped as 5-HT1A receptor agonists, their off-target effects and unfavorable metabolic
properties have limited their application [243,244]. The budding of highly selective 5-HT1A
receptor agonists came from the charge characteristics that were provided by the Weinstein
model, which developed a lead structure containing a benzoylpiperidine fragment [167,245].
Further development of NLX-101, which preferentially activates postsynaptic receptors
in the cortex and HPC, was supported by in vivo imaging and magnetic resonance imag-
ing [246–248]. NLX-101 leans toward the ERK1/2 pathway and has therapeutic effects on
Rett syndrome and antidepressant effects. Based on the docking results of NLX-101 and
the 5-HT1A receptor, a series of highly specific agonists that are biased towards pERK and
β-arrestin were designed, revealing structural–functional selectivity features of docking
poses [168,249]. Among them, NLX-204 has the highest pERK bias and shows a rapid
antidepressant effect that is similar to that of ketamine in animal experiments. This sug-
gests the feasibility of designing antidepressant molecules targeting specific subtypes of
the complex 5-HT1A receptor in different brain regions. Although the precise structure of
the 5-HT1A receptor was not resolved until recent, homology modeling has been aiding
drug design since as early as 20 years ago [167,222].

In addition to designing postsynaptic 5-HT1A receptor agonists, designing drugs to
regulate presynaptic 5-HT1A autoreceptors in the DRN is also feasible. Neuronal nitric oxide
synthase (nNOS) has been found to be highly expressed in the DRN of chronically stressed
depressed mice. nNOS forms a complex with SERT, reducing SERT membrane translocation
during depression [250]. This leads to decreased activation of the postsynaptic 5-HT1A
receptor and inhibitory signals, including reduced neuron firing frequency and diminished
5-HT release in projections to the cortex, ultimately resulting in low postsynaptic 5-HT1A
receptor activation [251,252].

Researchers designed a complex, ZZL-7, targeting the nNOS-SERT binding site
based on structural information (Figure 4B). ZZL-7 binds tightly to the groove of the
nNOS PDZ domain and selectively dissociates the two proteins [253,254]. This facil-
itates the normal reuptake of presynaptic 5-HT and reduces the activation of 5-HT1A
autoreceptors. The molecule has a quick onset of antidepressant effects of only 2 h.
Since the SERT-nNOS expression in the DRN is much higher than in other tissues, ZZL-7
has minimal off-target effects. 5-HT receptors are widely distributed in various brain
regions and produce different physiological effects. Selecting intracellular couples that
are highly expressed in specific brain regions, such as nNOS, as targets can effectively
prevent undesired receptor activation. Additionally, molecules targeting protein complex
binding sites have better bioactivity and cleaner structures, making them highly promising
in next-generation drug development. The mechanism of action of and main information
on the novel antidepressant molecules targeting the 5HT system that are mentioned above
are provided in Figure 4 and Table 3.
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Figure 4. Schematic diagram of antidepressant molecules acting on the 5-HT system. (A). From left
to right, they are as follows: SSRI increases 5-HT concentration in the synaptic gap by antagonizing.
SERT blocks the reuptake of 5-HT into the presynaptic membrane. MAOIs reduce the deactivation
of 5-HT after oxidation reaction by inhibiting MAO activity. IHCH-7086 recruits β-arrestin through
functionally selective and mild activation of 5-HT2A receptors, thereby removing hallucinogenic
activity [25]. R-69 activates 5-HT2A receptor with high affinity and specificity, with a bias toward
activation of Gq [165]. IHCH-7041 selectively binds DRD2 and 5-HT1A receptor but not 5-HT2A

receptor. [233]. NLX-204 highly selectively activates the postsynaptic 5-HT1A receptor of mPFC
without binding to the 5-HT1A autoreceptor of DRN [249]. Psychedelics activate intracellular (es-
pecially endoplasmic reticulum) 5-HT2A receptor and enhance synaptic plasticity [71]. (B). ZZL-7
facilitates the translocation of SERT to the plasma membrane by disrupting the linkage between
nNOS and SERT [253]. This leads to a decrease in extracellular 5-HT concentration. The 5-HT1A

autoreceptor activation located in the DRN is inhibited, thereby abolishing the inhibition of the mPFC
projection impulse.
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Table 3. Potential antidepressant molecules targeted by 5-HT system.

