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Abstract: Raman spectroscopy is an emerging method for the identification of bacteria. Nevertheless,
a lot of different parameters need to be considered to establish a reliable database capable of identify-
ing real-world samples such as medical or environmental probes. In this review, the establishment of
such reliable databases with the proper design in microbiological Raman studies is demonstrated,
shining a light into all the parts that require attention. Aspects such as the strain selection, sample
preparation and isolation requirements, the phenotypic influence, measurement strategies, as well as
the statistical approaches for discrimination of bacteria, are presented. Furthermore, the influence of
these aspects on spectra quality, result accuracy, and read-out are discussed. The aim of this review is
to serve as a guide for the design of microbiological Raman studies that can support the establishment
of this method in different fields.
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1. Introduction

The identification of bacteria or other microorganisms is commonly based on culture-
based techniques. These techniques, however, are not always applicable in a straightfor-
ward manner, with issues appearing in many cases. Medical samples like, e.g., blood,
contain only a limited amount of bacteria/mL, thus requiring enrichment methods like
blood cultures. Other medical samples may include contamination from the body flora
which has to be separated from the causative pathogen. In these cases, pure cultures are
required, that need to be obtained with repeated and time-consuming sub-culturing. All in
all, such cultivation-based isolation techniques require from 12 h up to several days before
the causative pathogen may be identified [1]. For environmental samples this step may be
even more challenging since many bacteria are hardly or even not cultivable [2].

In recent years, the importance of Raman spectroscopy for the characterization and
identification of bacteria has increased. On the one hand, Raman spectroscopy, as a
vibrational spectroscopic technique, enables the identification of bacteria using their optical
fingerprint [3–9]. On the other hand, Raman spectroscopy can be used to monitor chemical
changes in bacterial cells [10–13].

In this review, we demonstrate the workflow for establishing a reliable Raman database.
As can be seen in Figure 1, the first question arising is always what microorganisms can
be found in the chosen environment. For the database to be established, it is important
to choose the representative taxa in such a way that a variety of strains/species/genera
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are included which can be found in the habitat under investigation. In addition, not only
the key pathogen is important but also the bacterial species which naturally occupy this
habitat. For establishing a database, a sufficient number of measurement repetitions should
be performed. Here, the measurement strategy already defines the amount and variety
of the bacterial strains under investigation. For bulk samples, the bacteria are cultivated
prior to measurement. This allows for standardized conditions and can also lead to less
complex datasets, since a pre-cultivation, e.g., on selective agar, might already preselect
certain species of interest.
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Figure 1. Schematic workflow for a Raman spectroscopic study on microorganisms.

In contrast, if single-cell analysis is chosen, the database needs to be established with
cultured bacteria. Here, as an alternative to real-world samples, the simulation of medical
or environmental habitats might be necessary, in the form of spiked artificial samples,
since Raman spectroscopy is very sensitive to changes in the growth conditions of bacteria.
Afterwards, an isolation step may be required, and in the end the database is established
following the same routine as the final environmental or medical sample will require.

Finally, the last step of the study is the statistical evaluation. Here, calibration routines
and pre-processing need to be established before a model database is trained. This model
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should, in the end, be challenged by independent validation data, and thereafter, it is
desirable to use real-world samples for identification.

Since all these aspects strongly interfere with each other, a reliable, reproducible, and
stable database is strongly dependent on standardized techniques on all levels.

All in all, many steps are required to generate a reliable Raman database for the
identification of bacteria, and all are equally important for the quality of the study and the
correct interpretation of the results.

2. Raman Spectroscopy

Raman spectroscopy is a scattering technique monitoring the vibrations of molecules.
Here, the monochromatic light of the excitation laser interacts with a vibrating molecule,
leading to spontaneous elastic and inelastic light scattering (see Figure 2A). The sponta-
neous elastic light scattering is known as Rayleigh scattering (R), whereas the inelastic
light scattering as Raman scattering. This inelastically scattered light might be red- or
blue-shifted and it is then referred to as Stokes- (S) or anti-Stokes–Raman scattering (AS),
respectively. For normal Raman measurements the Stokes–Raman signal is used for spectral
analysis since it is more intense than anti-Stokes–Raman scattering. In addition, the actual
excitation wavelength normally does not change the energy (and, thus, spectral position)
of the observed Raman signal (Figure 2B) [3,14,15].
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Since Raman spectroscopy always samples all biomolecules inside the probing volume,
most Raman methods are phenotypic which means the information of all biomolecules
can be found in the Raman spectra of bacteria [15–19]. In principle, there are two types
of Raman measurements of bacteria—bulk samples and single-cell measurements. For
excitation in the NIR or UV regions, mostly bulk samples are used. In the NIR region the
Raman spectrum requires a huge amount of biomass to receive a spectrum with a sufficient
signal-to-noise ratio (S/N). In contrast, exciting with UV light leads to photothermal
degradation of the sample; therefore, the laser is scanned over the sample.

When combining Raman spectroscopy with a microscope, very good spatial resolu-
tions < 1 µm can be achieved, allowing heterogeneous samples or even single bacteria
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cells to be analyzed with visible Raman excitation wavelengths [20]. By scanning over
an area, or even in different layers, a larger sample can be examined, leading to 2D or
3D information of the sample. When bioorthogonal Raman labels with Raman signals in
the silent region (1900–2600 cm−1) are used like, e.g., small molecules with C-D or -C≡C-
groups, the contrast in 2D or 3D Raman images will further be enhanced [21]. In Raman
microscopes, the excitation laser can also be used additionally as laser tweezers, which can
be applied either in cuvettes or in special microfluidic devices, combining manipulation of
the cell and analyzing it [22].

However, when the Raman excitation wavelength matches an electronic transition of
a molecule, this resonance Raman spectrum (RR) achieves up to six orders of magnitude
higher intensities than normal Raman spectra (Figure 2C) [10]. This can be used, e.g., to
monitor special molecules in low concentrations in the bacteria like e.g., carotenoids [23–25]
or cytochromes [26,27]. A special case is UV resonance Raman spectroscopy (UVRR). Here,
excitation wavelengths below 260 nm excite molecules to a higher electronic state, leading
mainly to resonance excitations of DNA/RNA bases or aromatic amino acids. This enables
a genotypic-like Raman analysis, since with this technique the GC ratio can be detected [20].

A special method is surface-enhanced Raman spectroscopy (SERS). This method uses
rough metal surfaces or metal nanoparticles to enhance the local field intensity in the
immediate vicinity of the metal surface [28]. This approach therefore leads to signal en-
hancements of several orders of magnitude depending on the type of SERS substrate in
combination with the excitation wavelength. Applying SERS to bacteria leads to two differ-
ent approaches: either the bacteria are analyzed directly, or indirectly via an SERS tag with
an SERS marker molecule [29–33]. In the first case, the SERS substrate will interact with the
bacterial surface or secreted molecules and this information can then be used for identifica-
tion or monitoring of physiological changes. In the second case, the SERS tag is bound to
the bacteria surface via antibodies or aptamers and the specific label inside the used SERS
tag then gives the spectral information to identify this bacterium [20,34–36]. For a more
detailed description of SERS studies on bacteria please refer to references [29–33,37–42],
since this manuscript is manly dedicated to conventional Raman spectroscopic studies.

3. Strain Selection

Bacteria show a high diversity at an intraspecies level [43], with strains of the same
species being adapted to different environments, and having different lifestyles, food
sources, and metabolic characteristics [44]. Thus, in microbiological Raman studies, the
selection of the appropriate strains is one of the most important parts of the study design.
When this step is not given the necessary attention, the study outcome can be significantly
influenced, leading to poor-quality results that are prone to misinterpretation and unable
to provide the desired read-out. The appropriate strain selection is mainly related to the
nature of the study, the study topic, and the specific research question asked (Figure 3).

The goal of strain selection is to create a robust dataset that best represents the under-
investigation topic and considers as many of its aspects as possible. These aspects depend
on the research question and the study structure. When focusing on species classification,
strains of the most frequent bacterial species in the under-investigation topic need to
be included. In addition, adequate numbers of strains are also required for each group.
However, the required number of strains is closely related to the nature of the study
and the desired read-out. Proof-of-concept studies aiming to display the suitability of
Raman spectroscopy as an analytical tool for a specific purpose can be performed with
a small number of strains. When aiming at the evaluation of the classification accuracy
provided by Raman spectroscopy and its comparison with gold-standard methods, larger
datasets with multiple strains per group are required. Validation and test datasets on
the other hand do not need to be large, since their purpose is to evaluate the robustness
of the model [45]. Willemse-Erix et al. used four different strain collections of well-
characterized Staphylococcus aureus isolates to perform epidemiological typing using Raman
spectroscopy in comparison to PFGE. These results were validated using both historical
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isolates and prospectively collected strains [46], showing that Raman spectroscopy is a
suitable tool for epidemiological typing. Nakar et al. used Raman spectroscopy directly
on the culture dish to performed species classification on clinical isolates of the eight
most common Enterobacteriaceae pathogens [45], covering a large spectrum of these
groups’ representatives, including closely related species. In a study by Wang et al.,
82 different strains of 18 Acrobacter species were used for species classification as well as
differentiation from the closely related Campylobacter and Helicobacter genera [47]. In a
similar study, Rebrošová et al. used 277 staphylococci strains from 16 different species
for species classification [48]. These well-designed studies used large numbers of strains
to indicate that the high sensitivity of Raman spectroscopy allows the differentiation of
closely related species and genera that are sometimes difficult to differentiate even with
conventional methods. When focusing on clinical isolates, it must be mentioned that in
some cases the non-pathogenic bacteria from the normal flora also need to be included
in order to cover the whole ecosystem, allowing for selective detection of the species
of interest.
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When the study focuses on the presence/absence of a specific characteristic in a
bacteria type, strains need to be chosen wisely to ensure that during data analysis the
classification is based on the under-investigation characteristic and not on other, unrelated
features. An example of such misleading results is the more intense signals of the carotenoid
staphyloxanthin in methicillin-resistant Staphylococcus aureus (MRSA) strains when com-
pared to methicillin-susceptible (MSSA) strains [49,50]. The higher average intensity of
this molecule in the Raman spectra of MRSA strains does not necessarily apply to each
strain of this group. Thus, it is an overstatement to consider the staphyloxanthin bands as
a biomarker for the detection of methicillin resistance, especially since this molecule is a
virulence factor and does not have any relation to the methicillin-resistance mechanism [51].
Another option for these types of strains could be label-free or label-based SERS, that
allows the amplification of signals from specific bacterial molecules at low intercellular
concentrations or without characteristic Raman signatures [37,52].

