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Abstract: Drug discovery plays a critical role in advancing human health by developing new medica-
tions and treatments to combat diseases. How to accelerate the pace and reduce the costs of new drug
discovery has long been a key concern for the pharmaceutical industry. Fortunately, by leveraging
advanced algorithms, computational power and biological big data, artificial intelligence (AI) tech-
nology, especially machine learning (ML), holds the promise of making the hunt for new drugs more
efficient. Recently, the Transformer-based models that have achieved revolutionary breakthroughs in
natural language processing have sparked a new era of their applications in drug discovery. Herein,
we introduce the latest applications of ML in drug discovery, highlight the potential of advanced
Transformer-based ML models, and discuss the future prospects and challenges in the field.

Keywords: machine learning; drug discovery; transformer; opportunity; challenge

1. Introduction

Drug research and development play a vital role in improving human health and
well-being. However, the discovery of a new drug is an extremely complex, expensive and
time-consuming process, typically costing approximately USD 2.6 billion [1] and taking
more than 10 years on average [2]. Despite the high investment levels, the approval success
rate of launching a small-molecule drug to market from phase I clinical trial is less than
10% [3], highlighting the considerable risk of failure. Therefore, how to reduce the costs
and accelerate the pace of new drug discovery has emerged as a key concern within the
pharmaceutical industry.

The increasing availability of large-scale biomedical data provides tremendous op-
portunities for computational drug discovery, but effectively mining, correlating, and
analyzing these huge amounts of data has become a critical challenge. Fortunately, with
the advent of efficient mathematical tools and abundant computational resources, artificial
intelligence (AI) approaches have rapidly developed (Figure 1). As the representative AI
method, machine learning (ML), empowers machines to learn from existing data by using
statistical approaches and make predictions, which can be further classified into supervised,
unsupervised, and reinforcement learnings [4,5]. Deep learning (DL), a subset of ML,
focuses on using multi-layered artificial neural networks (ANNs) structures to simulate
the neural networks of the human brain for learning data representations, making it more
powerful and flexible in handling complex and high-dimensional data [6,7]. With the
advantages of low cost and fast speed, the ML approaches are revolutionizing and strength-
ening multiple stages of drug discovery, such as target identification, de novo drug design
and drug repurposing. For example, DL-based open-source tools, such as DeepDTAF [8]
and DeepAffinity [9], have been applied to predict the binding affinity of drug–target
interactions (DTIs), making the hunt for new pharmaceuticals more efficient. Accordingly,
more and more pharmaceutical giants, such as Sanofi (Paris, France), Merck (Darmstadt,
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Germany), Takeda (Takeda, Japan) and Genentech (South San Francisco, America), have
initiated cooperation with AI companies to develop new drugs.
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Notably, the Transformer-based language models, such as the Generative Pre-training
Transformer (GPT), Bidirectional Encoder Representations from Transformers (BERT) and
the Text-to-Text Transfer Transformer (T5), have not only achieved revolutionary break-
throughs but have also brought about a paradigm shift in the area of natural language
processing (NLP) [10]. In particular, the outstanding learning ability, generalization ability
and transferability of Transformer-based language models have sparked a new era of their
applications in drug discovery and development, primarily owing to the inherent similari-
ties between drug-related biological sequences and natural languages. Their remarkable
advantages, including capturing long-range dependencies in sequences, processing input
sequences in parallel, employing an attention mechanism, and having extendibility to incor-
porate multimodal information, make them valuable tools for various aspects of the drug
discovery process [11]. For example, by employing Transformer-based language models,
Kalakoti et al. [12] have successfully developed a modular framework called TransDTI for
predicting novel DTIs from sequence data. Its performance proved to be superior to existing
methods. Therefore, the Transformer-based models have the potential to revolutionize the
identification and development of new drugs.

Given the significance of ML techniques in the pharmaceutical industry, we here focus
on introducing the recent advancements, opportunities and challenges of ML applications
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in drug discovery. First, we provide an updated overview of the emerging applications of
ML in different stages of the drug discovery process, including drug design, drug screening,
drug repurposing and chemical synthesis. Next, we highlight the opportunities of the
advanced Transformer-based models in empowering drug discovery. Furthermore, we
discuss the challenges and future prospects of ML in the field of drug discovery.

2. Applications of ML in Drug Discovery

The process of discovering effective new drugs is time-consuming and predominantly
the most challenging part of drug development. With the advantages in learning from data,
discerning patterns, and making intelligent decisions, ML-based approaches have emerged
as versatile tools that can be applied in multiple stages of drug discovery, including drug
design, drug screening, drug repurposing and chemical synthesis (Figure 2). Moreover, con-
siderable efforts are dedicated to developing models, tools, software and databases based
on the core architecture of ML algorithms, to counter the inefficiencies and uncertainties
inherent in traditional drug development methods (Table 1).
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Table 1. ML-based software/model used for drug discovery.

