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Abstract: Implant-associated infections (IAIs) represent a major health burden due to the complex
structural features of biofilms and their inherent tolerance to antimicrobial agents and the immune
system. Thus, the viable options to eradicate biofilms embedded on medical implants are surgical
operations and long-term and repeated antibiotic courses. Recent years have witnessed a growing
interest in the development of robust and reliable strategies for prevention and treatment of IAIs. In
particular, it seems promising to develop materials with anti-biofouling and antibacterial properties
for combating IAIs on implants. In this contribution, we exclusively focus on recent advances in the
development of modified and functionalized implant surfaces for inhibiting bacterial attachment and
eventually biofilm formation on orthopedic implants. Further, we highlight recent progress in the
development of antibacterial coatings (including self-assembled nanocoatings) for preventing biofilm
formation on orthopedic implants. Among the recently introduced approaches for development of
efficient and durable antibacterial coatings, we focus on the use of safe and biocompatible materials
with excellent antibacterial activities for local delivery of combinatorial antimicrobial agents for
preventing and treating IAIs and overcoming antimicrobial resistance.

Keywords: antibacterial; biofilm; infections; local antimicrobial agent delivery; lyotropic non-lamellar
liquid crystalline phases; orthopedic implants; polymeric coatings

1. Introduction

The rise in life expectancy is associated with an increased demand for healthcare
among the elderly with hip osteoarthritis or osteoporotic fractures, as well as an increased
demand for joint replacement surgeries and development of safe and biocompatible or-
thopedic biomaterials for combating implant-associated infections (IAIs) [1–3]. Here, it is
worth considering that the surgical placement of orthopedic implants inside the human
body for offering biological support to injured tissues or organs and restoring biological
functioning is challenging due to possible bacterial adhesion and proliferation on the
surfaces, eventually leading to infections [4–6].

Despite extensive recent endeavors in improving biomedical implants through surface
modification strategies and the use of biomaterials with excellent anti-biofouling properties
for preventing the recruitment of biofouling microorganisms that initiate irreversible at-
tachments on implant surfaces, IAIs still represent a major public health and socioeconomic
burden. This is due to the intrinsic tolerance of biofilms to antimicrobial agents and the
immune system, and the increased potential of antibiotic resistance development due to
long-term and repeated conventional antibiotic treatments [7,8]. The latter is a major health
concern, according to the “A European One Health Action Plan against Antimicrobial
Resistance (AMR)” report (2017): antibiotic resistance causes approx. 25,000 deaths per
year in the EU, and it is estimated to cause more deaths than cancer by 2050. It is also
increasing the economic burden across the EU with an annual healthcare cost of about
EUR 1.5 billion per year. In the USA alone, IAIs account for 25% of all hospital-acquired
infections and the annual healthcare burden exceeds USD 4 billion [9–12].
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Orthopedic IAIs are severe complications resulting in implant failures, often require
secondary implant replacement surgeries, and may lead to amputation or mortality, and
represent, therefore, a major public health burden due to extended hospitalization, in-
creased time of rehabilitation, and high healthcare costs [13,14]. It is also challenging to
treat IAIs due to the typical metabolic heterogeneity of the biofilm-embedded microbial
cells, which are not directly targeted by conventional antibiotic treatments [15]. Further,
systemic antibiotic delivery is not an efficient therapeutic option as bacterial infections are
capable of developing resistance to most widely used conventional antibiotics [1,16]. The
clinical incidences of orthopedic IAIs are 2–5% worldwide, and the annual healthcare and
treatment expenses are around USD 20 billion [13,15,17].

As the orthopedic implant market is expected to grow, the risk of associated infections
should be minimized by preventing bacteria colonization at implants, and addressing ther-
apeutic challenges related to development of biofilms, which are complex dense matrices of
proteins, polysaccharides, and DNA-embedding bacteria [12]. The formation of biofilms at
implants significantly impairs the efficacy of antibiotic treatment by increasing the antibiotic
resistance of internal biofilm cells by 10–1000 times [18]. This necessitates efforts to design
safe and efficacious strategies for targeting implant-associated infections and effectively
combating the development of biofilms through implant surface modifications and the
use of biomaterials with excellent anti-biofouling properties, and assist, therefore, host
tissues around the implants in winning “the race for the surface” [19,20]. As an alternative to
systemic antibiotic use, the FDA has approved various biomaterial candidates that can be
used for targeting IAIs [21].

Extensive research has explored various strategies for preventing bacterial adhesion
and biofilm formation on orthopedic implants. These strategies, primarily focusing on
surface design, can be classified into two groups: strategies for development of surfaces
with either passive bacterial repelling or with active bacteria killing [22]. The former
strategy focuses on preventing biofilm formation on the implants, whereas the latter focuses
on disrupting bacterial cells and achieving efficient bacterial eradication. For achieving
efficient action against both adhered and surrounding bacteria, the active bacteria killing
strategy focuses on designing safe coatings for orthopedic implants capable of locally
releasing antibacterial agents [12,23]. There is recent rapidly growing interest in this
strategy for inhibiting biofilm formation on implants due to an increase of occurrence of
superbacteria and resistance to conventional antibacterial agents [23].