Name and
Structure Prototype Target and

Biased Selectivity Discovery Method Pharmacology References

TBG
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7. Ketamine: Ca2+ Influx and Synaptic Plasticity
7.1. NMDAR-Centered Glutamate Hypothesis

Building on the premise that ketamine blocks NMDAR Ca2+ influx, various depression
hypotheses related to the glutamate system have been proposed [60,256]. Ketamine’s rapid
antidepressant effect is thought to result from its antagonism to Ca2+ influx, mediated by
NMDARs in excitatory neurons. This seemingly contradictory phenomenon has led to the
proposal of various glutamate system hypotheses involving multiple brain regions and
different subsynaptic membrane receptors. One of the mainstream views suggests that
ketamine preferentially antagonizes NMDARs in inhibitory interneurons in the midbrain,
canceling their depolarizing excitation and leading to a decrease in gamma-aminobutyric
acid (GABA) release [257–259]. This reduces the activation of GABAA receptors on presy-
naptic neurons and cancels their inhibitory effect. Glutamate neurons are thus maintained
in an excited state, rescuing the damaged synapse connections of patients with depression.
This hypothesis has been verified by MK-801, an NMDAR antagonist that targets inhibitory
neurons and replicates the effects of ketamine [260].

From the point of view of abnormal discharges, glutamate neurons in the LHb have
been found to generate unique clustered discharges, which, when antagonized, exacerbate
the effects of the reward nuclei VTA and DRN [58]. Ketamine was found to completely
block this discharge, producing an antidepressant effect when delivered solely to the LHb
(Figure 5A). To further address the addictive properties of ketamine in the brain, T-type
calcium channels (T-VSCCs), which co-activate clustered discharges with NMDARs, have
been discovered and have the potential to become a target receptor to the LHb. The
research team also found that the generation of clustered discharges is due to the high
expression of the potassium channel Kir4.1 in glial cells, which promotes the decrease
of extracellular potassium ions and hyperpolarizes neurons [57]. This study links clues
across different scales, from the LHb to glial cells, ultimately resting on three ion channels
and expanding the boundaries of the glutamate hypothesis. The discovered new target
T-VSCCs share a similar rationale with SERT-nNOS, which was mentioned earlier. By
bypassing key receptors such as the 5-HT1A receptor and the NMDAR that are present in
multiple brain regions and neurons, the strategy is to select their interacting partners as
targets for development to achieve tissue specificity. Furthermore, this raises a question: if
NMDARs in different brain regions or subcellular environments have distinct assembly
modes and structural features, could these be exploited for designing compounds targeting
specific receptor subgroups?

From the perspective of signaling pathways, ketamine induces different signal cas-
cades by antagonizing the NMDAR at different subsynaptic locations (Figure 5B). The
antagonism of the postsynaptic membrane NMDAR by ketamine enhances synaptic for-
mation and neurotrophic effects by inhibiting eukaryotic elongation factor 2 (eEF2) and
promoting BDNF expression and AMPAR recycling [60,260]. On the other hand, the
excessive activation of the extrasynaptic NMDAR can be detrimental, as it leads to the
overexcitation of postsynaptic neurons. Clinical studies have shown that the onset of
MDD is highly associated with such overactivation, including the abnormal elevation of
glutamate in body fluids and the functional abnormalities in glutamate-enriched neurons
that have been identified in post-mortem and neuroimaging studies [261–264]. Ketamine
cancels the inhibitory effect of abnormal firing on the mammalian target of rapamycin
(mTORC) by antagonizing the extrasynaptic NMDAR and transmits the signal through
pS056 to the nucleus [265]. Then, eIF4E is activated, leading to the overexpression of PSD-
enriched proteins and the enhancement of synaptic plasticity. Ketamine’s antidepressant
effects are the result of its ability to enhance synaptic plasticity through multiple signaling
pathways. In this process, the key membrane receptors AMPAR and TrkB play a role that is
as significant as that of the NMDAR [77].