Name Algorithm Specific Function PMID

Prediction of the target protein structure
TrRosetta server DNN Predict 3D structures of proteins [13]

AlphaFold DNN Predict 3D structures of proteins [14]
ComplexQA GNN Predict protein complex structure [15]
ProteinBERT Transformer Predict secondary structure [16]

ESMfold Transformer Predict structure of proteins [17]
Predicting protein–protein interactions

IntPred RF Predict PPI interface sites [18]
eFindSite SVM; NBC Predict PPI interfaces [19]
DELPHI RNN; CNN Predict PPI sites [20]

PPISP-XGBoost XGBoost Predict PPI sites [21]
HN-PPISP CNN Predict PPI sites [22]

TAGPPI GCN Predict PPIs [23]
Struct2Graph GAT Predict PPIs [24]
DeepFE-PPI DNN Predict PPIs [25]

SGPPI GCN Predict PPIs [26]
DeepPPI DNN Predict PPIs [27]
DL-PPI GNN Predict PPIs [28]

DeepSG2PPI CNN Predict PPIs [29]
MaTPIP Transformer; CNN Predict PPIs [30]

ProtInteract Autoencoder; CNN Predict PPIs [31]
Predicting drug–target interactions

DeepC-SeqSite CNN Predict DTI binding sites [32]
DeepSurf CNN; ResNet Predict DTI binding sites [33]
PrankWeb RF Predict DTI binding sites [34]
PUResNet ResNet Predict DTI binding sites [35]

AGAT-PPIS GNN Predict DTI binding sites [36]
DeepDTA CNN Predict DTI binding affinity [37]
SimBoost GBM Predict DTI binding affinity [38]
DEELIG CNN Predict DTI binding affinity [39]

DeepDTAF CNN Predict DTI binding affinity [8]
GraphDelta CNN Predict DTI binding affinity [40]
PotentialNet CNN Predict DTI binding affinity [41]
DeepAffinity RNN, CNN Predict DTI binding affinity [9]
TeM-DTBA CNN Predict DTI binding affinity [42]

Wang et al.’s method RL Predict DTI binding pose [43]
Nguyen et al.’s method RF; CNN Predict DTI binding pose [44]

AMMVF-DTI GAT; NTN Predict drug–target interactions [45]
De novo drug design

ReLeaSE RNN; RL Conduct de novo drug design [46]
ChemVAE CNN; GRU Conduct de novo drug design [47]
MolRNN RNN Conduct multi-objective de novo drug design [48]

PaccMann(RL) VAE Generate compounds with anti-cancer drug properties [49]
druGAN AAE Conduct de novo drug design [50]
SCScore CNN Evaluate the molecular accessibility [51]

UnCorrupt SMILES Transformer Conduct de novo drug design [52]
PETrans Transfer learning Conduct de novo drug design [53]

FSM-DDTR Transformer Conduct de novo drug design [54]
DNMG GAN Conduct de novo drug design [55]

MedGAN GAN Design novel molecule [56]
Prediction of the physicochemical properties

Panapitiya et al.’s method GNN Predict aqueous solubility [57]
SolTranNet Transformer Predict aqueous solubility [58]

Zang et al.’s method SVM Predict multiple physicochemical properties [59]
Prediction of the ADME/T properties

ADMETboost XGBoost Predict ADME/T properties [60]
vNN k-NN Predict ADME/T properties [61]

Interpretable-ADMET CNN; GAT Predict ADME/T properties [62]
XGraphBoost GNN Predict ADME/T properties [63]

DeepTox DNN Predict toxicity of compounds [64]
Li et al.’s method DNN Predict human Cytochrome P450 inhibition [65]

LightBBB LightGBM Predict blood–brain barrier [66]
Deep-B3 CNN Predict blood–brain barrier [67]
PredPS GNN Predict stability of compounds in human plasma [68]

Khaouane et al.’s method CNN Predict plasma protein binding [69]
Application of AI in drug repurposing

deepDTnet Autoencoder Predict new targets of known drugs [70]
NeoDTI GCN Predict new targets of known drugs [71]

DTINet Network diffusion algorithm and the
dimensionality reduction Predict new targets of known drugs [72]

MBiRW Birandom walk algorithm Predict new indications of known drugs [73]
GDRnet GNN Predict new indications of known drugs [74]
deepDR VAE Predict new indications of known drugs [75]
GIPAE VAE Predict new indications of known drugs [76]

DrugRep-HeSiaGraph Heterogeneous siamese neural
network Predict new indications of known drugs [77]

iEdgeDTA GCNN Predict DTI binding affinity [78]
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Table 1. Cont.