Considering the increased formation of antibiotic-resistant bacteria embedded on med-
ical implants (particularly orthopedic implants), and the rise of complications associated
with the surgical procedures and the long-term use of these implants, there is a recent
growing interest in introducing new, safe, and effective strategies for combating IAIs [24].
In this contribution, we focus on recent advances in the development of surface implant
modifications and development of antibacterial coatings. We further highlight promis-
ing future directions in engineering and functionalization of orthopedic implants with
unique structural features, design of orthopedic personalized implants, and new coatings
(including the use of self-assembled nanostructures such as inverse non-lamellar liquid
crystals in the design of coatings) for local delivery of combinatorial antimicrobial agents
for treating infections, overcoming antibiotic resistance development, and stimulating bone
tissue regeneration.

2. Biofilm Formation on Orthopedic Implants and Prevention Strategies

Bacteria may invade the surgical site and induce infection. There is, therefore, a
high risk of bacterial adhesion and colonization on orthopedic implants, leading even-
tually to biofilm infections [24–26]. Similar to other medical devices and implants, most
orthopedic implants generally fail due to the development of IAIs and poor tissue intercon-
nections [27,28]. Such poor host integration between the implants and their surrounding
bone tissues may lead to the presence of small void spaces around implants, allowing a
suitable environment for bacterial adhesion and colonization [5,7,12,26].
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The four-stage biofilm formation process on medical implants is illustrated in Figure 1.
The initial preliminary phase is reversible and occurs through the attraction and attachment
of microorganisms to the solid surface directly or through interactions with pre-adsorbed
proteins [13]. This bacterial adhesion stage paves the way for cell attachment and microbial
colonization at the implant, leading eventually to the formation of microcolonies and devel-
opment of a 3D unique biofilm structure, which is built of hydrated extracellular polymeric
matrix (EPM). As these microcolonies grow in density, the produced extracellular biopoly-
mers are effective in encasing bacteria and maintaining the biofilm structure. With bacterial
pili and flagella structures, these biopolymers form the EPM [29]. The 3D biofilm structure
is comprised of less than 10% of bacterial cells and the remaining part is mainly composed
of lipopolysaccharides, polysaccharides, proteins, nucleic acid, and lipids [30–33]. The
EPM provides the biofilm with the following: mechanical stability, enhancement of adher-
ence to the implant surface, and an efficient polymeric network for assessing intercellular
communications through signaling routes that exist among the biofilm cells [30]. Biofilms
have heterogeneous environments as the superficial layers consist of metabolically active
bacteria, whereas the bacteria in the deeper layers become metabolically inactive due to
inefficient oxygen and nutrient diffusion into the biofilm matrix [34]. It is worth noting that
the metabolically active bacteria can revert to the planktonic forms by detaching from the
biofilm matrix, leading to the initiation of new infections in other sites of the body or the
implant [30].
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Figure 1. Bacterial colonization and biofilm formation on a medical implant (created with BioRen-
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The 3D complex biofilm matrix with unique physical and biological properties and in-
herent morphological features provides the pathogenic bacteria with an exceptional ability
to avoid their killing by host defense components and antibiotics. In addition to the poor
permeation of biofilms through the EPM network, it is important to consider the plausible
inactivation of antibacterial agents (including conventional antibiotics) in the internal acidic
and anaerobic biofilm environments [25]. Thus, the adequate antibiotic dosing required for
eliminating the encased bacteria can be hampered [32,35]. Alteration in cell metabolism,
either through chromosomal mutations or horizontal drug resistance gene transfer, can
condense the biofilm and increase its tolerance, which is the capacity of a bacterial colony
to endure lethal antibiotic levels in the short term, and resistance to antibiotics [24]. A
relatively high bacterial population level in the biofilm matrix enhances interactions among
the embedded bacterial cells through biochemical signaling pathways [24]. This close
communication is generally associated with a facilitated exchange and horizontal transfer
of virulence genes and resistance genes among microorganisms [34,36]. Due to anaerobic
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stress conditions in the biofilm matrix, some subpopulations of bacteria might develop
resistant phenotype states and express biofilm-related antibacterial resistance genes [2]. As
a result, conventional antimicrobial agents are unable to completely eradicate the encased
biofilm pathogens, as typically applied standard dosing cannot penetrate the biofilm and
kill bacteria. Considering the failure and the poor outcomes of traditional systemic an-
tibiotic treatments, further interventions, including surgical implant exchange or removal
without replacement, are commonly needed as the only options to eliminate infections.
In more violent cases, amputation or lethal consequences may arise due to unrestrained
persistent infection around the implant and surrounding tissues [15,22,31,37–39].