Another important factor that needs to be considered is the source the selected strains
are obtained from. Different study types require different strain types, even when the
species remains the same. When investigating cell mechanisms or proof-of-concept studies,
bacterial strains purchased from commercial biobanks and strain collections can be used.
Shen et al. used clinical isolates purchased from DSMZ, as well as patient isolates obtained
from a clinical laboratory, to perform in vitro fiber-probe-based identification of pathogens
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in biofilms [53]. Since in both cases the isolates derived from patients, their combination in
one dataset can be justified. Azemtsop et al. used a commercially available, environmental
E. coli strain to investigate the incorporation of stable isotopes into bacterial cells [54]. In
this Raman spectroscopic study, the only requirement on the strain was to be metabolically
active. Thus, this fast-growing strain was enough to cover the experimental needs. In a
proof-of-concept study of a new Raman setup, Maquelin et al. used ATCC strains and
strains collected in a clinical microbiology laboratory to perform species identification of
bacteria directly from their culture dish after 6 h of culturing [55]. The used ATCC strains
were also strains originally isolated form patients and since they display similar growth
characteristics as the clinical isolates the obtained dataset was homogeneous and allowed a
proper study read-out.

Other studies require strains from the same, topic-related origin, with shared char-
acteristics, enabling their comparison. In a species classification study using E. coli,
K. pneumoniae, and K. oxytoca isolates, Nakar et al. used 24 clinical strains deriving from
the same hospital [45]. This provided the dataset with genetical homogeneity since the
evolution of the different strains happened in the same environment. In addition, the
restraint of the supragenome variability ensured the classification was performed on the
species-related characteristics and not on other evolution-related factors that may dominate
the differences in the Raman spectra. Similarly, Ghebremedhin et al. performed epidemio-
logical typing with Raman spectroscopy compared to PFGE using 30 Acinetobacter baumanii
isolates from the same department of an army hospital and from patients with similar
wounds [56]. In a proof-of-concept study by Verma et al., commercially available E. coli
strains were used as model organisms to investigate how treatment with sub-inhibitory
concentrations of bactericidal and bacteriostatic antimicrobial agents affects their Raman
spectral signature [57]. The results were validated with two of the strain’s mutants that
displayed a relatively high and a relatively low resistance towards these antimicrobials,
ensuring an isogenic background and avoiding distortion of the results.

When using Raman spectroscopy for the development of laboratory methods for
specific tasks, the study design could require the bacteria to be within the specimen they
are inhabiting in nature. In the study of Rusciano et al., Raman spectroscopy was applied
to sputum samples from patients with cystic fibrosis for the detection of Pseudomonas
aeruginosa and S. aureus infection [58]. This allowed simple and painless sampling for the
detection of the two most common pneumonia-causing pathogens in this patient group. In
other cases, and due to access difficulties as well as restrictions on real-life samples and their
use in proof-of-concept studies, a simulation of the natural habitat may be required in vitro.
To develop a cultivation-free and Raman-compatible isolation method of bacteria from
bloodstream infections, Lorenz et al. removed hemoglobin from sheep blood previously
spiked with strains purchased from DSMZ [59]. In this first step, it was shown that the
isolation method was Raman compatible, setting the foundation for further testing on blood
cultures from patients. Similar, Dekter et al. mimicked the culture conditions of a positive
blood culture by incubation of Enterobacter cloacae patient isolates in a used blood culture
flask. The purpose of this was to develop an antimicrobial susceptibility test (AST) for
ciprofloxacin using Raman spectroscopy [60]. In another proof-of-concept study by Kloß
et al., Raman single-cell analysis was applied directly on spiked urine. Following the same
principle, the urinary tract infection (UTI) was simulated by inoculating bacteria pathogens,
obtained from DSMZ and ATCC, into sterile filtered urine [61]. Shen et al. used a drip flow
reactor to create a biofilm on CaF2 slides, followed by Raman spectroscopic analysis of the
bacteria, as well as the extracellular polymeric substances (EPSs) the biofilm was composed
of [53]. This simulation provided insight on the fundamental structure of the biofilm and
can be further used on the analysis of natural biofilms from different origins.

When specific characteristics of the bacteria are to be investigated, it could be that
the required bacterial strains are not available either in nature or in biobanks. In this case,
the strains need to be artificially created in the laboratory to meet the criteria of the study.
Examples of this are the studies of Germond et al., Saikia et al., and Walter et al., where
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transformation was used to create isogenic strains with and without specific antimicrobial
resistances [62–64]. In these studies, the high sensitivity of Raman spectroscopy allowed
the differentiation of isogenic strains carrying resistance genes to specific antimicrobial
compounds. Another example of laboratory-induced characteristics in strains for study
design purposes is the study of Yang et al. [65]. Here, antimicrobial resistance to ampicillin
was gradually introduced in situ into the E. coli K12 standard strain after 10 cycles of
antibiotic exposure followed by cultivation in an antibiotic-free environment. This allowed
the investigation of the evolution of antimicrobial resistance in the evolved populations
after each treatment cycle, using D2O labeling as a marker for metabolic activity and
single-cell Raman analysis.

Another important factor for strain selection is the number of strains per group that are
included in the study. The created dataset should be large enough to allow a cross-validated
statistical evaluation. The number of strains and spectra measured depends on the type
of the cross-validation (CV) that is to be performed. For leave-one-batch-out CV, several
biological replicates of the same bacteria need to be obtained at different time points. For
leave-one-strain-out CV, as many strains as possible should be included in each group. For
10-fold CV the number of spectra obtained needs to be high, to include as many spectra
as possible in each created sub-division. This method, however, is not recommended for
classification studies since it can easily result in overfitting of the statistical model. Further
insight on statistical evaluation, however, will be provided in the following sections of
this review.

When strain selection is performed according to these criteria it is ensured that the
study design is in line with the asked research question. This leads to a high-quality study
that can provide the desired results read-out while minimizing the possibility of misleading
and inconclusive outcomes and maximizing the results’ accuracy.

4. Principal Factors Influencing Raman Measurements

Raman spectroscopy combined with chemometric evaluation is utilized as a pheno-
typic method to characterize biological samples. This method is especially relevant when
it comes to identifying and monitoring pathogenic and non-pathogenic bacteria [8,66,67].
Here, the phenotyping is based on the entirety of the biomolecules of the bacteria that
are captured in a Raman spectrum. What makes this method so interesting is that it is
cost-effective, rapid, label-free, and is mostly not obscured by water molecules. However,
biological samples (i.e., bacteria) are prone to change their phenotype based on environ-
mental or genetic changes [5]. Environmental changes could be the short- or long-term
transportation from one point to another, or even plain storage in a fridge or freezer [68,69].
Factors such as the cultivation medium [70–72], the cultivation temperature [71], cultivation
time [6], or even the CO2 and O2 levels [73–77] may have an impact on the phenotype of
the bacterium. A genetically homogeneous colony on a Petri dish may result in a totally
different outcome than a genetically heterogeneous liquid culture (Figure 4). Lastly, it is also
important to consider with which excitation wavelength the bacterial samples are excited
to achieve the desired outcome, and whether single-cell, or bulk analysis, is performed.
Especially for single-cell analysis the cell-to-cell variance should be considered [18]. In sum-
mary, these are just some of the many factors that may influence the bacterial phenotype
and subsequently the Raman spectrum and chemometric evaluation [8].
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4.1. Storage and Transport Conditions

The success of Raman spectroscopic identification of bacteria depends on the quality
of the created database and its chemometrics. As mentioned above, when a new database
is to be established, several considerations must be made, and possible obstacles must
be overcome. Naturally, the Raman spectra of the investigated strains/species/genera
must be included in the to-be-established database. Unfortunately, before any samples
can be measured, they need to be shipped or transported from the sampling site or strain
collection to the laboratory. Even then it is not guaranteed that the samples will be measured
immediately, hence non-biological factors such as time and storage can influence the Raman
spectra significantly [68,69]. In a comprehensive study conducted by Wichmann et al., they
investigated the influence of low storage temperatures on the quality of Raman spectra.
Here, five aliquots of a bacterial liquid culture were taken, and the first one was directly
measured (control) while the others were centrifuged, pelleted, and resuspended in 0.9%
NaCl to simulate a clinical sample. The second aliquot was measured immediately after
resuspension, whereas aliquots three to five were kept at 4 ◦C. After 24 h, aliquot three was
measured and aliquots four and five were stored at −80 ◦C. Samples four and five were
thawed at room temperature and measured after 7 and 30 days, respectively. By collecting
the Raman spectra and evaluating them with chemometrics, subtle differences could be
detected throughout all the bacteria and storage conditions. Therefore, they concluded that
the longer bacteria are stored, the worse the identification becomes [68].

4.2. Cultivation Conditions

For Raman spectroscopic experiments, it is very important to decide whether the
bacteria should be cultivated on solid media within Petri dishes [70,71,78,79] or in liquid
media [72,79–81] within a flask. Both cultivation techniques have their respective advan-
tages and disadvantages (Figure 4). It is more likely to find single bacterial colonies on
solid media than in liquid media. These single colonies derive from one single replicating
bacterium, which means that the colony itself is genetically homogeneous. In addition, a
gradient containing several parameters (age, nutrients, CO2 and O2 levels, etc.) can be seen
within single colonies [71]. These parameters can then be further influenced by the type
of cultivation media, temperature, humidity, and so on within the incubator. Harz et al.
cultured several Staphylococcus species under the suggested conditions (i.e., media and
temperature) and under different conditions (e.g., 30 instead of 37 ◦C) to examine if the
cultivation circumstances influenced the identification procedure in any way. Surprisingly,
the different growth circumstances modified the bacteria; yet, using Raman spectroscopy
with a support vector machine is an exceptionally competent approach for identifying
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single bacteria at different cultivation conditions, not only at the species level but also at
the strain level [71].