Name Algorithm Specific Function PMID

Retrosynthesis prediction
Segler et al.’s method MCTS, DNN Predict retrosynthetic analysis [79]

Liu et al.’s method RNN Predict retrosynthetic analysis [80]
RAscore RF Predict retrosynthetic accessibility score [81]

Reaction prediction
Wei et al.’s method Neural network Predict reaction classes [82]

Coley et al.’s method Neural network Predict products of chemical reactions [83]
Gao et al.’s method Neural network Predict optimal reaction conditions [84]

Marcou et al.’s method RF Evaluate reaction feasibility [85]

Note: DNN, deep neural network; RNN, recurrent neural network; RF, random forest; CNN, convolutional neural
network; XGBoost, eXtreme gradient boosting; GCN, graph convolutional network; GAT, graph attention network;
SVM, support vector machine; NBC, naïve Bayes classifier; ResNet, residual network; GBM, gradient boosting
machines; RL, reinforcement learning; GRU, gated recurrent unit; VAE, variational autoencoder; AAE, adaptive
adversarial autoencoder; GNN, graph neural networks; k-NN, k-nearest neighbor; LightGBM, light gradient
boosting machine; MCTS, Monte Carlo tree search, NTN, neural tensor network; GAN, generative adversarial
network; GCNN, graph convolutional neural network.

2.1. Application of ML in Drug Design
2.1.1. Prediction of the Target Protein Structure

Since proteins play crucial roles in various biological processes, their dysfunctions can
lead to abnormal cell behavior and lead to the development of diseases [86]. For selective
targeting of diseases, small-molecule compounds are generally designed based on the three-
dimensional (3D) chemical environment surrounding the ligand-binding sites of the target
protein [87]. Hence, predicting the 3D structure of the target protein is of great significance
for structure-based drug discovery. Homology modeling has traditionally been used for this
purpose, relying on known protein structures as templates [88]. Comparatively, ML-based
approaches have shown great promise in predicting the 3D structures of target proteins
with improved accuracy and efficiency. For example, AlphaFold is a state-of-the-art protein
structure prediction system developed by DeepMind, a leading AI company. Based on deep
neural network (DNN), it has achieved remarkable success in multiple protein structure
prediction competitions, demonstrating its ability to accurately predict the 3D structures
of proteins by analyzing the adjacent amino acid distances and peptide bond angles [14].
Importantly, AlphaFold has significantly advanced the field of protein structure prediction
and has the potential to revolutionize drug discovery [14]. Therefore, ML-based approaches
hold great potential to enhance our understanding of protein structures. It should be noted
that protein structures can undergo changes in different environments, and proteins may
form multiple coexisting structures under the same conditions [89]. This complexity adds
to the challenges of structure prediction.

2.1.2. Prediction of PPIs

In most cases, proteins rarely implement their functions alone, but rather cooperate with
other proteins to form intricate relationships known as the protein–protein interaction (PPI)
network [86]. PPIs possess indispensable functions in diverse biological processes. They
can contribute to altering protein specificity, regulating protein activity and generating novel
binding sites for effector molecules [90]. Hence, understanding and targeting PPIs offers
opportunities to design innovative drugs that can modulate complex biological processes.

Currently, ML-based methods for PPI prediction can be broadly grouped into structure-
based and sequence-based categories. Structure-based approaches mainly leverage the
knowledge of protein structure similarity to predict PPIs [91]. For example, IntPred, a
random forest ML tool, was developed to predict protein–protein interface sites based on
structural features. Compared with other methods, the IntPred predictor showed strong
performance in identifying interactions at both the surface-patch and residue levels on
independent test sets of both obligate and transient complexes (Matthews’ Correlation
Coefficient (MCC) = 0.370, accuracy = 0.811, specificity = 0.916, sensitivity = 0.411) [18].
Struct2Graph, a graph attention network (GAT)-based classifier, was proposed to identify
PPIs directly from the 3D structure of protein chains [24]. The accuracy of Struct2Graph
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on balanced sets with equal numbers of positive and negative pairs was 0.9989, and the
average accuracy of five-fold cross-validation on unbalanced sets with a ratio of positive
and negative pairs of 1:10 was 0.9942 [24]. Comparatively, sequence-based PPI prediction
approaches aim to identify physical interactions between two proteins by leveraging
information from their protein sequences [92]. DNNs provide a robust solution for this
purpose. They are composed of multiple layers of interconnected neurons, allowing them
to automatically extract complex patterns and features from data. For example, DeepPPI
applied DNNs to effectively learn protein representations from common protein descriptors,
thereby contributing to the prediction of PPIs. It can achieve excellent performance on the
S. cerevisiae dataset with an accuracy of 0.925, precision of 0.9438, recall of 0.9056, specificity
of 0.9449, MCC of 0.8508 and area under the curve (AUC) of 0.9743, respectively [27].
Extensive experiments showed that DeepPPI was able to learn the useful features of protein
pairs through a layer-wise abstraction, resulting in better predictive performance than
existing methods on core S. cerevisiae, H. pylori and H. sapien datasets [27]. In addition,
based on Uniprot database, Li et al. [20] developed a DELPHI, a new sequence-based deep
ensemble model for PPI-binding sites’ prediction. Therefore, ML-based approaches have
great potential in enhancing the identification of PPI sites. Compared with sequence-based
approaches, structure-based ones are limited by the scarcity of available protein structures
and the low quality of familiar protein structures [90,93].