2.1. Biofilm Prevention Strategies

As biofilms are capable of growing on nearly any surface during surgery, it is of
paramount importance to introduce efficient strategies to reduce the economic burden
and severe consequences of IAIs, including amputation and patient’s pain, and increase
survival [25]. These strategies should take into account that the first 5–6 h following
surgery are critical as the implants are primarily in good condition for enhancing bacterial
attachment and colonization [30,39]. It is important, therefore, to minimize such risk
through the use of antimicrobial prophylaxis prior to and post surgery [2]. It is also
recommended that the antibiotic treatment should avoid the administration of relatively
high doses of antibiotics for an extended period that may result in the development of
bacterial resistance [13].

It is worth noting that the implant surface characteristics, including topography,
wettability, and surface chemistry, may significantly influence implant–host tissue inte-
gration [30]. On implant placement, the host cells and pathogens are generally engaged
in “a race to the surface” to attach and eventually colonize the implant surfaces. Thus,
implant–host tissue integration can stop bacterial adhesion when the host cells occupy the
implant surfaces before bacteria. In contrast, biofilm development, leading eventually to
IAIs, is expected to occur upon fast and direct contact of the implant surfaces with bacteria.
Thus, the affinity of the host cells to the implant surface plays an important role in the
long-term success of orthopedic implants [13,30]. However, it is still practically challenging
to achieve such success due to the similarity of the adhesion mechanism of the host cells
to those of bacteria. In addition to non-specific host cell–implant interactions that might
hinder optimal integration, bacterial attachment and colonization on the implant surface or
around the surrounding tissues are serious concerns [1].

2.1.1. Implant Surface Modification

Implant surface modification strategies are antibiotic-free and focus on designing
implant surfaces with unique properties for achieving unfavorable bacterial attachment
and colonization [7,13,27,30,36,40]. Among others, anti-biofouling and contact killing are
promising and most investigated viable options for prevention of bacterial adhesion [7].
Here, surface nanotopography can decrease bacterial adherence and bacterial cell attach-
ment by modifying the surfaces and providing them with unique properties such as
roughness, surface energy, wettability, and adhesion [41].

Anti-Biofouling Surfaces

For blocking the first stage of biofilm development on orthopedic implants and avoid-
ing the use of toxic bactericidal substances, there is a growing interest in the design of
implants with anti-adhesive and anti-biofouling properties with relatively very low surface
energy. Among others, modifications of the implant surface topography and polymeric
immobilization of coatings on implant surfaces are widely investigated in attempts to
generate bacteria-repulsive biomimetic surfaces [42,43]. Bacteria are often not entirely
eradicated from these surfaces. However, the significant reduction in their numbers on
implants hinders bacterial biofilm formation [43,44].
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The design of superhydrophobic surfaces, typically having water contact angles of
>150◦, is inspired by the surface characteristics of lotus leaves and striders [45–47]. Here,
the excessive water repellency of such surfaces is attributed to a non-wetting surface
chemistry and a high level of roughness, preventing the initial adherence of bacteria that
reside in an aqueous environment [7]. As shown in Figure 2a, the anti-biofouling surface
characteristics of these implants are attributed to air pockets formed between the surface
and the bacterial cell membrane, hindering complete contact [48]. Here, it is worth noting
that such surfaces with hierarchical nanostructures can enhance fluid drag reduction and
biofouling prevention by retaining trapped air under water [14]. This is attributed to the
presence of air pockets significantly reducing the active solid surface area in contact with
water, known as the “Cassie fraction” [49].
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Superhydrophobic surfaces are created by combining rough surface structures with
low-surface-energy materials via different approaches [50]. Briefly, rough structures (such
as nanopillars, nanochannels, and nanodiscs) are created on hydrophobic materials to
obtain superhydrophobicity. Other routes involve the deposition of extremely hydrophobic
constituents on substrates to create hierarchically organized surfaces with superhydropho-
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bic layers [43,48,51]. Photolithography, salt etching, sol–gel chemistry, laser ablation and
mechanical sand blasting are commonly used to create surfaces with textured arrays and
superhydrophobic properties [49,52–54]. For example, Manivasagam et al. [55] recently
reported on using a simple thermochemical method to modify the characteristics of tita-
nium (Ti) surfaces for preventing biofilm formation on surface with nanotopography, and
through a treatment with silane for achieving superhydrophobicity. These silane-modified
superhydrophobic surfaces significantly inhibited bacterial colonization (up to 90%), and
led to a reduction in the surface adherence levels of Staphylococcus aureus (S. aureus) and
Escherichia coli (E. coli) as compared to control (unmodified) surfaces.