In liquid media, the bacteria grow in a suspension and not in colonies, which means that
the bacteria are genetically heterogeneous, yet the same parameters apply (Figure 4) [72,82,83].
Additionally, liquid cultures are further influenced by (non-)shaking and the speed of the
shaker in the incubator, since shaking influences the amount of dissolved oxygen in the
medium [83]. In this study, Clostridium acetobutylicum was grown anaerobically in liquid
media without shaking, and Raman microscopy was used to gather spectral data on the
chemical composition of the cells and their heterogeneity in liquid media as well as to iden-
tify subpopulations with various cell compositions and physiological traits [72]. Yamamoto
et al. presented a growth/no growth prediction method for 21 bacterial strains grown in
liquid media under different combinations of sodium acetate and low temperatures that
implements the use of Raman spectroscopy and machine learning. The conditions of the
cultivation process were two incubation temperatures (5 and 10 ◦C), three sodium acetate
concentrations (0, 0.25, and 0.50% w/v), and eight incubation time periods (0, 1, 2, 3, 4, 5, 6,
and 7 d). The cells were then suspended in TSB broth (104 cfu/mL) with 100 µL aliquots
in each 96-well plate at a starting OD600 of 0.1 and measured each day (>0.1 = growth;
<0.1 = no growth). The machine learning model was able to predict the growth or no
growth response of 21 unknown bacterial strains with 90% accuracy in liquid media by
extracting the spectral information from previously known bacteria [84]. In conclusion,
when it comes to solid and liquid media, changing the culturing environment alters the
biochemical makeup of a microbial cell, which can affect the discrimination process, which
should aid in identifying the studied species [70,85,86].

4.3. Time

Time is and will always be an important factor in bacterial cultivation since the cells age
and die over a certain period. This is supported by the fact that bacteria go through several
phases in their life cycle: the lag phase, the log or exponential phase, the stationary phase,
and the death phase [83]. To identify which phase the bacteria are now in and when it is
optimal to use Raman spectroscopy to assess them, a growth curve must be developed [83].
It has been previously shown that the age or the growth phase of the culture not only have
an impact on biological variation but also on the Raman spectra [34,69,78,79,87,88]. In a
study conducted by Stöckel et al., growth curves (0–130 h) of pigmented Mycobacterium
aurum and non-pigmented Mycobacterium smegmatis were determined to analyze their
growth behavior. After knowing the corresponding times at which the growth phase
occurs, Raman measurements were performed in the exponential and in the stationary
phases. Both species revealed normal bacterial Raman bands during the exponential phase,
but during the stationary phase M. smegmatis displayed lipid-associated Raman signals
(mycolic acids) while M. aurum displayed signals from carotenoid-like compounds. Because
pigments are extremely sensitive to conformational and structural changes, this behavior
must be considered when using Raman spectroscopy to detect and identify pigmented
bacteria [23,24,87,89].

4.4. Atmospheric Gases

Since Raman spectroscopy is a phenotypic method, another culture condition that
affects the growth of bacteria and subsequently the Raman spectra is the CO2 and O2
levels in the incubator. The level of CO2 in medical samples varies not only across various
body parts, but also, for example, in the case of the lung, with the course of disease [90].
Due to changing CO2 levels, bacteria have adapted to varying CO2 concentrations by
different phenotypic variance [83]. Escherichia coli, for example, has the ability to change
its metabolism from glycolysis to fumarate respiration depending on if CO2 is added
or not. This ability was exploited in a study by Wichmann et al. by slowly increasing
the CO2 concentration (0%, 4%, 6%, 8%) in the incubator to determine the exponential
phase. By increasing the CO2 concentration, it was possible to observe the switch in the
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metabolic pathway by Raman spectroscopy [74]. Therefore, it is quite possible that Raman
spectra of the same bacteria may phenotypically differ with fluctuating concentrations of
CO2. On the other hand, oxygen deprivation can also influence the Raman spectra. In a
proof-of-concept study by Kniggendorf et al., confocal Raman microscopy was applied to
ammonia-oxidizing bacteria (Nitrosomonas and Nitrosospira species) that were subjected
to aerated and oxygen-deprived media caused by either shaking or not shaking the flask.
This resulted in the same Raman bands as cytochrome c, yet cytochrome c was found to be
elevated in the oxygen-deprived cells. Furthermore, cells with a high ferrous cytochrome c
concentration were observed in deprived Nitrosomonas eutropha and Nitrosospira samples,
which might indicate continuous electron storage at the time of assessment [73].

4.5. Media Composition

Differences between laboratory and real-world conditions must be addressed when
constructing a Raman spectral library. Cultivation of microorganisms is carried out under
controlled settings to stimulate and promote perfect bacterial growth. In contrast, the
human body can be seen as a growth medium in which the conditions may differ and not
promote optimal bacterial growth. To explore in which capacity growth media and growth
phases influence Raman spectra, Mycobacteria were cultured on specific (Middlebrook and
Kirchner) and on non-specific (brain heart infusion and lysogeny broth) media. As the
mycobacteria aged, the mycolic acid bands decreased in intensity, while the carotenoid
bands increased. As for the different growth media, the classification accuracy was 97.2%,
which indicates a discernible spectral variance between the mycobacteria grown on different
media. These variances are crucial in this respect since they may influence the predictive
model [78]. Furthermore, if growth medium must be produced from many separate
components, such as salts, these components may also alter Raman spectra (Figure 5).
To test this, Synechocystis cells were grown in the presence of acetate (7.5–30 mM), NaCl
(50–150 mM), and MgSO4 (0–62.5 mM) in BG11 media. After Raman measurement and
chemometric analysis, very distinguishable clusters were observed based on the phenotypic
response induced by the added external stimuli. These phenotypic changes were a result of
a change in amino acids and fatty acids induced by the limited salt content [91].
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4.6. Matrix Simulation

Since the parameters of a certain habitat have a large influence on the respective
bacteria phenotype, these parameters need to be replicated as closely as possible within a
laboratory setting. Therefore, “real-world samples”, like patient or environmental samples,
present one of the biggest challenges since the growth of the bacteria depends on the matrix
composition, temperature, time, pH value, and others, which will in turn affect the Raman
spectra. The culture parameters should ideally be as near to the actual sample as achievable,
although this is only attainable to a certain degree under laboratory conditions. Some of
these challenges can be overcome by producing and measuring many batches of each strain
or species. Additionally, the origin of the sample (sample matrix) needs to be simulated
so that the experimental parameter is as close to the original as possible. Simulating the
“real-world” sample as closely as possible will provide more information on the internal
and external parameters that may influence the Raman spectra.

To simulate the origin of a certain sample, be it environmental or medical, the bac-
terium of interest must first be isolated or bought from a strain collection/research hospital.
Next, it is important to replicate the matrix composition in which the bacterium is embed-
ded as accurately as possible. For example, to examine bacteria in real sputum samples, the
sputum needs to be simulated by using a recipe for artificial sputum [50,58,92,93]. Here,
the artificial sputum was mixed with a bacterial suspension to artificially replicate a real
sputum sample. The bacteria were then subjected to several isolation steps to determine
the isolation yield, Raman measurements were performed, and the Raman spectra were
evaluated by means of machine learning [58,94]. For comparison, to simulate ascitic fluid,
bacteria were first grown on solid media and then transferred to sterile filtered ascitic fluid
for further incubation. The ascitic fluid culture was subsequently put through a number of
separation processes, Raman measurements, and a chemometric evaluation of the Raman
spectra [94,95].

To add another layer of complexity, Meisel et al. examined spiked meat (minced beef
and chicken breast) for meat-associated pathogens via Raman spectroscopy. Bacteria were
selected based on their commonality as food-borne pathogens and were cultivated on
meat-like media (Columbia blood agar, brain heart infusion agar, and Müller–Hinton agar).
Commercially available fresh vacuum-packaged minced beef and chicken breast were then
spiked with 1 mL of bacterial suspension. The spiked meat was incubated at 4 ◦C for
24 h to let the bacteria adapt to and comfortably flourish in the new matrix. To isolate the
bacteria from the meat, the meat was shaken in a rotator and the resulting meat juices were
filtered, centrifuged, and washed. The resulting bacteria pellet was then measured, and
the Raman spectra were evaluated [96]. Of course, these are just a few examples of how
vibrational spectroscopy can be utilized to rapidly identify microorganisms from complex
matrices [97–105].

Additionally, the composition of matrices in which bacteria are embedded can also be
very simple such as water, urine, or blood. Water [106–108] and urine [61,109–114] samples
are both clear liquid substances that can be spiked with bacteria of interest and which
can then be isolated by centrifugation, filtration, and washing steps. It is also possible to
spike artificial urine and apply single-cell Raman spectroscopy to identify the pathogenic
bacteria [115]. Another approach presented a fast and reliable method for identifying
bacterial pathogens in primary urine samples from patients with suspected UTIs [109].
Blood, on the other hand, is a whole different matter. Here, blood is nigh on impossible
to simulate, hence animal blood such as sheep or horse blood is required. The blood can
then be spiked with a bacterial suspension. The isolation process itself involves several
steps including lysis via Triton X-100 solution and enzymatic digestion of the hemoglobin
via Pronase E [59,116–119]. Nicolaou et al. employed two approaches (FTIR and Raman
spectroscopy) to identify and count Staphylococcus aureus in spiked ultra-heated milk, as
well as to investigate the growth interaction of S. aureus and Lactococcus lactis [120,121].
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4.7. Influence of the Raman Setup

In principle, there are two main Raman techniques to consider: single-cell analy-
sis [6,51,54,59,68,74,105,115,122–128] and bulk sample analysis [45,51,129–134]. Each comes
with their own advantages and disadvantages. If you have a limited amount of time and
want to obtain results quickly, single-cell analysis is the way to go. In summary, this
technique includes an isolation stage that does not kill or change the causal pathogen from
its original matrix, followed by an identification step. However, the isolation procedure
must be adapted to the matrix from which the sample is taken since the matrix can be a
simple (e.g., water [106]) or a more complicated one (e.g., bronchoalveolar lavage fluid
(BAL) [105], sputum [135], or blood [59]) depending on the location of the desired sample.
In stark contrast to the single-cell analysis method, bulk samples can only be measured
and identified from pure samples that have been previously cultivated. Typically, a thick
bacterium suspension or high amounts of biomass on solid media is deposited onto a
substrate (e.g., CaF2) and then dried to form a homogeneous layer. Although this approach
is more time-consuming than single-cell analysis, it is significantly more accurate in terms
of discrimination and identification [51,132]. Also, due to the large amount of biomass
required, the cultivation step can easily be standardized [129].

The huge disadvantage is that due to the high amount of biomass, large quantities
of fluorescence can occur, which will most likely obscure the Raman spectra. To avoid
this outcome, excitations in the NIR or UV regions are used. NIR excitation produces
lower-intensity Raman bands, yet the sample stays undamaged and sum spectra can be
collected from heterogeneous samples. Alternatively, excitation in the UV region (<260 nm)
results in a fluorescence-free spectrum while also enhancing Raman signals of DNA/RNA
bases and aromatic amino acids, leading to a higher signal-to-noise ratio. Most importantly,
if a sample is measured with a UV setup, it is prone to damage the sample since complex
molecular structures break down and burn [51]. To mitigate this photodegradation, the
sample can be rotated manually in the x,y-directions [136], or an automated system needs
to be employed that rotates the sample automatically, where the gear system moves the
sample table with an offset to prevent measuring the same spot twice [54,124,137]. By
applying this setup, it was possible to characterize isotopically labeled Escherichia coli cells
and monitor their overall metabolism as well as metabolically active cells [54]. It is also
quite useful to monitor cellular metabolic activity in E. coli with 18O incorporated into the
amide I group of proteins and DNA/RNA bases [124]. As previously mentioned, when
choosing a wavelength in the deep UV region, the chances are high that nucleic acid and
aromatic amino acid signals are enhanced. Obviously, there are many more studies that
have been conducted using UV resonance Raman spectroscopy and analyzing bacterial
samples [51,112,130,132,138–143].