Molecules 2024, 29, 964 23 of 39

Figure 5. Molecular mechanism of the rapid antidepressant effect of ketamine. (A). Overexpression
of the potassium channel Kir4.1 on the astrocyte during depression leads to a decrease in the con-
centration of K+ in the cell’s interstitial space [57,58]. Along with NMDAR and T-SVCC promoting
Ca2+ inward flow, this leads to clustered firing of LHb neurons and oversuppression of downstream
reward nuclei. In contrast, antagonism of NMDAR by ketamine abolished the abnormal cluster
discharge and restored normal Ca2+ inward flow and action potential. (B). Ketamine inhibits GABA
release by antagonizing NMDAR on inhibitory GABAergic interneurons, which leads to the with-
drawal of its inhibitory effect on glutamatergic excitatory neurons [257–259]. Ketamine blocking
NMDAR-mediated Ca2+ inflow is represented by ✕ symbol. Direct antagonism of the NMDAR on
the postsynaptic membrane produces an inhibitory effect on eEF2 [60,260]. In addition, antagonism
of the extrasynaptic NMDAR activates the mTORC pathway, promoting PSD-enriched protein ex-
pression and enhanced synaptic plasticity [265]. Activation of AMPAR plays a necessary role in the
antagonism of NMDAR by R-HNK to produce antidepressant effects [60,260]. The transmembrane
helix of TrkB can bind R-HNK and activate downstream synaptic plasticity signaling pathways via
dimerization [134]. (C). NMDAR binding S-ketamine cryo-EM structure [26]. NMDAR is a tetramer
composed of two N1 subunits (gray) and two N2 subunits (green) (left). The different composition of
N2 subunits determines the type of NMDAR. One conformation of S-ketamine localized in vestibule
is shown (right) [PDB: 7EU7].
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7.2. Synaptic Plasticity: The AMPAR and TrkB

The impairment of synaptic plasticity in mPFC and HPC is a characteristic feature of
MDD patients, who also exhibit neuronal atrophy in these areas, reduced synaptic density
and diameter, and a decreased number and length of dendritic spines [32,266,267]. Synaptic
plasticity is highly correlated with the processing and storage of information in neurons, as
well as the tolerance to cross-neuronal connections and electrochemical stimulation [67].
Chronic stress-induced depression is accompanied by long-term depression (LTD) of
corresponding brain regions, while the antidepressant effect of ketamine is accompanied by
LTP [268]. At the molecular level, reduced reactivity of the AMAPR and the NMDAR was
detected in chronic depression mouse models [267]. Receptor abnormalities that are caused
by chronic stress activate the pathway of synaptic disappearance and cell apoptosis, further
damaging interneuronal connections [269]. The damage to interneuronal connections
causes functional abnormalities in single neurons, leading to emotional and cognitive
impairment in patients, ultimately resulting in depression [270].

The thenteraction between AMPARs and TrkB, receptors related to synaptic plasticity,
and ketamine has been a focus of research (Figure 5B). The more potent antidepressant
effect, R-HNK, which is formed after the metabolism of ketamine, relies on the activation
of the AMPAR rather than the NMDAR, and this has been confirmed using an AMPAR
antagonist [132]. Furthermore, studies suggest that the antidepressant effect may arise
from AMPAR activation in the synapse [271,272]. This includes NMDAR antagonists with
antidepressant effects like Ro 25-6981 and the muscarinic acetylcholine receptor (mAChR)
antagonist scopolamine, which increase the intracellular glutamate concentration, activat-
ing both the intracellular NMDAR and AMPAR. And a series of small molecules with
antidepressant effects all depend on the activation of the AMPAR, including NMDAR
partial agonists, metabotropic glutamate receptor 2 (mGluR2) and mGluR3 antagonists,
and mAChR antagonists [250,272,273]. Ketamine’s primary mechanism of action in antide-
pressant effects is the activation of synaptic plasticity pathways, the facilitation of AMPAR
expression and recycling post-internalization, and the promotion of BDNF release through
AMPAR-mediated Ca2+ influx [251].