Another bio-inspired strategy relies on manufacturing superhydrophilic surfaces with
water contact angles of <10◦. In this strategy, the surface characteristics are modified
though chemical alterations, leading to surfaces with unique morphological features by
merging regular micro-roughness with hydrophilic substances. Wetting these surfaces
leads to water trapping due to surface roughness (known as the Wenzel wetting state), and
induces therefore the formation of surfaces coated with aqueous layers that effectively
restrict bacterial attachment (Figure 2b,c) [56]. As most bacteria interact with surfaces
through hydrophobic interactions, increasing the implant surface hydrophilicity is typically
associated with an enhanced resistance to bacterial adhesion [14,57]. Polyethylene glycol
(PEG) is the most popular anti-biofouling substance as it creates a relatively large exclusion
volume on surfaces, leading to the determent of bacterial contamination [58]. In addition,
hyaluronic acid and chitosan are attractive for use as hydrophilic modifiers owing to their
richness with hydrophilic functional groups, including –OH and ammonium groups. The
presence of such groups enhances the surface energy through a significant increase in
the hydrophilicity degree of commonly used surface coatings [42,57]. Further studies
are needed for gaining further insights into the effects of hydrophilic and hydrophobic
modifiers on surface wettability and bacterial adherence [44].

Contact-Killing Surfaces

Surface topography is a successful tool for preventing the development of microbial
biofilms on implants by killing and physically inactivating attached bacteria [7,14]. In
addition to the topographic features at the nanoscale, bacterial cell-surface contact plays an
important role in regulating physical damage, which is known in the literature as a contact
killing. This biomimetic approach is inspired by the structures of cicada and dragonfly
wings, which are decorated with nanospikes that act as defensive coatings against microbial
contaminants [59]. In this research area, analogous topographic nanostructures, including
nanorods, nanopillars, and nanoedges, are constructed to acquire inherent bacterial-killing
properties [42]. The simple mechanism of contact killing by surface topography is presented
in Figure 2d. The dimensional properties (such as height, width, and spacing) of these
nanostructures have decisive roles in the contact-killing mechanism [41]. Nanotextured
surfaces, with thick, blunt nanopillars, promote bacterial adhesion between spikes, causing
cell body suspension, stress, and rupture, ultimately leading to cell death in bacteria [25,60].
To generate unique 3D topography-patterned surfaces with nanopillars, many processes
such as electrochemical anodization, hydrothermal etching, and 3D direct laser writing
are used [42]. However, this mode of action based on the disruption of the cell membrane
by surfaces with nanopillars may not be similarly successful against certain cells with
relatively thicker or larger cell walls or those having an additional membrane [61]. Recently,
biomolecule-based contact-killing techniques have been introduced as more sustainable
alternatives to topographic surface nanopatterning. In these studies, the utilization of
different biopolymers (including chitosan and cellulose) and various antimicrobial pep-
tides (AMPs) has been reported [7,58,62]. The antibacterial activities of these cationic
biomolecules are most likely attributed to their electrostatic interactions with typically
negatively charged bacterial membranes, resulting in cell content leakage and eventually
microbial death (Figure 2e) [2,14,20,34]. The recent increasing interest in the design of
coatings with sustained release properties of AMPs is attributed to their advantages as
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compared to typically used antibiotics. Small cationic peptides can penetrate or travel
across negatively charged bacterial membranes, generating small pores that cause burst of
cell contents and bacterial death [63,64]. Therefore, AMPs offer exciting alternatives to tra-
ditional antibiotics owing to their rapid and non-specific antibacterial mechanisms, which
are also less likely to induce bacterial drug resistance. Further, it is worth considering that
AMPs are part of the immune system, act as immunomodulating agents, and may exhibit
potential biological activities (such as anticancer, antiviral, and antifungal activities) [65,66].

Contact-killing strategies can kill pathogens by preventing direct bacterial contact
with the implant surface. Thus, they minimize the risks of biofilm development and
bacterial infections. However, these strategies are not active on planktonic bacteria. As the
contacted bacteria are ruptured, bacterial debris and intracellular contents can accumulate
on the contact surface, diminishing the bactericidal effect of the implant surface. Such
an accumulation barrier may form active functional groups and provide binding sites for
adhesion of planktonic bacteria [25].

2.1.2. Release-Based Antibacterial Coatings

The design of antibacterial coatings on orthopedic implants has merged as a promising
option for the prevention of IAIs (Table 1) [38]. Here, single or combined antibacterial agents
(such as antibiotics and AMPs) can be released in sustained-release manners to maintain
their relatively high local concentrations on and around the implants and the surrounding
host tissues, prevent rapid depletion of antibacterial activity, lower postsurgical contamina-
tions, and kill adherent and adjacent planktonic bacteria (Figure 2f) [6,25,26,43,49,67].