In contrast, when measuring at a 785 nm excitation wavelength, a different Raman
setup is needed. For instance, a high-performance Raman module was coupled to a custom-
built inverted microscope stage with an automated x,y-stage and operated with specialized
software. The microscope itself had a custom-designed microscope objective suited for
Raman investigations in the wavelength range of 750–1000 nm, which is optimized for
air-dried bulk samples on fused silica glass slides. By utilizing this setup, it was not only
possible to measure bulk samples of different Mycobacteria species, but also to investigate
if heat-inactivation changed the spectral features compared to Raman spectra of viable
mycobacteria [144]. At the same time, it is possible to apply this method for real-time typing
of 118 Staphylococcus aureus isolates as well as to classify stored (−80 ◦C) and methicillin-
resistant S. aureus-colonized individuals [46]. Furthermore, isolates of methicillin-resistant
coagulase-negative staphylococci were used to evaluate Raman spectroscopy as a typing
tool and to investigate the diversity between colonies with identical and different morpholo-
gies [145]. Naturally, many studies have been employed that use an excitation wavelength
of 785 nm when characterizing bacteria [49,104,116,133,146–152].

A different approach used to acquire Raman spectra at an excitation of 785 nm was to
use a Raman fiber probe coupled with a high-performance Raman module. The Raman
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fiber probe was then applied to collect Raman spectra from immersed biofilms on CaF2
slides in saline solution. This setup not only made it possible to measure Raman spectra of
immersed biofilms from embedded bacteria and yeast cells but also from the surrounding
extracellular polymeric substance matrix [53]. The Raman fiber probe was also applied to
directly measure colonies of nine clinically relevant microorganisms. Here, it was important
that the microorganisms were measured directly from stainless steel Petri dishes since these
do not give unwanted background signals compared to the commercially available standard
Petri dishes [153]. Speaking of which, it is never a terrible idea to measure the background
such as the Petri dish or the medium since this spectral information might explain or
alleviate unwanted signals, artifacts, or headaches (Figure 5) [6,8,104,154]. Figure 5 also
shows the effect of different media either in their pure solid form or cultivated with E. coli.
To highlight small variations in the spectra, a PCA-LDA was implemented, in which the
optimal outcome was a small variance within each individual group but a large variance
between the four investigated groups. The model revealed exactly this outcome.

In summary, it can be said that not only external, but also internal biotic and abiotic
factors may influence the bacterial phenotype and ultimately the outcome of the Raman
spectra as well as the chemometric evaluation. In addition, when it comes to simulating
a real-world sample (environmental or medical), then it is advisable to consider all the
parameters which make up the sample including the composition of the matrix, the typical
indigenous bacteria, and the cultivation parameters. Furthermore, it is important to con-
sider with which Raman setup and at which excitation wavelength the desired results can
be achieved [6,8,104,154].

5. Isolation of Bacteria

The ability to isolate and identify bacteria provides us with a window into their complex
world, allowing us to understand their ecological dynamics, genetic makeup, and impact
on our lives, which has contributed to significant advances in food safety [7,96,152,155,156],
medical diagnosis [8,14,20,59,130,157,158], the implementation of effective environmental
preservation measures [159–162], and the revolution of industries through biotechnological
advancements [163–167]. Contrary to the common perception of bacterial isolation as a
simple task, the effectiveness of the isolation strategy for Raman spectroscopy analysis is
dependent on a complex array of factors, including proper specimen collection, transport,
storage, and processing. This is because Raman spectroscopy is a phenotypic characteriza-
tion tool that analyses the entire cell; as a result, any influence on the cell could alter the
spectra, potentially leading to hampered bacterial identification. In this section, we high-
light key areas and propose some solutions to improve the reproducibility and reliability of
a bacterial isolation strategy for subsequent analysis using Raman spectroscopy (Figure 6).

5.1. Sample Collection

The first step in the bacterial isolation process is the collection of the sample. The effec-
tiveness and integrity of the ensuing isolation and identification processes are largely depen-
dent on this stage [168–170]. The technique of sample collection may vary depending on the
source of the sample, whether environmental (soil, air, or water) or anatomic sites such as
wounds or mucosal surfaces, bodily fluids, bone and tissues, the specific bacteria being tar-
geted, and how the sample is going to be processed. It has been well established that Raman
spectra and bacterial classification vary depending on the growth media, growth phase,
intrinsic storage material, and cultivation conditions of bacteria [70,71,78,87,171–174]. Simi-
larly, clinical and environmental samples contain bacteria at various stages of development
and exposed to varying nutrient loads, which also affects Raman spectra [68,78]. These
changes may have an influence on the discriminant models used to classify bacteria, po-
tentially leading to misclassification [68,70,78,87,171]. Thus, understanding the impact
of growth phase and medium on classification models, as well as how Raman spectra
change because of these variables, is key to proper sampling. Sample collection must be
approached meticulously to ensure the preservation of the bacterial diversity present in the
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original environment [170]. Several axiomatic principles govern the collection of samples
for microbiological testing [168–170,175–180].
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The first of these rules is the most obvious: the specimen must be collected through
strict aseptic procedures to minimize sample contamination [168–170,175,177–180]. Raman
spectroscopy is a phenotypic characterization; thus, any foreign substances or contami-
nants introduced into the specimen can distort or mask the true Raman signal from the
bacteria of interest. Contaminants can affect the Raman spectra in various ways, such
as weakening Raman signals, fluorescence, introducing additional background noise, or
creating interference.

Secondly, depending on the precise place being sampled it is crucial to select the best
sampling strategy. For instance, swabbing or aspiration techniques may be employed for
anatomic sites, such as wounds or mucosal surfaces [168,170,175]. Environmental sites (wa-
ter, soil, or air), on the other hand, may require surface sampling or water filtration methods
utilizing sterile containers or specialized collecting apparatus designed for environmental
sampling [180]. Additionally, it is important to collect an adequate and representative
sample by sampling from multiple sites if necessary and taking into account the spatial
distribution of bacteria, sampling time, and also the average environmental conditions
to ensure a comprehensive assessment [180–182]. For “artificially” inoculated samples,
bacterial cell harvesting should be performed at defined time points since the age or growth
phase of the culture also impacts biological variations in the bacteria, and hence, in the
spectra [87,105]. Ideally the appropriate time should be during the exponential phase when
the bacterial culture has reached its maximum density but has not yet entered the stationary
phase. This timing ensures the highest biomass and metabolically active cells [78,171].

Thirdly, if possible, sufficient material must be submitted for cultures and other tests.
When it comes to sample volume, it is always best to extract the largest possible amount
from the most infected regions or area of interest [168–170].

Lastly, proper labeling and documentation of samples, including relevant patient or
environmental information, is also critical for accurate identification and interpretation
of the results [168,169,175]. When filling out specimen request forms or using automated
order entry systems, collectors should be as detailed as possible. Key details include
the site(s) of specimen collection, the patient’s antimicrobial therapy status, the specific
pathogens sought, the specimen collection methods, and potential hazards to laboratory
personnel [170].
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5.2. Transportation of Samples and Storage Conditions

Transport and storage are two of the least controlled aspects in microbiological testing,
yet they are frequently overlooked; therefore, their impact on the Raman spectra of bacteria
have not been sufficiently investigated [68].

Transport: Typically, specimens for microbiological testing are transferred in sterile
containers or, in the case of fluid specimens from medical samples, in the syringe used to
collect them [169,170,175]. Others are transported in transport media, which, in spite of
their preservative properties, do not reflect the in vivo conditions of the “clinical” patient
specimen and could lead to extreme loss of vulnerable bacteria [176]. Although it is a
widely known fact, clinical patient specimens exhibit considerably higher losses of bacteria
than artificially inoculated samples [183,184]. The same is true for environmental samples,
as once a sample has been collected from the field its microbial populations are prone to
changes regardless of the storage method used [180]. Nevertheless, specimen containers
must be carried in such a way that no damage is caused to the sample and staff exposure to
blood or other bodily fluids is avoided [169,170]. Generally, it is expected that the specimen
for culture or bacterial analyses should be transported to the laboratory as promptly as
possible for processing [168–170,175–177,180]. This is particularly important for vulnera-
ble pathogenic bacteria, such as clinical anaerobes, Shigella spp., Neisseria meningitidis, N.
gonorrhoeae, N. pneumococci, Haemophilus influencae, and β-hemolytic Streptococci, which
die off quickly, usually within 2–4 h of storage [168,169,176,177,184]. In the case of long
storage times of much more than 4–5 h, robust bacteria are not only overlooked, but it
becomes impossible to determine with any certainty whether the isolated bacteria is an
indigenous flora or the potentially pathogenic agent being targeted [177,184]. Most speci-
mens can be transported at room temperature, while some require transportation on ice or
in a cooling box within a temperature range of 2 ◦C to 8 ◦C [168–170,175,176,180]. Lastly,
specimens submitted for culture of Neisseria species should be transported in an atmo-
sphere with sufficient CO2 and humidity and in a manner that prevents wide temperature
fluctuations [168,170].

Storage: Most specimens require prolonged storage prior to processing, while in certain
cases samples may be kept for 48 h or longer due to logistical constraints, necessitating
refrigeration or freezing, generally at 4 ◦C, or at temperatures ranging from −20 ◦C to
−80 ◦C as required [168–170,176,180,185]. Refrigeration preserves the bacteria’s viability
and relative proportions, which are critical for semiquantitative or quantitative culture
(e.g., cultures of sputum or urine) interpretation [168,170,176]. Refrigeration additionally
minimizes the proliferation of contaminants. Specimens that should not be refrigerated
include blood, bone marrow, nasopharyngeal aspirate, and cerebrospinal fluid (CSF), which
should be kept at room temperature or in an incubator at 35 ◦C to 37 ◦C [168–170,175].
However, the longer bacteria are stored, the worse the identification becomes according
to Wichmann et al. [68], who investigated the influence of transport and storage at low
temperatures on the bacterial Raman spectra of S. cohnii, S. warneri, L. innocua, E. coli,
K. terrigena, and P. stutzeri. With just a look at the mean spectra, only S. cohnii exhibited
obvious differences under the different storage conditions, but chemometric methods
revealed changes across all bacteria. Therefore, when planning long-term experiments, it
is particularly important to consider the impact of transport and storage on the Raman
spectra of bacteria. Ideally, a training dataset should be created under the same exact
conditions that bacterial samples would be subjected to later to minimize misclassification
or classification errors [68].