TrkB, a synaptic plasticity-associated receptor, is activated by the BDNF and activates
the synaptic plasticity pathway through phospholipase C gamma (PLC-gama) 1, mTORC,
and mitogen-activated protein kinase (MAPK). A groundbreaking study identified TrkB as
a target for R-HNK and SSRIs and directly activated downstream plasticity pathways [252].
The exploration of TrkB stems from two conflicting results: R-HNK’s antidepressant effect
does not depend on the NMDAR [132,134]; and the NMDAR antagonist MK-801 does not
produce antidepressant effects [274,275]. This means that BDNF-TrkB signaling is necessary
for ketamine’s antidepressant effects. Molecular docking and molecular dynamics simu-
lations have shown that R-HNK can bind to its transmembrane domain and induce TrkB
dimerization to activate intracellular phosphatases. This study suggests that depressive
symptoms may arise from cholesterol accumulation around TrkB in lipid rafts, which
hinders the formation of the necessary cross-angle between transmembrane helices, which
is required for the activation of the intracellular kinase domains [276,277]. aDs can act as
anchors to stabilize the cross-angle. The transmembrane dimer helix of the tyrosine kinase
receptor may become a new target for AD design.

Ketamine antidepressant hypotheses are difficult to distinguish, because their causal
explanations or even contradictory explanations exist due to complex interactions between
signaling pathways. It is imperative to further explore whether antagonizing the Ca2+

influx or enhancing synaptic plasticity is the key factor which is essential for the rapid onset
of ketamine’s effects, the swift reduction in suicidal ideation, and its successful application
in TRD [278]. In future research, the promising approach of targeting other proteins within
the synaptic plasticity pathway to design fast-acting antidepressant molecules should be
investigated.
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7.3. Structural Mechanism of the S-Ketamine NMDAR

The first NMDAR structure that was obtained was from X-ray crystallography with
the channel blocker Ro25-6981, and the structures of triheteromeric were resolved by
cryo-EM [279,280]. However, the mechanism of psychoactive drugs binding to NMDARs
remains to be determined due to the low-resolution electron microscopy density at the time.
The publication of the NMDAR coupled with ketamine structures marked a significant ad-
vancement (Figure 5C) [26]. There subtypes are GluN1-GluN2A and GluN1-GluN2B, which
are enriched in the brain cortex and HPC. As a tetrameric ion channel receptor, the NMDAR
has several intertwined helices in the transmembrane region. Its channel comprises ion
channel gates, vestibules, and selective filters from top to bottom. S-ketamine binds in the
center of the vestibule and is highly dynamic, adopting two main conformations, “biased
up” and “biased down”, as discovered by MDS. R-ketamine is predicted to bind more
tightly to NMDARs and produce more potent antidepressant effects. HNK’s affinity for
NMDARs is notably diminished, because the hydroxyl group on its hexane chain disrupts
hydrophobic interactions. This observation aligns with previous research findings that
R-HNK exerts its effectiveness through the AMPAR and TrkB pathways [132,134].

Another study published the structures of NMDARs that are bound to S-ketamine,
the antipsychotic drug haloperidol, and the Alzheimer’s drug memantine [79]. A higher
resolution of the electron microscopy density of S-ketamine was achieved, confirming
three stable conformations through molecular dynamics simulations. This is unusual, as
the other two drugs exhibit only one conformation. The drugs bound to residues in the
threonine (Thr), hydrophobic, and asparagine (Asn) rings, arranged from top to bottom.
Three ligands were found to hinder Ca2+ influx by physically blocking and interacting with
specific residues. As a common characteristic of channel blockers, promoting hydrogen
bonding between the Thr ring and the hydrophobic ring leads to gate closure. The speed
of channel closure is related to the hydrophobic interactions between the three ligands
and the Thr and hydrophobic rings. The broad hydrophobic interactions of phencyclidine
promote rapid channel closure, inducing severe psychosis, while memantine, with its slow
channel closure, has fewer side effects. Ketamine falls between these two in terms of its
effects [281,282]. The correlation between this structure and physiological effects will help
design NMDAR antagonists with fewer side effects.