In addition to polymeric antibacterial coatings, various studies have reported on
coatings based on lipids and those developed from nanoparticles [26,68–70]. Owing to
their potential responsivity to external stimuli (including magnetic field, temperature,
and light) and typical strong antibacterial effects, metallic nanoparticles are one of the
most utilized nanomaterials for antibacterial coatings, either by direct immobilization or
embedding in polymeric layers [71,72]. Most coatings are developed from biopolymers
with molecular and functional versatilities, allowing the development of coatings with
the desired properties and enabling their functionalization with bioactive moieties or an-
tibiotics [6,7,27]. Among the most used biopolymers for coating orthopedic implants, we
mention alginate, collagen, cellulose, gelatin, chitosan, hyaluronic acid, and synthetic poly-
mers such as polycaprolactone (PCL), polyetheretherketon (PEEK), poly-L-lactide (PLLA),
poly-D,L-lactide-co-glycolide (PLGA), polyurethane, and poly(vinyl alcohol) (PVA) [73–75].
Here, it is worth mentioning that PLLA-based antibiotic-releasing coatings are already clin-
ically used and commercially available for preventing bacteria colonization on orthopedic
implants [30,76].

Owing to their simplicity and efficacy, polymeric coatings with sustained antibacterial
agent release properties are a popular choice for preventing IAIs on various orthopedic
implants [27,77]. Further, these antibacterial coatings can be composed of multifunctional
biopolymers, enabling more sustained release of the loaded antibacterial agents, and result-
ing in improved integration at the implantation sites. In another approach, multifunctional
coatings are produced through embedding soft or hard nanoparticles in the polymeric
matrices intended for use in the implant coating [6]. For example, Song et al. [78] reported
on the development of antibacterial coatings based on chitosan loaded with nanospheres
containing vancomycin or moxifloxacin. In another study, Xu et al. [79] reported on the im-
mobilization of minocycline-free and minocycline-encapsulated liposomes on a polystyrene
surface through polydopamine conjugation for potential implant coating applications. In
the presence of minocycline, these coatings exhibited anti-biofilm activities against Por-
phyromonas gingivalis and Streptococcus mutans via a significant decrease (up to 98%) in the
bacterial adhesion on the implants. There was also a significant decrease (up to 92%) in the
bacterial adhesion, when coating the implants with the control (minocycline-free liposomes)
polymeric matrix. This is attributed most likely to the properties of the developed implant
coating, leading an increase in the hydrophilicity level of the implant’s surface.
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In most investigated polymeric coatings, the loaded bioactive payloads are embedded
through either a physical entrapment method or a chemical conjugation (an attachment
to coatings via chemical bonding) method. The sustained release properties of these
payloads are affected, among others, by the employed coating development method,
and the coating’s composition, charge, and structural features [25,80]. For instance, the
release mechanism for physically encapsulated components in coatings is generally passive
and affected by various factors, including polymer charge and concentration, affinity to
the implant surface, crosslinking degree, degradation rate, and swelling behavior of the
polymeric matrix, as well as the drug’s physiochemical properties and its concentration [73].
For most polymeric coatings, antibacterial agent release kinetics have been shown to follow
first- or second-order kinetics, after a typical initial burst release behavior [6,25]. However,
designing a biopolymeric coating on implants can be challenging due to the possible fast
release of the initially loaded antibacterial agents, leading to a significant decrease in
their antibacterial effects [6,45]. Hence, it is generally problematic to maintain the local
concentration of antibacterial agents above the minimum therapeutic concentration for
required prolonged periods [25]. Further, variables such as polymer degradation and early
release caused by various physiological circumstances may impair coating effectiveness on
the implants [6,45].

In recent years, hydrophilic interpenetrating 3D polymeric networks, known also as
hydrogels, were reported as suitable materials that can be used in the development of
antibacterial coatings [76]. Owing to the adjustability of the intercommunicating networks
of hydrogels, they are attractive for loading antibacterial agents with various molecular
weights and physiochemical properties and sustaining their release around the implantation
site [25,28]. Among the biopolymers used in the formation of hydrogels, biologically
relevant materials, including collagen, gelatin, hyaluronic acid, chitosan, and alginate,
are widely used owing to biodegradability, safety, and their capabilities of inducing cell
adhesion, growth, and differentiation [28,81,82]. Among previous studies, Wu et al. [83]
reported on utilizing binary combinations of chitosan and gelatin for producing hydrogel
coatings on Ti implants, facilitating bone cell adherence and growth. Prevention of microbial
infections on the implants was achieved through loading these coatings with antibacterial
silver nanoparticles (AgNPs). In another study, Zarghami et al. [84] reported on the
development of composites loaded with vancomycin and melittin from combinations of
chitosan and bioactive glass nanoparticles. Their use as coatings was associated with an
enhanced osteoblast cell proliferation and an effective elimination of both of methicillin-
resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) bacteria. Huang
et al. [28] also reported on the use of hydrogels loaded with vancomycin for coating 3D-
printed Ti scaffolds. Coating these chitosan–hyaluronic acid hydrogels on Ti scaffolds led to
more sustained release of vancomycin under initial conditions, and a significant inhibition
of MRSA adhesion and colonization on the implant surfaces. Regarding orthopedic implant
coating with hydrogels, it is worth taking into account that their swelling degree and
macroscale coating thickness may restrict their attachment and durability on these implant
surfaces [85].