2.1.3. Prediction of DTIs

Most drugs exert therapeutic effects by specifically interacting with target molecules
within the body, such as enzymes, receptors and ion channels. Hence, the accurate predic-
tion of DTIs is a pivotal step in the drug design pipeline. As the traditional experimental
approaches are time-consuming and costly, ML-based methods have been increasingly
developed and applied by researchers to predict DTIs. These methods primarily focus
on three key aspects: predicting the binding sites of drugs on target molecules, estimat-
ing the binding affinity between drugs and targets, and determining the binding pose or
conformation of the drug within the target molecule [94].

Firstly, binding sites, also referred to as binding pockets, are specific locations within
a protein where interactions occur between the protein and a ligand (such as a drug
molecule) [94]. By introducing a deep convolutional neural network (CNN), Cui et al. [32]
developed a sequence-based method, DeepC-SeqSite, for predicting protein–ligand binding
residues. Notably, this method exhibited superior performance compared with multiple
existing sequence-based and 3D-structure-based methods, including the leading ligand-
binding method COACH [32]. Similarly, Zhou et al. [36] proposed a binding site prediction
method called AGAT-PPIS based on augmented GAT. It demonstrated significant im-
provements over the state-of-the-art method, achieving an accuracy increase of 8% on the
benchmark test set. Moreover, binding affinity represents the strength of an interaction
between a drug and its target. Some tools based on ML and DL algorithms have been
applied to determine DTIs’ binding affinity, such as DEELIG [39] and GraphDelta [40].
In addition, the active conformation of ligands plays a crucial role in facilitating the ef-
fective binding between proteins and drugs [94]. By combining random forest and CNN
strategies, Nguyen et al. [44] proposed a scoring function to select the most relevant poses
generated by docking software tools including GOLD, GLIDE and Autodock Vina, thereby
contributing to obtaining more accurate and effective ligand–target binding configurations.
Therefore, ML algorithms have been extensively employed to predict DTIs and hold the
potential to facilitate the design of new drugs.

2.1.4. De Novo Drug Design

De novo drug design refers to the process of creating new drug molecules from scratch
using computational methods, without relying on existing bioactive compounds or known
drug structures. It involves designing molecules that have specific properties and functions
to target a particular disease or condition [95,96]. Compounds developed with traditional
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de novo drug design methods (e.g., the fragment-based approach) usually have poor drug
metabolism and pharmacokinetics properties and are hard to synthesize due to the com-
plexity and impracticality of compound structures [97,98]. Therefore, there is high demand
for new methods to explore chemical entities that meet the requirements of biological
activity, drug metabolism, pharmacokinetics and synthesis practicality.

Recently, ML-based approaches, especially auto-encoder variants (e.g., the variational
auto-encoder (VAE) and adversarial auto-encoder (AAE)) have gained attention in the field
of de novo drug design. PaccMannRL is an example of these approaches that combines a
hybrid VAE with reinforcement learning for the de novo design of anti-cancer molecules
from transcriptomic data [49]. Similarly, another approach, known as druGAN, utilizes
a deep generative AAE model to generate novel molecules that possess specific anti-
cancer properties [50]. In addition, a Wasserstein GAN and GCN-based model, known as
MedGAN, has been successfully developed to generate novel quinoline-scaffold molecules
from complicated molecular graphs and evaluate drug-related properties [56]. It has been
demonstrated that the MedGAN was able to produce 25% effective molecules, 62% fully
connected, among which 92% are quinoline, 93% are novel, and 95% are unique [56]. To
address the difficulty in synthesizing generated molecules, Coley et al. [51] defined a
synthetic complexity score, namely SCScore, that utilizes precedent reaction knowledge to
train a neural network model for evaluating the level of synthetic complexity. Therefore,
ML-empowering approaches play crucial roles in de novo drug design, revolutionizing the
process of discovering and developing new drugs.

2.2. Application of ML in Drug Screening
2.2.1. Prediction of the Physicochemical Properties

The physicochemical properties of drugs, mainly including solubility, ionization de-
gree, partition coefficient, permeability coefficient and stability, play a significant role in
determining their behavior (e.g., bioavailability, absorption, transportation and perme-
ability) in biological systems as well as the environment, and in evaluating their potential
risks to human health [6,59]. Hence, these properties are assessed during drug screening
to select promising candidates for further development and optimization. At present,
multiple ML-based tools have been proposed to predict the physicochemical properties of
molecules. For example, Francoeur et al. [58] developed a molecule attention Transformer
called SolTranNet for predicting aqueous solubility from the SMILES representation of
drug molecules. It has been demonstrated to function as a classifier for filtering insoluble
compounds, achieving a sensitivity of 0.948 on Challenge to Predict Aqueous Solubility
(SC2) datasets, which is competitive with other methods [58]. Moreover, by using molecular
fingerprints and four ML algorithms, Zang et al. [59] developed a quantitative structure–
property relationship workflow to predict six physicochemical properties of environmental
chemicals, such as water solubility, octanol–water partition coefficient, melting point, boil-
ing point, bioconcentration factor, and vapor pressure [59]. Therefore, these ML-based
predictors are valuable tools in drug discovery, as they can help in screening potential drug
candidates based on their physicochemical properties.