5.3. Sample Processing: Isolation from Matrix and Isolation Strategies

Raman spectroscopy, as a phenotypic method, can detect cellular adaptations of bacte-
ria in response to environmental fluctuations [14,105]. Consequently, the resultant Raman
spectra are sensitive to various parameters, and this is particularly pronounced within
environmental and patient samples where bacteria are typically embedded in a matrix
of some sort [105]. “Matrix” in this context refers to all other particles or molecules, or-
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ganic or inorganic, besides the target particle or molecule, in this case bacteria cells [59].
However, the prerequisite for Raman microspectroscopy is a destruction-free isolation of
bacteria cells without matrix interference, which could otherwise contribute to the spec-
tra [135,186] or hinder the microscopic location or observation of the cells [59]. Of course,
other aspects such as (I) cell concentration in the sample [6,187]; (II) yield of cells [6,105];
and (III) minimizing any influence on the diversity within a bacterial species [186] are
also important. To date, numerous studies have isolated bacteria from a wide range
of matrices, from medically relevant media such as bronchoalveolar lavage (BAL) [105],
ascitic fluid [94], blood [14], urine [188], and sputum [135,157] to consumables such as
milk [155,186], meat [96], and feedstuff [125]. These featured various Raman-compatible
isolation strategies of varying complexities that may be considered culture-dependent
or culture-independent. The methods include density gradient centrifugation, culture-
independent filtration, optical trapping, dielectrophoresis, immunocapture, and matrix
digestion [59,105,113,132,157,186–189]. However, in most of these examples, due to the
complex nature of the samples, a combination of other enrichment processes proved to be
effective. For example, filtration combined with centrifugation [188] or the combination
of filtration, centrifugation, and dielectrophoresis [190] is highly effective for diagnosing
urinary tract infections and can detect even low levels of cell concentration. Nonetheless,
some of the published strategies are still in the proof-of-concept stage and have not been
fully optimized. Alternatively, Raman measurements can be conducted directly on bacteria
present in the matrix [6]. This section covers such options and presents an overview of
Raman-compatible isolation methods for detecting bacteria in complex matrices. It also
offers useful tips on effectively carrying out these methods and common mistakes to avoid.
Furthermore, these methods have limitations that are usually overlooked, so we discuss
both the suitability and limitations of the techniques here.

Cultivation: The classical approach for obtaining bacteria cells from samples is, of course,
culturing [191]. This technique allows for the Raman spectroscopic analysis of large amounts of
biomass, enabling measurements to be conducted in the bulk phase [6,132,153,192,193]. Usually,
a small amount of sample is inoculated on a solid or liquid growth medium that provides
nutrients necessary for bacterial growth, and then, incubated under regulated conditions,
e.g., temperature, humidity, pH, oxygen availability, CO2 concentration, illumination, and
agitation [191]. The bacteria are then harvested from the medium, and then, centrifuged
to generate a cell pellet, which is subsequently deposited on a Raman substrate [194,195]
for Raman measurements when the material has dried [61,135,158]. For the isolation of
pure cultures from ‘real-world samples’, several cultivation conditions might affect the
Raman spectra and hence the bacterial species characterization. Therefore, ideally, the
cultivation conditions of the bacterial cells for the database should be as close as possible to
the environment in the actual samples and must be kept consistent [6]. It is also essential to
note that the same medium in liquid or solid form can result in different phenotypes of
the same bacterial species depending on the nourishment they receive [196]. As a result,
spectroscopic differences can arise, with some bacteria being distinguished spectroscopi-
cally much better after cultivation in liquid media than after cultivation in a solid medium,
which must all be considered [81]. Certain media or media supplements generate their
own Raman signal, thus must be avoided [59,196,197]. Finally, the appropriate time for
taking samples for analysis is crucial, as the age or growth phase affects biological varia-
tions [87,105]. In the end, not all spectroscopic laboratories are biosafety zones. In these
cases, appropriate inactivation strategies are required which ensure safe sample handling
and minimal sample alteration [108,155,158,198–200].

However, this technique has a limitation in that the culturing stage might take many
hours or days, which can be crucial for some applications. Additionally, conventional
methods cannot be used to culture all bacteria since only a small proportion of the overall
diversity in nature can be grown in the laboratory [191,201–203].

Filtration: Filtration is a physical method that can be used to separate bacteria cells from
other particles or fluids by passing them through a porous membrane/barrier [191,204].
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The membrane acts as a sieve, retaining bacteria cells on its surface; thus, depending on
the pore size of the filter, cells up to a certain size can be removed specifically. Bacteria,
which typically range in size from 0.5 to 5 µm, can be separated from eukaryotic cells via
filtration because they are significantly smaller, thus providing the necessary enrichment of
a sample [6].

In simple filtration methods, membrane filters are commonly used, where a syringe
or pump is used to force the fluid through a filter and into a sterile collection vessel
(Figure 7) [83,180,205]. There are various types of membrane filters, with porosities typ-
ically ranging from 0.22 µm to 0.45 µm, such as polycarbonate, polytetrafluoroethylene,
polyvinylidene fluoride (PVDF), and nitrocellulose [83,206], each with unique properties
and suitability for bacterial filtration. Nevertheless, the most important consideration is
that the pore size of the filter membrane should be small enough to capture the bacteria
of interest, but not too small to clog the filter or damage the bacterial cells. Consequently,
the filter membrane should be selected based on the expected size range of the target
bacteria [180]. In some cases, a sample may contain an excessive number of cells or partic-
ulates, which can hinder the filtration process. To address this issue, pre-filtration steps
may be necessary, such as using filters with larger pore sizes to remove non-bacterial
particles [125,135,188,206] or performing a serial dilution prior to filtration [207]. Addi-
tionally, sample pre-treatment with enzymes can improve sample filterability [135,206].
After filtration, the filter with the deposited bacteria is incubated in a nutritive broth or an
agar plate to grow and enrich the bacterial population [205]. Alternatively, the bacterial
cells on the filter can also be retrieved using the principles of elution [135,206]. Filter type,
pore shape, and pore dimensions all contribute to the ability to elute microorganisms from
the filter [206]. The harvested cells can then be combined with other Raman-compatible
isolation strategies such as centrifugation for bacterial analysis. Overall, during filtration
care must be taken during processing of the sample to cause minimal stress to the bacteria
with respect to such factors as processing time, vacuum pressure, and desiccation [180] as
they can impact the Raman spectra, and thus, affect the identification of bacterial species.
In more sophisticated work, filtration has been combined with other methods to isolate
bacteria from complex matrix in preparation for Raman measurements. For instance, Ravin-
dranath et al. [208] combined nano-porous membranes with gold or silver nanoparticles
labeled with antibodies for SERS spectroscopy to filter samples of bacteria in a buffered
physiological solution. Bacteria bound to the antibodies remained in the membranes while
unbound bacteria were filtered out.

While filtration may be a commonly used method for isolation of bacteria, it has some
drawbacks. As already highlighted, to ensure effective bacterial capture, the filter’s pore
size must be sufficiently small, which can limit the types of filters and sample volumes that
can be processed [209]. Additionally, microorganisms may adhere to the filter’s surface
or become trapped within its pores, resulting in incomplete bacterial recovery [210]. As a
result, filtration extracting bacteria from filters can be a complex undertaking.

Centrifugation: Centrifugation is an isolation technique that separates particles or cells
in a liquid medium by applying a rotational force around a fixed axis. This force propels
particles or cells in a liquid medium to sediment, with the rate of sedimentation dependent
upon a variety of physical parameters such as particle diameter, particle density, solution
density, angle, and rotation speed [206]. Therefore, by modifying variables such as solution
density and particle size, alternative centrifugation methods such as density gradient and
differential centrifugation have been developed (Figure 8) [6].
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Differential centrifugation exploits the principle that particles of different sizes or
densities will settle at different rates, with the largest and most dense particles settling
the fastest and leaving smaller and less dense particles in the supernatant [6,206]. By
employing successive adjustments in centrifugation speed, the particles or cells with higher
densities are separated from those with lower densities at each stage. The centrifugation
speed is then increased until the target cells settle, after which the final supernatant is
removed and the pellet is resuspended for further analysis [206]. A typical application of
differential centrifugation is using low-speed centrifugation to remove heavier particles in
food samples before applying high-speed centrifugation to sediment bacterial cells.

In contrast, density gradient centrifugation is based on separating the individual com-
ponents of a complex sample according to their densities and sizes using a special gradient
medium [105,211]. During centrifugation, the sample is spun through the gradient, and
the individual particles then migrate to the portion of the gradient that is at equilibrium
with its own density and form a “band” or layer, which can be extracted for further anal-
ysis [105,206]. Density gradient centrifugation can be employed for size and mass-based
separation, known as rate-zonal centrifugation, or for separation based on density, often
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referred to as isopycnic or buoyant density centrifugation [211]. As such, this technique is
widely employed for isolating bacteria from samples for Raman analysis as demonstrated
in [105,135,186,212,213]. Materials commonly used to generate density gradients include
sucrose, Ficoll®, OptiPrepTM, and Percoll® [105,186,206,214]. Wichmann et al. [105] have
developed a Raman-compatible technique that enables the isolation of bacteria from bron-
choalveolar lavage (BAL) through density gradient centrifugation. To prepare the density
gradient, OptiPrepTM and a Galantine-buffered solution (GBS) were mixed in various
ratios to achieve densities of 1.1066 g/mL, 1.0903 g/mL, 1.0631 g/mL, and 1.0576 g/mL,
which were ideal for isolating bacteria. The gradient was then pipetted into a 5 mL Falcon
tube, and a sample was added on top of the gradient, which was then centrifuged in a
swinging-bucket rotor (2700× g for 60 min at 23 ◦C). After isolation, the pellet was washed
three times with distilled water by centrifuging for 5 min at 10,000× g and 23 ◦C. The
yield of the isolation method was evaluated using a pure culture of S. thermophilus, which
resulted in a recovery rate ranging from 63 to 78%. To determine the impact of the gradient
on bacterial spectra, a pure S. thermophilus without sputum was used. The results showed
no differences between the mean spectra of bacteria isolated using the gradient and those
from a pure culture.