In addition to hydrogels, there is a growing interest in the development of coatings
with sustained drug release properties from polyelectrolyte multilayers (PEMs), which are
nanostructured polymeric layers of opposing charges, or from polymeric nanofibers [43].
In a recent study, Yavari et al. [86] reported on vancomycin-loaded coatings composed of
PEMs that were produced from chitosan and gelatin for modified Ti implants. They were
efficient in sustaining vancomycin release and eradicating both of planktonic and adhered
microorganisms on the implants. In another study, Mathur et al. [87] recently reported on
development of coatings from gelatin nanofibers with embedded AgNPs to modify a Ti
surface. They exhibited unique antibacterial activities against E. coli and S. aureus, with
99.99% elimination for a prolonged period of 48 h.
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Table 1. Examples on developed antibacterial polymeric coatings for orthopedic implants.

Coating Type Coating Method Coating Materials Antibacterial Agent Outcome Ref

Release-based Direct injection Hyaluronic acid and
carboxymethyl chitosan Vancomycin

Inhibition of free and adherent
bacteria on Ti surface through use of

hydrogel coatings loaded with
vancomycin

[28]

Release-
based/contact

killing
3D printing Chitosan and gelatin Chitosan and

nano-silver solution

Hydrogel coatings with embedded
AgNPs on Ti surface, having strong
antimicrobial activity against E. coli

and S. aureus

[83]

Release-based Drop-casting Chitosan, bioactive
glass, and melittin Vancomycin

Coatings loaded with vancomycin or
melittin, having strong antimicrobial
activity against vancomycin-resistant

S. aureus. They inhibited biofilm
development on the Ti implant

surfaces

[84]

Release-based Layer-by-layer
coating Gelatin and chitosan Vancomycin

Coatings loaded with vancomycin
showed antibacterial activity against
planktonic and adherent S. aureus on

Ti implant surfaces

[86]

Release-based Air-brush spraying Poly-D,L-lactide
(Resomer®)

Vancomycin, Al2O3
nanowire, and TiO2

nanoparticles

Vancomycin-loaded coating,
preventing formation of resistant S.

aureus biofilm on Ti discs
[88]

Stimuli-responsive Direct covalent
linkage

Lecithin, cholesterol
and PEGylated DSPE

IR780 and
perfluorohexane

Liposome coatings, which were
produced through covalent linkage on
Ti implants, had a strong antibacterial

effectiveness against E. coli (99.62%)
and S. aureus (99.63%)

[89]

Release-based Layer-by-layer
coating Vaterite and alginate Vancomycin

Coatings with vancomycin
sandwiched between layers of vaterite

on Ti surface, having good
antimicrobial activity against resistant

S. aureus up to 7 days

[90]

Release-based 3D printing

Poly-
D,L-lactide-co-
glycolideand

poly(ε-caprolactone)

Vancomycin

Coatings loaded with vancomycin on
Ti implants, exhibiting a tunable

release above the minimum inhibitory
concentration, demonstrating its

activity against S. aureus

[91]

Release-based Spray coating
Poly-

D,L-lactide-co-
glycolide

Gentamicin

Coatings loaded with gentamicin on
stainless steel implants effectively
inhibited biofilm formation for S.

aureus and S. epidermidis

[92]

Release-based Layer-by-layer

Poly-
D,L-lactide-co-

glycolideand gelatin
methacryloyl

Cathelicidin-2

Polymeric coatings loaded with
Cathelicidin-2 on Ti implants

effectively eradicated E. coli and S.
aureus for up to 4 days

[93]

Release-based Electrospinning

Poly-
D,L-lactide-co-
glycolideand

poly(ε-caprolactone)

Rifampicin and
vancomycin

Bi-layer coatings loaded with
combinations of antibiotics exhibited
sustained antibiotic release against

planktonic and adherent S. aureus for
6 weeks on Ti implants

[16]

Release-based Electrospinning

Poly-
D,L-lactide-co-
glycolideand

poly(ε-caprolactone)

Rifampicin,
vancomycin

linezolid, and
daptomycin

Antibiotic-loaded coatings,
preventing S. aureus infection and
biofilm formation on Ti implants

[94]

Superhydrophilic
coating Layer-by-layer

Tannic acid,
hydroxyapatite, and

PEG

Highly hydrophilic PEG coating with
a strong anti-biofilm activity. No

biofilm formation by S. aureus and E.
coli on the tested Ti plates

[95]
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2.2. Techniques for Coating Orthopedic Implants