2.2.2. Prediction of the ADME/T Properties

Once hit or lead compounds are identified during the drug discovery process, a series
of tests and evaluations are conducted to assess their absorption, distribution, metabolism,
and excretion and toxicity (ADME/T) properties [99]. These pharmacokinetic properties
are essential for understanding how the compounds will behave in the human body and
whether they have the potential to be safe and effective as drugs. Imbalanced ADME/T
properties frequently cause the failure of drug candidates in late stages of drug development
and may even lead to the withdrawal of approved drugs [100]. Hence, ADME/T properties
are often employed as molecular filters to screen large databases of compounds in the early
stage of drug discovery, thereby helping to increase efficiency and improve the success rate
of drug screening [93,100].
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To detect the ADME/T properties of drugs, various evaluation criteria such as hepa-
totoxicity, passing through the blood–brain barrier (BBB), plasma protein binding (PPB)
and cytochrome P450 2D6 (CYP2D6) inhibition are commonly used [101,102]. Accordingly,
there has been growing interest in developing ML-based tools for the prediction of these
criteria. For example, Tian et al. [60] developed a web server called ADMETboost that
utilizes the powerful extreme gradient boosting (XGBoost) model to learn about molecule
features from multiple fingerprints and descriptors, allowing for the accurate prediction
of ADME/T properties, such as Caco2, BBB, CYP2C9 inhibition, CL-Hepa and hERG. It
has been demonstrated that this model can achieve remarkable results in the Therapeutics
Data Commons ADMET benchmark, ranking first in 18 out of 22 tasks and within the top
three in 21 tasks [60]. Similarly, by utilizing more than 13 000 compounds obtained from
the PubChem BioAssay Database, Li et al. [65] proposed a multitask autoencoder DNN
model to predict the inhibitors of five major cytochrome P450 (CYP450) isoforms (1A2, 2C9,
2C19, 2D6 and 3A4). Especially, the multi-task DNN model achieved average prediction
accuracies of 86.4% in 10-fold cross-validation and 88.7% on external test datasets, outper-
forming single-task models, earlier described classifiers and conventional ML methods [65].
Furthermore, the Tox21 Challenge is a collaborative effort aimed at developing predictive
models for toxicity assessment using high-throughput screening data. In this context, Mayr
et al. [64] developed a DL pipeline, DeepTox, for toxicity prediction. It outperformed
all other computational methods (e.g., naïve Bayes, random forest and support vector
machine) in 10 out of 15 cases in the Tox21 Challenge [64]. Therefore, ML algorithms have
made significant progress in predicting the ADME/T properties of drugs, contributing to
guiding drug safety assessment and preclinical research.

2.3. Application of ML in Drug Repurposing

Drug repurposing, also known as drug repositioning, is a strategy to identify new
indications from approved or investigational (including failed in clinical trials) drugs that
have not been approved [103]. As this approach takes advantage of the extensive safety
testing conducted during clinical trials for other purposes, repurposing known drugs not
only speeds up the drug development process but also presents cost-saving advantages
compared to developing entirely new drugs from scratch [103]. Currently, researchers are
increasingly developing and applying ML-based methods to conduct drug repurposing,
which can be broadly divided into target-centered and disease-centered approaches [104].

In target-centered drug repurposing, network-based methods have been widely ap-
plied to search new targets for known drugs. For example, by employing autoencoder and
Positive-Unlabeled matrix completion algorithms, Zeng et al. [70] developed a calculation
method called deepDTnet to identify new targets for known drugs from a heterogeneous
drug–gene–disease network. Experiments have shown that the deepDTnet achieved a high
accuracy in predicting new targets of existing drugs (AUC = 0.963), which is superior to
traditional ML methods [70]. Similarly, by combining the network diffusion algorithm and
the dimensionality reduction approach, Luo et al. [72] developed DTINet, a novel network-
integration procedure for DTI prediction and drug repositioning. It can outperform other
existing methods, with AUC and area under precision-recall (AUPR) 5.7% and 5.9% higher
than the second best method, respectively, providing an effective tool in the field of drug
discovery and target identification [72].

In addition, disease-centered approaches are mainly aimed at identifying drug–disease
relationships and can be widely divided into similarity-based and network-based ones [104].
Similarity-based methods have achieved significant progress by combining drug or disease
characteristics with the known drug–disease associations [104]. For example, based on the
assumption that similar drugs are commonly associated with similar diseases, Luo et al. [73]
proposed a novel computational approach called MBiRW, which combines similarity mea-
surements and a Bi-Random walk algorithm to recognize potential novel indications for
a specific drug. MBiRW can achieve a high accuracy in predicting drug–disease associa-
tions (AUC = 0.917), which is superior to other methods [73]. In addition, network-based
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methods integrate information from different biological networks to improve the predictive
accuracy of drug–disease relationships. For example, Doshi et al. [74] developed a graph
neural network model called GDRnet for drug repurposing, which can efficiently screen
existing drugs in the database and predict their unknown therapeutic effects by evaluating
the scores of drug–disease pairs. Therefore, ML technology holds significant promise in the
field of drug repurposing, providing strong support for accelerating drug discovery.