Can the drug design strategy for GPCRs be adapted to develop functionally selective
drugs for distinct NMDAR subtypes? This relates to variations in NMDAR assembly across
brain regions and subcellular compartments. To further understand the structural basis
for the functional diversity of different subtypes, cryo-EM images of GluN1-N2D (located
in the thalamus and HT), GluN1-N2C (located in the cerebellum and olfactory bulb), and
GluN1-N2A-N2C (located in the cerebellum) and enriched in GABAergic interneurons were
obtained [283]. The ion channel opening probability of the GluN1-N2D receptor is 50 times
lower than that of the GluN1-N2A receptor due to the more closed N-terminal domain
of the GluN1-N2D receptor, which results in its lower channel opening probability [283].
In addition, the GluN1-N2C receptor adopts a special asymmetric conformation that is
different from that of the classical NMDAR. Finally, the N2A and N2C subunits in the
N1-N2A-N2C tri-receptor display a conformation that is close to one protomer in the
corresponding di-receptors. This study establishes the link between channel activity and
NMDAR subtype structure, aiding the development of subtype-selective NMDAR probes
or ADs.

A specific subtype-targeting antidepressant molecule has been discovered, YY-23, a
thioglycoside from Rhizobium, which produces metabolites in the brains of mice [284,285].
YY-23 can effectively relieve stress and selectively and reversibly inhibit NMDAR-mediated
currents. It can reverse various depressive symptoms, including reduced social interaction,
and is faster acting than fluoxetine. A whole-cell voltage clamp confirmed YY-23 as
a selective allosteric inhibitor of the GluN1-GluN2D subtype, which acts to suppress
GABAergic neurons. Its inhibitory effect comes from binding to the S2 segment of the
ligand-binding domain of the GluN2D subunit. The discovery of YY-23 demonstrates the
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potential for designing functionally selective antidepressant compounds targeting specific
NMDAR subtypes. The composition, distribution, physiological effects, and corresponding
available compounds of different subtypes of NMDARs have been summarized [286].

7.4. Ketamine Targets Multiple Types of Receptors

Ketamine has been documented to engage with diverse receptors and ion channels,
encompassing those associated with opioid, cholinergic signaling, and hyperpolarization-
activated cyclic nucleotide-gated (HCN) channels. Ketamine tends to have a lower affinity
for these receptors than for the NMDAR, but the role of these receptors in the antidepressant
effect cannot be ignored.

HCN channels represent voltage-gated cation channels [287]. The anesthetic efficacy
of ketamine stems from its interaction with HCN1-HCN2 heteromeric channels and the
modulation of hyperpolarization-activated pacemaker currents [288]. Notably, the ad-
ministration of ketamine in mice lacking the HCN1 gene failed to ameliorate depressive
behavior [289]. However, the necessary role of HCN1 in ketamine antidepressants cannot
be confirmed, because the behavioral changes that are caused by HCN1 deficiency cannot
be ruled out.

Ketamine has the capacity to bind to muscarinic acetylcholine receptors (mAChRs)
and nicotinic acetylcholine receptors (nAChRs) [290]. mAChRs are GPCRs, and ketamine
exhibits binding affinity to subtypes M1, M2, and M3 of mAChRs. nAChRs function
as non-selective cation channels that are activated by the neurotransmitter acetylcholine.
These receptors consist of five subunits, comprising 10 α (α1-α10) and 4 β (β1-β4) nAChR
subunits [291]. Diverse combinations of these subunits give rise to numerous functional
nAChR subtypes. It has been reported that ketamine serves as a non-competitive open
channel blocker for the α7, α4β2, α4β4, and α3β4 nAChR subtypes [292–296]. The an-
tagonistic activity of ketamine metabolites against α7 nAChR may be associated with its
antidepressant effects, a phenomenon that is validated in animal models [297]. Conse-
quently, nAChR antagonists have been investigated in clinical trials for the treatment of
depression [298].