Despite advancements in fabrication techniques, the use of coatings of orthopedic
implants, particularly those produced from polymers, is still challenging. This, among other
factors, is attributed to their mechanical non-resistance property and poor durability [43].
Consequently, a fast degradation of the coating combined with non-optimal antibiotic
release may lead to the development of antimicrobial resistance, toxicity of the used coating
materials, and potential activation of the immune system that may promote inflamma-
tory [96,97]. Thus, there is a growing interest in the development of safe coatings with
improved durability and excellent anti-biofilm activities. Further, there is a recent interest
in introducing robust strategies and the use of relatively cheap and simple materials in the
design of coatings for orthopedic implants [43]. These strategies are mainly focusing on sur-
face chemistry for designing resilient coatings. In this section, we describe recent advances
and report on the most used coating techniques, including electrochemical deposition,
layer-by-layer coating, and spin coating [6,7,98]. Here, electrospray deposition [99,100],
electrospinning [75,101], and electrophoretic deposition [102,103] are promising tools for
developing biocompatible and antibacterial coatings on orthopedic implants, including
multifunctional coatings.

Another method commonly used for coating orthopedic implants is based on for-
mation of multilayer assemblies on the implants, known as layer-by-layer (Lbl) method.
This method is effective for non-covalent implant surface modification. However, covalent
bonds may be directly incorporated into LbL multilayers to increase the endurance and stiff-
ness of the produced coatings. Dopamine is commonly used as a covalent linker to provide
strong attachment between the implant surface and the LbL multilayers [14,104,105]. For-
mation of LbL assemblies through electrostatic interactions has been shown to be effective
in terms of antibacterial agent loading capacity and durability on implants under various
environmental conditions [102]. Owing to their biocompatibility and bioactivity, most
cationic and anionic polysaccharides, including chitosan, hyaluronic acid, and alginate,
are appropriate materials for use in this method [14]. The charges and functional groups
of polysaccharides are used to enhance the electrostatic interactions among the layers of
and, these coatings with the implant surfaces. The properties of these materials may also
play an important role in modulating the bactericidal activity. Crosslinking between the
polymer chains in presence of different functional moieties generally improves the coating’s
mechanical properties [14].

The Lbl method is attractive for the design of biocompatible coatings for local delivery
of single or combinatorial antimicrobial agents, typically through deposition of inversely
charged polyelectrolytes, polymers, or their combinations, on the implants [39]. The an-
tibacterial agent release properties of these coatings can be modulated through alterations
in the layer’s type and thickness, variations in number of multilayers, and their biodegra-
dation rates [86]. This method is simple and can be combined with other methods (such as
spinning, spraying, and dipping) in the development of coatings [39,86].

Among other coating methods, we briefly mention dip coating and spin coating.
The former simple method can be combined with additional steps (such as curing or
sintering) for producing coatings on implants with a thickness ranging between 0.02 to
50 µm; whereas the latter method is based on the application of centrifugal forces for
producing uniform coatings with a thickness typically ranging between 0.03 and 2 µm
on flat surfaces [14,73,106]. It is worth noting that the spin coating is widely used in
the development of coatings for biomedical implants. However, its use is associated
with different limitations, including the poor adhesion on the implants, generally the
poor uniformity on the curved surfaces, and the implant dimensions are limited as they
controlled by the spinning device size [3,14,107].

3. Current Limitations and Future Directions

Among the most promising strategies for the prevention of orthopedic implant-
associated pathogens, we mention contact-killing and anti-biofouling strategies as effective
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tools for elimination of the initial invasion stage of the orthopedic implant by pathogens [49].
However, their mechanical and physicochemical stabilities can be significantly affected on
exposure to the biological environment at the implantation sites, and a lower efficiency
may be achieved in vivo as compared to that reported during their in vitro evaluation
investigations. Here, particular attention should be given to plausible chemical or hydrody-
namic interactions of the implants with biomolecules (mainly proteins) or evolvement of
inactivated bacteria debris, leading to a significant decrease in the antibacterial efficiency
of the coatings [108]. It is also worth noting that both strategies do not have any effect
on the planktonic bacteria, and therefore a complete elimination of the infection risks is
not expected. It is possible to overcome such limitations through combinations of antibac-
terial coating strategies. For example, there are reports on combining anti-biofouling (or
contact-killing strategies) with the below-mentioned strategy, focusing on the development
of coatings with sustained drug release properties [49].

For inhibiting the infections from adherent and planktonic bacteria, there is also a
recent interest in design of antibacterial coatings with sustained drug release properties.
Among others, hydrogels have the potential in implant coating development for preventing
IAIs, owing to their possible functionalization and long-term performance [20,109,110]. In
general, coatings with sustained drug release properties are attractive for avoiding possible
bacterial resistance and minimizing systemic effects at the implantation site, through
sustained release of single or combinatory antibacterial agents to achieve the required local
therapeutic concentrations [111]. Despite their attractiveness in sustaining the release of
antibacterial agents (including conventional antibiotics) as compared to contact killing and
anti-biofouling strategies, their efficacy and duration are limited and mainly depend on the
physiochemical properties of their loaded antibacterial agents, their initial concentration in
coatings, and their release rates [20,49,109,110]. Further, their use may be associated with
structural instability and fast degradation in the presence of enzymes [110].