2.4. Application of ML in Chemical Synthesis

Organic synthesis is a key part of the small-molecule drug-discovery process [97].
New molecules are synthesized along the path of compound optimization to achieve
improved properties. To promote molecule synthesis, researchers have developed multiple
ML-based computational tools applicable to the retrosynthesis prediction and forward
reaction prediction.

2.4.1. Retrosynthesis Prediction

Retrosynthesis planning aims to identify efficient synthetic routes for a desired molecule
by recursively converting it into easier precursors. Therefore, it can effectively solve the syn-
thesis of complex molecules to facilitate the development of organic synthesis science [105].
At present, a series of ML-based approaches have been used for retrosynthesis planning,
mainly including template-based and template-free approaches.

The template-based approach involves systematically comparing the target molecule
with a set of templates, each representing alternative substructure patterns that occur during
a chemical reaction [105]. The first work involving DNNs for this issue was presented by
Segler et al. [79], published in Nature. They found that Monte Carlo tree search (MCTS)
combined with DNNs and symbolic rules can be utilized to perform chemical synthesis
effectively. The routes generated by the model were comparable to those reported in the
literature in a double-blind AB test, thereby confirming the accuracy of the model [79].
However, it is worth noting that template-based approaches cannot be extended beyond
templates, limiting their predictive ability [106].

As for the template-free method, it aims to uncover hidden relationships within
the data concerning reaction mechanisms rather than relying on direct matching [105].
For example, by using neural sequence-to-sequence models, Liu et al. [80] proposed the
template-free method called seq2seq, to perform the retrosynthetic reaction-prediction
tasks. This model was based on an encoder–decoder framework consisting of two re-
current neural networks (RNNs) and was trained on a dataset of 50,000 experimental
reactions extracted from the United States’ patent literature, demonstrating comparable
performances to the rule-based expert system model [80]. Therefore, ML algorithms have
been extensively employed to conduct retrosynthetic analysis and hold the potential to
facilitate chemical synthesis.

2.4.2. Forward Reaction Prediction

Contrary to retrosynthesis analysis, forward reaction prediction aims to identify po-
tential molecules that can be synthesized from given reactants and reagents [105]. Given
the reactant molecules as input, the ML model analyzes their structural and chemical
properties to generate predictions about the resulting products and reaction conditions. For
example, Wei et al. [82] introduced a novel reaction fingerprinting approach that utilizes
neural networks to predict reaction types. The prediction results of this method on 16 basic
reactions of alkyl halides and alkenes indicates that neural networks can contribute to iden-
tify key features from the structure of reactant molecules to classify new reaction types [82].
Similarly, Coley et al. [83] proposed a neural network model to predict the main products
of chemical reactions by training the data extracted from a collection of 150,000 compounds’
reaction templates in the US patent database. In addition, in practical chemical synthesis
reactions, reaction conditions (e.g., solvent and temperature) are critical to maximize the
yield of desired products. Based on this, Gao et al. [84] proposed a neural network model
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to predict the optimal reaction conditions for various types of reactions. This model was
trained using a vast dataset of nearly 10 million entries extracted from the Reaxys database
and can effectively predict the ideal catalyst, solvent, reagent, and temperature for a given
reaction, facilitating the optimization of reaction conditions [84]. Therefore, the utilization
of ML-based models can assist in predicting reaction types, accelerating the discovery of
new chemical molecules, and identifying optimal reaction conditions, thereby holding
great potential in improving the efficiency of chemical synthesis processes.

3. Opportunities for Transformer-Based ML Models in Empowering Drug Discovery

The Transformer model, firstly proposed in the paper ‘Attention is All You Need’ by
Vaswani et al., is a highly advanced DL architecture utilizing self-attention mechanisms.
As it allows for parallelization and captures long-range dependencies more efficiently than
traditional RNN models, the Transformer model has proven to be highly effective in a wide
range of tasks and has set new benchmarks in the corresponding fields [10,11]. Given the
advantages of the Transformer, it has emerged as a promising future direction of ML in the
field of drug discovery (Figure 3).
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3.1. Opportunity 1: Transformer Models Empowering PPIs Identification