Hence, one important consideration in this technique is the choice of gradient medium
and its impact on effective separation and cell properties. It is essential that the gradient
medium does not adversely affect cell properties; for instance, it should maintain physio-
logical ionic strength to prevent cell lysis or dehydration effects. Moreover, the medium
should be nontoxic and not compromise cell viability [206,215].

To prepare the samples for Raman measurements, the resulting pellet is typically
resuspended in distilled water and the suspension is washed three times to clean it from
residues from the medium which might interfere with the Raman spectra [105,135,186].

Centrifugation methods have achieved some success, offering the added advantages of
easy processability and rapid handling; yet, they do have limitations. In some cases, a single
centrifugation step may not suffice to effectively isolate bacteria from samples, necessitating
multiple centrifugation steps, a common occurrence in cell preparation protocols [216]. For
this reason, centrifugation is sometimes applied in conjunction with other methods such as
filtration and enzymatic procedures.

Numerous studies have been conducted on the susceptibility of bacterial cells to
centrifugation. Mixed outcomes have been reported, primarily due to the absence of a
straightforward method for predicting or assessing bacterial cell damage caused by this pro-
cess [216,217]. Thus, the impact of centrifugation on bacteria isolation remains a complex
phenomenon shaped by a variety of factors, including the speed, duration, temperature,
and type of rotor used for centrifugation, as well as the bacterial species, growth phase, and
culture conditions [217–219]. Nonetheless, some studies have suggested that centrifugation
has the potential to modify bacterial cell surface properties and internal structures, includ-
ing DNA. These alterations can occur by stripping them off, compressing them, or even, in
some extreme cases, cell blebbing as a consequence of the numerous shear stresses they are
subjected to during the spinning process [216–220]. These may have a negative impact on
bacterial identification by Raman spectroscopy. Garcia et al. [129] investigated the effect of
multiple centrifugation steps, among other factors, on Raman spectra and discovered that
excessive centrifugation introduces noise in Raman spectra, influencing accurate bacterial
identification. In light of this, it is imperative to thoroughly assess the potential impact
of centrifugation on bacterial cells during the sample processing stage and to carefully
optimize the centrifugation parameters. This optimization is essential to guarantee minimal
alterations to bacterial cells and, consequently, to prevent any interference with the Raman
spectra obtained.

Dielectrophoresis (DEP): Dielectrophoresis is an electrokinetic phenomenon which
exploits the effect of a non-uniform electric field on a particle in a three-dimensional
space [6,189,221,222]. The DEP force depends on the particle volume, its relative polarizabil-
ity, and the suspending medium, as well as the spatial change in the electric field [223–226].
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Given that most biological cells behave as dielectrically polarized particles in external
electric fields, they will experience a DEP force when subjected to alternating current
(AC) or direct current (DC) non-uniform electric fields, which will drive them towards or
away from the field gradient depending on their polarizability relative to the surrounding
medium [215,227]. This selective movement enables the isolation and concentration of bac-
teria from complex samples, such as blood or urine, prior to Raman spectroscopy analysis.

Advances in electrode-based DEP device design have resulted in the development of
insulator-based and interdigitated microelectrode (IME)-based Raman-compatible DEP
microchips or microfluidic devices (Figure 9) [189,228–230]. Typically, for DEP isolation
and Raman measurement, a droplet of bacteria dispersed in a suitable liquid medium
(a few hundred microliters) is injected or deposited on top of the Raman DEP chip. Next, a
non-uniform electrical field for negative dielectrophoresis (nDEP) is generated by applying
a suitable alternating voltage and frequency, and bacterial cells accumulate at the chip’s
center, where their Raman spectra are recorded [189,228].
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Using dielectrophoresis and Raman microspectroscopy, Schröder et al. [188] devel-
oped a method to identify and characterize individual bacteria from urine samples and to
distinguish between E. coli and E. faecalis, two common causes of urinary tract infections.
Here, a dielectrophoresis–Raman chip was used for analyzing urine samples from patients
with single-pathogenic urinary tract infections, after filtering out larger particles such as
leukocytes or epithelial cells. The proposed assay requires only 35 min for sample prepa-
ration and is suitable for diagnosing significant concentration of bacteria (105 cells/mL).
Hanson et al. [230] also have developed a contactless DEP–Raman device that combines
dielectrophoresis and Raman spectroscopy for simultaneous isolation and label-free identifi-
cation of bacteria. The device successfully isolated bacteria from a mixed sample consisting
of Mycobacterium spp. and 3 µm polystyrene spheres and acquired Raman spectra of the
trapped bacteria, demonstrating its potential to decrease the analysis time, particularly for
diagnostic purposes. The spectra of the isolated bacteria were classified with an overall
accuracy of 100%.

However, to achieve accurate isolation of bacteria for Raman spectroscopy, several key
considerations must be taken into account. Primarily, the choice of the dielectrophoresis
parameters such as the frequency, the amplitude of the applied electric field, and the
time period in which the cells are exposed to the electric field are crucial [189,224]. These
parameters should be optimized to ensure that the bacteria of interest are efficiently trapped
and manipulated while minimizing damage or alteration to their biological properties as
well as preserving cell viability.

Also, the choice of electrode configuration or geometry as well as the composition
plays a significant role in achieving accurate isolation [225,227]. Microfabricated electrodes
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with well-defined and highly symmetric geometries can provide precise control over
the electric field gradient, improving the selectivity of bacterial trapping [189]. Metallic
electrodes are prone to electrode fouling and electrolysis, producing hydrogen and oxygen
gas bubbles that limit electrode operation, thus their effects need to be considered [230].

Furthermore, it is essential to carefully consider the suspension medium and its con-
ductivity. A high conductivity of the surrounding medium can impact both the magnitude
of the DEP force and the direction of the dielectrophoretic response of bacteria [221,231].
Joule heating also poses a risk, causing high temperatures that could harm biological cells
and additionally introduce electro-thermal induced fluid flows that can interfere with or
dominate the DEP force [189,230–232]. As highlighted several times, bacteria, like other
single-cell organisms, respond to their environment and media and, as such, are sensitive to
medium factors such as pH, conductivity, and electrolyte valency. Therefore, the influence
of the surrounding media must be considered and kept consistent when planning DEP
experiments [229].

Lastly, it is also important to ensure that the bacterial sample is free from contami-
nants or debris from the matrix that could interfere with Raman spectroscopy measure-
ments. It is, therefore, advisable to include pre-filtration steps, followed by a medium
exchange/washing step and resuspending the washed bacteria in an appropriate buffer/
medium during the sample preparation step for measurements [189].

Immunoaffinity and targeting cell wall structures: Immunoaffinity and targeting cell
wall structures are two methods that can be used to isolate bacteria for Raman analysis
(Figure 10). Immunoaffinity is a method that relies upon the specificity of monoclonal
antibodies directed against specific and unique cell-surface antigens on the surface of
bacteria [206]. Since the antibody–antigen interaction has a very high specificity, antibodies
are ideal for capture and isolation of intact cells directly from complex sample suspen-
sions [187,206]. Antibodies are proteins that recognize and attach to foreign molecules,
such as bacterial cell wall components. In this technique, antibodies are affixed directly to
a solid substrate, such as magnetic beads or nanoparticles, and subsequently introduced
to a bacterial sample. The bacteria that adhere to the antibodies can be isolated from the
sample through the application of a magnetic field [233] or centrifugation [157] (Figure 10).
Following separation, the bacteria undergo Raman spectroscopy to acquire their unique
spectral signatures.

A novel method for detecting S. aureus, a common foodborne pathogen, was devel-
oped by Ji et al. [234], using functionalized magnetic beads and surface-enhanced Raman
scattering (SERS) tags. Polyethylene glycol (PEG) and bovine serum albumin (BSA) dual-
mediated teicoplanin-functionalized magnetic beads (TEI-BPBs) were used for the isolation
of the target bacteria. TEI can recognize and capture Gram-positive bacteria, such as S.
aureus, by binding to the D-Ala–D-Ala peptide fraction; however, it lacks some specificity
in recognizing the bacterial cells [234]. Therefore, SERS tags were used to immobilize
antibodies on gold surfaces via bifunctional linker proteins to ensure specific recognition of
S. aureus. Samples of S. aureus were then incubated with both types of nanoparticles, which
bind to the bacterial surface and allow magnetic trapping and SERS-based detection. Under
ideal conditions, the combination of TEI-BPBs and SERS tags showed reliable performance,
with high capture efficiency even in the presence of 106 CFU/mL of non-target bacteria. The
SERS tag provided an effective hot spot for subsequent Raman detection, with a detection
limit of 1 CFU/mL and a 102–107 CFU/mL detection range. The method also performed
well when tested on milk samples, with a high recovery rate of 95.5–101.3 ± 2–3%.

Although this approach has some advantages, its success depends on several fac-
tors: the specificity of the antibody used, the dimensions and surface characteristics of
the antibody-coated particles, the efficiency of the recovery process, and the potential
interference from the sample matrix [235–237]. On the other hand, a major drawback of
traditional immunosensor assays is the high specificity of antibodies, which necessitates
multiple antibodies when screening for various targets within a sample. Moreover, it can
be challenging to obtain pathogen-specific antibodies, since often antibodies are specific
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only at a genus level, attributed to the presence of shared cell-surface structures such as
proteins or carbohydrates [187,238,239].
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Complementing the utilization of antibodies specific to bacterial cell wall constituents,
an alternative strategy involves a broader approach using immunoglobulins that target
functional surface structures or characteristics found in both Gram-positive and Gram-
negative bacteria (Figure 10) [187]. Both Gram-positive and Gram-negative bacteria have a
cell membrane and a sacculus made up of peptidoglycan. In contrast, in Gram-negative
bacteria there is an additional outer membrane, which is a phospholipid bilayer containing
lipopolysaccharides. Therefore, in the presence of Gram-negative bacteria, antibodies
will specifically target lipopolysaccharides, whereas in the case of Gram-positive bacteria,
they will target the cell wall’s lipoteichoic acids [187]. An application of this approach
was demonstrated by Pahlow et al. [187], who used a chip-based layout for the isolation
of various bacteria with different cell wall structures from a buffer, employing antibody-
mediated capture. The detection limit for this technique is in the region of 104 cells/mL
in buffer solution. Additionally, the components of the bacterial cell wall can impact the
way the cell interacts with its surrounding environment. This, in turn, can affect the cell
wall’s charge, hydrophobicity, and rigidity. These factors can be utilized as a basis for
bacterial isolation. For instance, certain techniques use cationic polymers, hydrophobic
ligands, or enzymes to bind specific cell wall components and isolate bacteria based on
their affinity [206]. Mircescu et al. [240] demonstrated how bacteria can be immobilized
through electrostatic forces by using chemically modified glass slides instead of specific
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capture molecules. Silanization and diamino-PEG-ylation were used to introduce terminal-
amine-groups on the glass slides. The slides were then treated with HCl to protonate
the amine groups, resulting in a permanent positive charge on the surface. This positive
charge was used to capture E. coli cells, which have a negative charge on their cell walls
due to the presence of the phosphate and carboxylate groups of lipopolysaccharides. These
groups are typical for Gram-negative microorganisms. The advantage of this method lies
in its broad-spectrum applicability, negating the requirement for specialized capture probes
tailored to individual bacterial species.