In the development of safe, multifunctional, and efficient coatings for the prevention
of bacterial biofilm infections on orthopedic implants, recent advances focus on exploring
biomimetic approaches through the use of naturally occurring compounds or structures in
the design of coatings or in implant surface modifications by chemical or topographical pro-
cesses [41]. Among others, lamellar and non-lamellar liquid crystalline phases, particularly
inverse bicontinuous cubic (Q2) and hexagonal (H2) phases, may find application in next-
generation antibacterial coatings, as depicted in Figure 3. This is attributed to their unique
nanostructural versatility, the biocompatibility of their major lipid constituents (such as
monounsaturated monoglycerides, diunsaturated monoglycerides, and omega-3 fatty acid
monoglycerides), bioadhesive properties, and capability of loading and sustaining the
release of amphiphilic, hydrophobic, and hydrophilic drugs [112–123]. Further, it is worth
exploring the possible functionalization of hydrogels or polymeric matrices by embedding
the corresponding nanoparticles of the inverse non-lamellar lyotropic liquid crystalline
phases (particularly cubosomes and hexosomes), which are recently popular nano-self-
assemblies in the development of nanocarriers for drug delivery applications [124–142], or
through their immobilization for designing cubosome or hexosome coatings by employing
chemical surface activation methods. The latter strategy is typically applied for immobi-
lization of lamellar liquid crystalline nanoparticles (liposomes) and various soft and hard
nanoparticles (such as silver nanoparticles) [49,70,72,105]. The design of such antibacterial
coatings through the use of non-lamellar phases is rarely investigated [143]. Among the
few published reports, Zabara et al. [65] reported on the formation and characterization of
liquid crystalline coatings for silicon wafers, which are loaded with the antimicrobial pep-
tide LL-37 and based on monoolein. They had antibacterial activity against Gram-negative
and Gram-positive bacteria.
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In addition to the recent progress in the development of antibacterial coatings, it is
worth highlighting recent advances in the surface design of modified orthopedic implants
with antibacterial properties. There are different future opportunities for implant surface
modifications, owing to the recent enormous advances in development of nanofabrica-
tion tools (including 3D printing/patterning) and their applications. For instance, future
investigations may focus on designing next-generation implants through the creation of
antibacterial surface nanostructures with controlled size characteristics and geometrical
features. Here, it is worth mentioning that the design of such nanopatterned antibacterial
orthopedic implants, having anti-biofouling properties and enhancing superhydrophobic
implant–bacteria interactions, is promising for effectively preventing biofilm formation
on the implants through a direct contact with bacteria, leading to a significant increase in
its oxidative stress [45,144,145]. Those nano-protrusions cause bacterial cells to rupture
without inducing any resistance, and without significant harm to mammalian cells [146].
Moreover, nanopatterned antimicrobial surfaces are effective against both Gram-positive
and Gram-negative bacteria without involving any antibacterial agents [145–147]. Such
nano-patterned surfaces can be combined with soft materials to obtain more effective and
long-lasting antibacterial coatings, and they may be used as innovative nanocatalytic thera-
pies. These therapies are based on supporting these coatings with catalytic components,
leading to a significant increase in the local oxidative stress on bacteria [148,149].

It is worth also highlighting, recent advances focusing on utilization of nanofab-
rication techniques and additive manufacturing for designing personalized orthopedic
implants [27]. Here, 3D printing tools are attractive for manufacturing personalized and
functionalized orthopedic implants (including titanium systems) with unique structural
and morphological features. For instance, these tools can be used to produce multifunc-
tional coatings on nanopatterned implants with strong mechanical properties for precisely
loading antibacterial agents (in single or combinatory forms) and sustaining their release.
The interest in designing such personalized implants relies on the need to produce safe
systems, offering high antibacterial efficacy, improving patient convenience, and providing
flexibility according to the patient’s needs. The latter can be achieved by adjusting the
implant’s structural and morphological features, mechanical properties, and improving the
loading efficacy of antibacterial agents [92,150,151].

http://BioRender.com
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In summary, there is a growing interest in both of surface modification and design of
safe coatings for orthopedic implants for overcoming major complications and limitations
through minimizing size toxic effects, improving stability and durability of coatings, en-
suring long-term efficacy, preventing biofilm formation, and focusing on a successful and
biocompatible implant integration within surrounding the tissues. In addition to implant
surface modification studies, it is promising to develop safe and efficient antibacterial coat-
ings for orthopedic implants. Considering the multidisciplinary nature of this research area,
the future investigations will continue focusing on the integration of scientists with different
backgrounds (including engineers, chemists, and biologists) for introducing, among others,
surface nano-engineered implants with inherent structural and morphological features and
safe coatings with enhanced durability on the orthopedic implants. Further collaborations
through strategic and joint academy–industry initiatives will be required for designing
personalized 2D and 3D orthopedic implants and overcoming current limitations.
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