Existing ML-based approaches mainly use CNNs to extract low-dimensional features
from protein sequences based on the amino acid composition, while disregarding the long-
range relationships within these sequences [107]. Fortunately, transformers can capture
the long-distance dependencies in the protein sequences, making them suitable to predict
whether and how given proteins interact with each other [108]. For example, by utilizing
the advantage of the Transformer model in evolutionary scale modeling-multiple sequence
alignment, Lin et al. [109] developed DeepHomo2.0, a DL-based model that predicts
PPIs of homodimeric complexes by combining Transformer features, monomer structure
information, and direct-coupling analysis. The results showed that DeepHomo2.0 can
achieve a high accuracy of over 70% and 60% in terms of experimental monomer structure
and predicted monomer structure for the top 10 contacts predicted on the Protein Data Bank
(PDB)test set, respectively, which is superior to the DCA-based, protein language model-
based and other ML-based methods [109]. Similarly, Kang et al. [110] proposed AFTGAN,
a neural network that combines Transformer and GAT frameworks for effective protein
information extraction and multi-type PPI prediction. Experimental comparisons validated
the superior performance of AFTGAN in accurately predicting the PPIs of unknown
proteins. Therefore, given the advantage of the Transformer in extracting protein sequences,
it has demonstrated remarkable potential in advancing the prediction of PPIs.

3.2. Opportunity 2: Transformer Models Empowering DTIs’ Identification

Despite the remarkable performance improvement of DL models in DTI prediction,
the primary challenge lies in the limited representation of drugs in these methods, as they
only consider SMILES sequences, SMARTS strings or molecular graphs, failing to capture
comprehensive drug representations [107]. It is worth noting that Transformers can be
employed either independently or in combination with other AI algorithms to address
these problems. For example, DeepMGT-DTI, a DL model that incorporates a Transformer
network and multilayer graph information, can effectively capture the structural features of
drugs, leading to improved DTI prediction [111]. Experiments have demonstrated that the
DeepMGT-DTI can achieve an AUC of 90.24%, an AUPR of 77.11%, an F1 score of 79.31%
and an accuracy of 85.15% on the DrugBank dataset. These performance metrics surpassed
those previous target sequence structure models, such as Deep DTA and Transformer-
CPI [111]. Moreover, GSATDTA, a novel triple-channel model based on graph–sequence
attention and Transformer, has been developed to predict the drug-target binding affinity
with outstanding performance [107]. Therefore, Transformer models have shown promising
results for DTIs’ prediction.

3.3. Opportunity 3: Transformer Models Empowering De Novo Drug Design

Most existing deep generative models either focus on virtual screening on the available
database of compounds by DTI binding-affinity prediction, or unconditionally generate
molecules with specific physicochemical and pharmacological properties, which ignore the
function of protein targets during the generation process [112]. In contrast, Transformer
models have the capability to consider the protein target and achieve target-specific molec-
ular generation. For example, AlphaDrug, a method for protein target-specific de novo
drug design, has been recently proposed. It utilizes a modified Transformer to optimize
the learning of protein information and integrates an efficient MCTS guided by the Trans-
former’s predictions as well as docking values [112]. Notably, in terms of average docking
score, uniqueness, the octanol–water partition coefficient logP, the quantitative estimate
of drug-likeness (QED), synthetic accessibility (SA) and Natural products-likeness (NP-
likeness) criteria, AlphaDrug is superior to other methods (such as LiGANN, SBMolGen
and SBDD-3D) [112]. In addition, the GPT model is a powerful language generation model
that can be fine-tuned for specific tasks after pre-training on large amounts of text data [113].
It has been successfully applied to accelerate molecular generation for specific targets in
the field of drug discovery. For example, cMolGPT, a GPT-inspired model, is a useful tool
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for target-specific de novo molecular generation. The chemical space of the compounds
generated by cMolGPT closely matches with that of real target-specific ones [114].

3.4. Opportunity 4: Transformer Models Empowering Molecular Property Prediction

Despite the widespread application of ML-based models, the shortage of labeled data
continues to be a significant challenge in efficient molecular property predictions [10,115]. To
address this, researchers are exploring the use of unlabeled data and leveraging transformer-
based self-supervised learning (e.g., BERT) to improve predictions on small-scale labeled
data [116]. Currently, several BERT-based pre-training methods for molecular property
prediction have been proposed [10,117]. For example, a novel pre-training method, known
as K-BERT, was developed to extract chemical information from SMILES similar to chemists
for molecular property prediction in drug discovery [118]. The K-BERT model exhibited
superior performance in 8 out of 15 tasks, thus reflecting the efficacy and benefits of the
proposed pre-training approach in drug discovery. Specifically, K-BERT had an average AUC
score of 0.806, outperforming other competing methods (e.g., XGBoost-MACCS, XGBoost-
ECFP4, HRGCN+ and Attentive FP) [118]. Moreover, Wang et al. [119] proposed a two-stage
(pre-training and fine-tuning) model called SMILES-BERT that could use both unlabeled
data and labeled data to improve molecular property prediction. Compared with a range of
state-of-the-art approaches (e.g., CircularFP, NeuralFP, Seq2seqFP, Seq3seqFP), it exhibited
superior performance on three different datasets (the LogP dataset, PM2 dataset and PCBA-
686978 dataset) with accuracies of 0.9154, 0.7589, and 0.8784, respectively [119]. Therefore,
these Transformer-based predictors are essential tools for molecular property prediction,
contributing to the efficient screening of potential drug candidates.