Optical tweezers: Optical tweezers, also known as optical traps, employ a highly focused
laser beam for contactless micromanipulation, immobilization, and precise resolution of
individual bacterium cells suspended in a solution [116,241–248]. The formation of optical
tweezers involves the generation of such a beam, achieved by using a high-quality objective
lens, to establish a focal point in the specimen plane (Figure 11). This focal point creates an
optical trap capable of retaining small particles at its center. If a cell is nearby, it interacts
with the laser and, due to the transfer of momentum from the incident photons, is drawn
into the trap by gradient optical forces. The trapped cell may be moved in three dimensions
by either moving the focal point or translating the sample chamber while maintaining the
trap fixed [243,249–251].
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Therefore, this method is an effective tool for the sorting of cells, especially as a strategy
for the selective isolation of microbial cells from a diverse population [6,249,250]. When
combined with Raman spectroscopy, this approach is useful for investigating microbial
communities and identifying cells of interest, which is valuable for studying unculturable
and unknown species [244]. Additionally, optical tweezers allow levitation of cells above
the substrate, which minimizes fluorescence effects and interference from other cells in
the measurement while keeping a particle in an optical trap, providing the best possible
excitation and collection of Raman spectra [242,250,252].

A decade ago, Huang et al. [253] developed a dual-laser optical tweezer system for
measuring and sorting single yeast and bacterial cells according to their Raman spectra.
The laser system included a 514.5 nm laser to perform Raman measurements and a 1064 nm
laser to manipulate the cells. In this study, a combination of yeast cells (Saccharomyces
cerevisiae) and two bacterial species (E. coli and P. fluorescens) was employed, and the
sample comprised 105 cells/mL of each species in equal quantities. Cultivation successfully



Molecules 2024, 29, 1077 24 of 41

recovered over 50% of the isolated yeast cells and over 40% of the P. fluorescens cells.
Genome amplification of individual cells was undertaken to demonstrate the suitability
of this technique for investigating unculturable bacteria. Two out of seven sorted yeast
cells and three out of eight sorted bacterial cells were genome-amplified correctly. More
recently, Lee et al. [254] have also developed an innovative automated sorting platform that
combined Raman spectroscopy, optical tweezers, and microfluidics to sort individual cells
based on their physiological traits or functionalities of interest. This method has several
advantages over manual sorting, including higher throughput (up to 500 cells per hour)
and accuracy (98.3 ± 1.7%). It is also fully automated, eliminating any user biases that
could arise with manual sorting. The entire process takes around 4 h, depending on the
number of cells needed, and involves a 1-day preparation of cells.

All the same, several aspects must be considered before optical tweezers may be used
for microbial studies. The laser parameters, which include wavelength, laser beam quality,
and laser power, are the most important factors that may impact sample viability, trapping
efficiency, and the ultimate signal-to-noise ratio (S/N) during measurements [243,250,255].
The quality of the laser beam is crucial in generating the tightly focused spot necessary
for optical trapping, which should be as close to the diffraction limit as possible. Good
pointing stability is also vital to keep the optical trap’s position steady. In optical trapping
studies, changes in laser power can cause variations in the strength of the optical trap.
Therefore, it is essential to monitor variations in laser power, which are typically measured
by two indicators: noise (i.e., variations around the average laser power within a given
bandwidth) and power stability (i.e., the drift in the average laser power measured over an
extended period) [255]. However, as several studies have shown, single cells can be very
sensitive toward laser illumination. And while increasing the laser power can enhance the
optical forces that capture and manipulate bacteria, it can also cause more heating, leading
to alterations in the biochemical composition and structure of the cells due to photodamage
or photochemical reactions [250,253,256,257]. This might ultimately influence the Raman
spectra of the trapped cells. Thus, the optimal laser power should strike a balance between
cell viability and trapping stability. Other internal parameters, such as the refractive index
of the sample medium as well as the bacteria’s refractive index, size, shape, and position,
may also have a direct influence on the optically stable trap and must be considered [258].
Finally, before obtaining the Raman spectra, cells must be washed with distilled water to
reduce the influence of the growth media and any matrix interference.

6. Statistical Evaluation and Data Modeling

Data analysis is crucial for realizing the full potential of Raman spectroscopy. It con-
verts raw spectral data into useful information to achieve aims including quantitative
analysis, pattern recognition, and data interpretation, in addition to accurate molecular
identification. Raman spectroscopic analysis protocols and pipelines are explained compre-
hensively in references [259–262].

The data analysis pipeline for Raman spectra is a series of steps to ensure the accuracy
and reliability of the information extracted from the measured Raman data (Figure 12). This
data pipeline for Raman spectra contains a sequence of algorithms, each serving a specific
purpose in enhancing the quality and interpretability of the data. However, it is crucial
to recognize that errors can occur when applying these algorithms, and it is important to
avoid these errors.

In the following, methods of experimental design, data pre-treatment and pre-processing,
and data modeling are introduced, along with a review of the possible mistakes.
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over independent measurements.

6.1. Design of Experiment

When conducting a biological study using Raman spectroscopy, research objectives
and analytical goals (exploratory, diagnostics, biomarker identification, . . .), sample limita-
tions (e.g., impurities), and the suitable Raman instrument should be considered. Therefore,
the design of experiments (DoE) is crucial for successful studies to obtain clear answers to
key questions about the task and sample properties. Also, it is used for determination of the
minimum number of samples that is needed to capture the essential part of a population.
DoE comprises two main parts: the measurement protocol and the sample size planning
(SSP). Thereby, the measurement protocol contains determination of the spectrometer,
sample preparation, and the spectrometer calibration procedure [263,264].

A good measurement protocol helps to reduce the impact of factors such as instru-
mental factors on the Raman spectra. One common mistake is overlooking the appropriate
laser power and exposure time. Using a high laser power may cause sample degradation
or unwanted heating effects, while insufficient exposure time may lead to weak signal
intensity and poor signal-to-noise ratio. It is important to optimize these parameters based
on the sample characteristics and the desired level of sensitivity and resolution.

Sample size planning determines the minimum number of samples needed for reliable
conclusions or for model building with satisfactory performance. One of the initial and
crucial considerations in research is planning the appropriate sample size. SSP can be
determined by examining the learning curve that represents a model performance measure
like accuracy as a function of the sample size. The goal is to identify the minimal sample size
at which the performance measure no longer exhibits significant improvement [265–267].
It is typical to determine the sample size on the spectra level, but also on the highest level
in the sampling hierarchy, like biological replicates and patients.
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The number of samples is particularly important when working with data-driven arti-
ficial intelligence (AI) models. To ensure the reliability of these models, it is recommended
to have a minimum of three independent replicates for studies, although having five is
even better as outliers can be identified. This enhances the robustness of model training
and testing. In the context of diagnostic studies, where accuracy is paramount, a more sub-
stantial patient sample size is advised, typically ranging from 20 to 100 patients [265,268].
This larger group of patients is especially critical when it comes to evaluating the model’s
performance. A sufficient sample size in diagnostic studies strengthens the statistical
reliability of the results.

6.2. Pre-Treatment Methods

Raman spectroscopic data analysis begins with several pre-treatment steps. Within this
context, spike removal and calibration are discussed as they play pivotal roles in enhancing
data quality and robustness.

Spike removal: Cosmic spikes are narrow and intense peaks that can randomly appear in
Raman spectra due to the high-energy cosmic particles that hit the CCD detectors [269,270].
These intense peaks make data analysis difficult. Normalization and feature extraction may
yield non-meaningful outcomes without spike removal. Spikes should be removed at the
first step of data analysis because some later pre-processing methods like interpolation
broaden the spikes and make it difficult to distinguish between spikes and Raman peaks.

Specialized algorithms are used to remove spikes in Raman spectra; they remove
the spikes but preserve sharp peaks. Spike correction algorithms identify and eliminate
spikes and a number of methods like mean comparison, Laplacian operators [150], wavelet
transforms [271,272], or modified Z-scores [273] can be used for this task. First, a threshold
is applied to the calculated metric to detect cosmic spikes. In reference [150], an automatic
detection method is employed, using a threshold on the normalized Laplacian response.
In contrast, the authors of reference [274] detected spikes visually. After being detected,
a spike can be removed by linear interpolation based on the two boundary points of the
spike or by other interpolation methods, e.g., spline interpolation.

Calibration: In Raman spectroscopy, it is important that the recorded spectra are con-
sistent across different instruments, experimental conditions, and over time. However,
variations which are unrelated to the sample often occur, and to overcome this spectrometer
calibration, including wavenumber and intensity calibration, is used. These calibration
methods are used to standardize spectra and remove unwanted changes, ensuring consis-
tency and reliability.

In practice, it is recommended to perform wavenumber calibration using a substance
like 4-acetamidophenol, which exhibits numerous distinct peaks within the region of inter-
est. These measurements serve as the foundation for creating a tailored wavenumber axis
for each measurement day. Subsequently, these wavenumber axes are harmonized through
interpolation to establish a consistent and clearly defined wavenumber axis [275,276]. This
calibration is necessary as it prevents significant systematic drifts that may arise in the
measurement system, which could otherwise obscure the interpretation of sample-related
changes. Therefore, wavenumber calibration should not be skipped.

After the wavenumber calibration, the Raman spectra are subjected to an intensity
calibration. Intensity calibration is performed using a known standard material with known
Raman intensities across the desired wavenumber/wavelength range. To perform intensity
calibration, the intensity response function is calculated by comparing the observed inten-
sity with the expected intensity (from a calibrated spectrometer) of the standard material.
One version for correction of the intensity values in a Raman spectrum is the subtraction
of the measured dark current spectrum from the measured Raman spectrum and then the
result is divided by the calculated intensity response function. This process provides more
accurate intensity values for analysis [277,278].