Opioid receptors, a type of GPCRs, are subdivided into three main subtypes (µ, δ,
and κ). Among these, µ and κ-opioid receptors (MORs and KORs, respectively) have
been identified as direct targets for ketamine, acting as partial agonists for MORs and
KORs [299]. Notably, while morphine-induced activation of opioid receptors failed to
elicit alterations in depressive behavior in mice [300], the administration of diverse opioid
receptor antagonists, including naltrexone (which preferentially targets MORs and KORs),
CTAP (a selective MOR antagonist), or LY2444296 (a KOR-specific antagonist), successfully
attenuated the behavioral effects of ketamine in rodents and its antidepressant efficacy in
patients with MDD [301–303]. Consequently, the precise contribution of opioid receptors to
the antidepressant effects that are induced by ketamine warrants further elucidation.

In summary, the antidepressant effect of ketamine and its metabolites comes from
the binding of their various receptors to ion channels, as well as the interaction between
receptors. They are ultimately identified as key targets for antidepressant effects to design
novel, safer ADs.

8. Conclusions

Depression imposes a huge burden on humanity, driving unceasing exploration of the
pathophysiological mechanisms of depression and discovery of ADs. The development of
ADs can be divided into three stages (Figure 6): (1) Before 2000, transport inhibitors target-
ing the monoamine system dominated the development of Ads, based on the monoamine
hypothesis. However, these ADs had unexpected side effects and undesirable properties
such as slow onset and low efficacy. (2) From 2000 to 2016, two landmark clinical studies
re-evaluated the pathogenesis of depression by rediscovering psychedelic drugs and ke-
tamine, which had been neglected for 50 years. New hypotheses about depression such as
the glutamate hypothesis and synaptic plasticity were widely discussed. (3) From 2017 to
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the present, the structures of 5-HT receptors related to depression have been successively
resolved by cryo-EM, and the active structures of more than 20 5-HT receptors have been
published. The explosion of structural information and the expansion of the super large
virtual chemical space have enabled researchers to design or screen high-receptor-selective
ADs such as the IHCH-7041, ZZL-7 R-69, and IHCH7086.

Figure 6. Landmark events in the discovery and utilization of psychedelics. The representative
psychedelics are found in the white box. The structural discoveries are shown in blue boxes. The
development of novel antidepressant molecules is shown in pink boxes.

The revolution in structural biology that was brought about by cryo-EM has driven
the design of targeted ADs, and ideal molecules with receptor subtypes, spatial local-
ization, and activation pattern specificity will be targeted for the next stage of research.
Although most of the structures of active GPCRs have been obtained, there are still only
few cases of utilizing them. By designing antidepressant molecules that are directed to
activate G protein isoforms and β-arrsetin and target different subtypes of the NMDAR,
a combination of rapid onset of action and low-level side effects ADs will be achieved.
This cannot be achieved without VDS advances, including the expansion of the virtual
chemical space, the improvement in molecular docking efficiency, and the fine construction
of MDS environments. At the same time, these breakthroughs will drive industrial change,
and structural modeling will serve as the starting point for drug discovery, replacing the
traditional high-cost, high-side-effect drug screening methods. We are standing at the
starting point of the next-generation drug development, which is a new era of rational drug
development with the rational development of drugs from the billion-level drug space and
atomic-level resolution, and novel ADs are undoubtedly the most representative examples.
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249. Sniecikowska, J.; Gluch-Lutwin, M.; Bucki, A.; Więckowska, A.; Siwek, A.; Jastrzebska-Wiesek, M.; Partyka, A.; Wilczyńska,
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