The optimal spectrometer calibration remains a subject of ongoing research, but certain
steps can be taken. For instance, it is advisable to conduct standard measurements at regular
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intervals, such as daily, weekly, or whenever modifications are made to the setup. These
measurements, whether they involve the wavenumber standard or white light spectra,
serve a dual purpose: they support the calibration process and function as quality control
checks, ensuring the reliability of the data.

6.3. Pre-Processing Methods

Pre-processing involves the application of specific methods to eliminate undesired
contributions or disturbances that originate from the instrument or the sample. Its primary
purpose is to refine the measured data by removing these unwanted effects, thereby
isolating and enhancing the pure Raman signal of interest, facilitating more accurate and
meaningful analysis [279–282]. This pre-processing workflow typically begins with a
baseline correction, as the Raman spectra often share the same energy range as fluorescence,
causing an overlap. Common techniques for correcting the fluorescence background of
Raman spectra are the sensitive nonlinear iterative peak (SNIP) clipping method [283] and
asymmetric least squares smoothing [284].

Subsequently, denoising or smoothing methods [285] like Savitzky–Golay, Gaussian,
median, or moving average smoothing are applied to reduce unwanted noise. In the
next step, a normalization [286] is executed to ensure that spectra obtained on different
measurement days and conditions can be effectively compared and analyzed. Normal-
ization methods like vector normalization, standard normal variate (SNV), maximum
normalization, peak area normalization, and min–max scaling are used.

It is crucial not to introduce excessive data manipulation, known as over-processing,
during the pre-processing. Over-processing involves removing data components that may
carry valuable information about the sample rather than just eliminating sources of variance
like instrumental or environmental variations. For example, over-smoothing can remove a
shoulder peak from a larger peak and may degrade the subsequent analysis. Such a process
is recommended only for highly noisy data. Improper baseline correction parameters can
make peak maxima shift away significantly from their original position and multiple peaks
can be fit to a single peak; however, this may not be based on reality.

Choosing the best method and parameters for pre-processing in Raman spectroscopy
is challenging [287,288]. Therefore, no universal solution exists, and automatically selecting
the parameters can be difficult. One common approach is to optimize a parameter based on
the results of a subsequent analysis, such as a regression or classification model. However,
that must be performed with extreme caution to avoid overfitting. It is desirable to use
spectral markers as the merit of such optimization rather than the model’s performance.

In addition, the normalization should be applied after baseline correction in a pre-
processing procedure. The fluorescence background can be 2–3 orders more intense than
the Raman bands and applying normalization before background correction results in a
strong bias of the normalized Raman spectra. This issue should be avoided.

6.4. Modeling

Once the Raman spectra have been pre-treated and pre-processed, statistical or ma-
chine learning models are employed to extract information of interest, such as substance
concentrations, substance distribution, or sample classification. Dimension reduction,
model construction, and model evaluation are three important parts of data modeling.

Dimension reduction serves the purpose of extracting valuable features from the data
while eliminating redundant information and suppressing noise. Dimension reduction
methods contain unsupervised methods like principal component analysis (PCA) and
supervised methods like partial least squares (PLS) regression [289,290]. The number of
principal components (PCs) and latent variables (LVs) in PLS are important and need to
be selected wisely. If too few variables are included, trends in the dataset may not be
sufficiently characterized. A higher number of variables often contain more noise, so this
should be avoided. The number of vectors must be optimized to minimize computation
time while maximizing prediction accuracy [291].
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The output of dimension reduction is fed into a statistical or machine learning model,
translating spectral data into meaningful information. Both models are built using a portion
of the dataset known as the training or classification data. The model’s performance is then
assessed and evaluated using the remaining portion, referred to as the testing or validation
data. This separation allows us to understand how well the model generalizes to new,
unseen data.

The choice of the model and its complexity should be tailored according to the number
of independent measurements available. For extensive independent datasets, it is possible
to employ highly parameterized models like deep learning models [292–295]. Conversely,
when dealing with limited independent observations, it is preferable to use simpler models
such as linear models [296–298].

Convolutional neural networks (CNNs) and support vector machines (SVMs) have
received widespread attention in Raman spectra analysis. For instance, a CNN was uti-
lized to rapidly identify Salmonella serovars (70/30% training/test split) with a prediction
accuracy of over 98.5% [299], to distinguish between live and dead Salmonella with 20-fold
cross-validation and an average accuracy of 98.7% [300], and to discriminate clinically
significant pathogens with 99.9% accuracy with samples were divided into training set, val-
idation set and test set by following the ratio of 6:2:2 [301]. Raman spectroscopy combined
with SVM was used to identify 21 microorganisms [302]. The validation set, which was not
included in the calibration dataset, had a prediction accuracy of approximately 80.0%.

Zhang et al. used eight powerful machine learning algorithms to determine the
best classifier for discriminating between periodontal pathogens, namely, Porphyromonas
gingivalis (Pg), Fusobacterium nucleatum (Fn), and Aggregatibacter actinomycetemcomitans
(Aa), analyzed by Raman spectroscopy. The study can be found in [303]. The algorithms
used in this study include extra trees, AdaBoost, gradient boosting, linear discriminant
analysis, support vector machine, multi-layer perceptron, passive-aggressive classifier, and
quadratic discriminant analysis. The data were randomly divided into training (75%) and
testing (25%) sets at the sample level. Each sample was measured repeatedly, producing
10 spectra. The classifiers’ performance was evaluated using various metrics. They included
the receiver operating characteristic (ROC) curve, the area under the ROC curve (AUC),
accuracy, confusion matrix, sensitivity, specificity, and F1 score. The machine learning
algorithm extra trees achieved the highest accuracy of 94.7% at the sample level and 93.9%
at the spectrum level in the three-class discrimination models.

Sil et al. distinguished between 15 DNA samples extracted from the Brucella and Bacil-
lus genera [304]. The Raman spectra of these DNA samples exhibited unique features that
could be attributed to specific markers. The study found that Bacillus anthracis has unique
Raman DNA signatures that distinguish it from Bacillus cereus and Bacillus thuringiensis.
This differentiation was achieved by principal component analysis (PCA), hierarchical
cluster analysis (HCA), and principal component analysis-linear discriminant analysis
(PCA-LDA). The feasibility of clustering the different DNA samples was investigated by
using unsupervised methods such as PCA and HCA. A supervised algorithm, PCA-LDA,
was used for classification. The PCA score plot showed that the Brucella species clustered
away from the Bacillus DNA. As the Raman spectra reflect the biochemistry of the mea-
sured DNA samples, the distance between the two samples in the HCA dendrogram is
a revelation of the biochemical dissimilarity of the different spectra. HCA was able to
correctly cluster the DNA samples using an initial guess of 15 clusters given to the software.
The overall accuracy of 86% was obtained in a 20-fold cross-validation of the PCA-LDA
analysis. Additionally, a convolutional neural network (CNN) architecture was employed
to achieve 100% accuracy in discriminating all 15 DNA samples in a training/test split
procedure [304].

Rodriguez et al. reviewed different machine learning methods used in bacteria analysis
by Raman spectroscopy [16].

The prediction performance of the model should be evaluated after model construction.
A common mistake in model evaluation is related to the data independence within the
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validation process. It is important that the datasets used for validation purposes remain
independent of those used for training. To meet this critical requirement, it is crucial to
ensure that biological replicates or patients, which serve as independent measurements,
are exclusively assigned to either the training, validation, or identification data subsets.

Failure to adhere to this requirement can lead to a significant overestimation of the
model’s performance. In such cases, the model may appear to perform exceptionally well
during validation, which does not reflect its actual generalization capabilities to unseen,
independent identification samples. Therefore, maintaining the independence of data
subsets is a fundamental principle in robust model evaluation in Raman data analysis.

7. Summary and Outlook

Raman spectroscopy, with its various techniques, enables a wide range of applications
for microbiological investigations, especially for the identification of bacteria (Table 1).
Depending on the requirements and the degree of discrimination, the method must be
adapted to the specific problem. For example, a combination of isolation and single-cell
measurements can be used for rapid, cultivation-free screening of bacteria. For further
measurements, a (short) cultivation is necessary to obtain sufficient biomass for the analyses
of bulk measurements. In addition, an adapted statistical evaluation with a suitable
spectrum pre-treatment is necessary to avoid overfitting the dataset.

Table 1. Summarizing the challenges of different Raman spectroscopic methods in respect to their
excitation wavelength.

Excitation Wavelengths Application Advantages Disadvantages

UV
(244 nm or 257 nm) Bulk analysis

- UVRR enhances nucleic acid
and aromatic amino acid signals

- UVRR has a higher S/N ratio

- Large amounts of biomass required
- (Long) cultivation times
- Photodegradation through UV

excitation

VIS
(mainly 532 nm and 633 nm) Single-cell analysis

- Very good spatial
resolution < 1 µm

- Non-destructive analysis of
individual cells

- Provides information of the
complete cell content

- Analysis of heterogeneous
samples possible

- Sensitivity to autofluorescence in
certain samples

- Requires suitable isolation method(s)
- Resonance enhancement of

non-important biomolecules (e.g.,
cytochrome, carotenoids, . . .)

NIR
(785 nm or 1064 nm) Bulk analysis

- Minimizes fluorescence
- Provides information of

complete cell content
- NIR does not damage sample

- NIR produces lower-intensity bands
- Large amounts of biomass required

By considering all the aspects of this review, the robustness of the achieved database
as well as the reliability of the results will be dramatically enhanced. Such databases can
reveal the high sensitivity of Raman spectroscopy towards high-performing identification
routines for different sample types. In the end, these approaches are helpful in establishing
methods which can be used for routine measurements in non-specialized spectroscopical
laboratories. However, before this can be the case several challenges remain that are linked
to the variety of possible fields of application as well as the required tools that need to be
developed in order to make Raman spectroscopy routinely applicable. It is important to
specify the application and incorporate all of its special requirements into the design of
Raman-based tests. In many cases, larger databases need to be created, much larger than
those existing for research purposes or proof-of-concept studies. Also, specific AI-based
tools need to be designed to fulfil the required high-accuracy standards present in routine
analysis and overcome possible robustness issues in the data that are caused by inter- or
intrasample variations as well as other independent factors. Finally, the operators need
to be trained to correctly evaluate Raman data and overcome the mindset caused by the
label-dependent analytical methods that are currently the gold standard in almost all fields.
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The main merits of Raman spectroscopy of bacteria are the high speed and sensitivity
that can be provided by label-free evaluation. On the other hand, the spectral signature
is prone to be influenced by factors related to the sample workflow and handling. This
disadvantage necessitates careful design of SOPs as well as robust and constant quality
control to avoid complications. When these demanding standards are applied, however,
the advantages of this analytical tool can be fully exploited.
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