3.5. Opportunity 5: Transformer Models Empowering Chemical Synthesis

Previous sequence-based approaches commonly employed RNNs for both the encoder
and decoder, with a single-head attention layer connecting them. These models treated
reactants and reagents separately in the input by utilizing atom mapping, which limits
the interpretability of the model [120]. Fortunately, Transformer-powered models have
shown potential to accelerate chemical synthesis. One notable example is the effectiveness
of the multi-head attention Molecular Transformer model in predicting chemical reactions
and reaction conditions [120,121]. In addition, inspired by the success of the Molecular
Transformer for forward reaction prediction, Schwaller et al. [122] proposed an enhanced
Molecular Transformer architecture coupled with a hyper-graph exploration algorithm
for automated retrosynthetic pathway prediction. This approach surpasses previous ML-
based methods by not only predicting reactants but also identifying reagents for each
retrosynthetic step, thereby significantly raising the complexity of the prediction task.

4. Challenges of ML-Based Models in Drug Discovery

Given the remarkable advantages in identifying and extracting features from high-
dimensional and complex big data, ML-based models have made significant progress in
multiple stages of drug discovery [99]. However, there remain several challenges that have
yet to be effectively resolved (Figure 4).

First, the effectiveness of ML algorithms heavily relies on the quantity of training
data, and typically, a larger dataset tends to yield a more accurate model [96]. When the
amount of data is inadequate, it can significantly impact the performance and reliability
of ML models, potentially resulting in the risk of overfitting [123]. Indeed, the limited
availability of data, especially labeled data, poses a significant challenge to the progress
of ML-driven drug discovery. One potential approach to address this issue is employing
transfer learning algorithms, where knowledge acquired from one task can be effectively
applied to another task [124–126]. Additionally, in light of the challenges associated with
acquiring extensive labeled datasets in drug discovery, there is a growing trend for the
effectiveness of concentrating efforts on smaller, carefully curated datasets. This shift
highlights the significance of extracting meaningful insights from limited yet relevant data,
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thereby enhancing the precision and applicability of ML models in the complex landscape
of drug discovery.
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Second, the quality of the data is also crucial in determining the prediction performance
of ML models. The experimental drug-related data collected in public databases frequently
originates from varying biological assays, conditions, or methods, leading to disparate
results when different measurement techniques are employed for a specific compound,
thereby hindering direct comparisons. Hence, the strategies for filtering raw inputs with
noise, outliers, or irrelevant information and automating data entry may be helpful to
achieve reliable and accurate ML models for drug discovery. For example, during the
data processing phase, noise reduction and outlier detection algorithms, such as Z-scores,
box plots or iterative deletion, can be applied to identify and purge outliers from the data,
enhancing its quality for ML model prediction. In addition, researchers can use cross-
validation experiments to assess the generalization ability of the models, ensuring that they
perform well not only on specific datasets but also on new, unseen data.

Third, due to the abundance of ML model architectures and the constant emergence
of new ones, it becomes challenging to choose the most suitable models that meet specific
research task requirements in the field of drug discovery [99]. Generally, the model selec-
tion involves evaluating various options and considering factors such as the complexity of
the problem, available data, and computational resources. Furthermore, once the model
architecture is selected, the next step is to fine-tune its parameters to optimize the model’s
performance. Although hyperparameter optimization tools have been proposed to auto-
mate the process of tuning substantial parameters in ML models, the entire system process
is also relatively complicated, which may bring certain difficulties to the application of
researchers [99,127]. In addition, the setting of hyper-parameters usually requires human
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intervention, which may lead to their incomplete or inaccurate selection. Accordingly,
cross-validation is commonly used in variable selection and model parameter tuning to
evaluate the performances of various ML methods [128]. Moreover, establishing clear
performance metrics at the outset, such as accuracy, precision, recall, F1 score, AUC and
AUPR can help in objectively evaluating the suitability of different models depending on
the nature of the problem.

Fourth, unlike traditional models where the reasoning and decision-making process
can be easily understood, ML models, particularly DL models, operate using complex
mathematical algorithms and layers of interconnected neurons, making it challenging to in-
terpret their inner workings. The lack of transparency and interpretability pose difficulties
for ML models in explaining the observed phenomena and understanding the underlying
biological mechanisms. Hence, the ML models are often referred to as “black boxes” [99].
For this issue, employing visualization tools such as Activation Maximization [129], Local
Interpretable Model-agnostic Explanations (LIME) [130] and SHapley Additive exPlana-
tions (SHAP) [131] can help in understanding the model’s decision-making process by
providing insights into which features are most influential. In the future, a continuous
requirement is to develop robust models with high interpretability.

Therefore, a tremendous amount of work has been done to incorporate ML tools to
expedite the drug discovery cycle, but further advancement and improvement of these
tools is needed before the full potential of ML in drug discovery can be realized.

5. Concluding Remarks

The research and development of new drugs can contribute to meet the human de-
mand for treating diseases and provide more effective, safer, and more convenient treatment
options. Compared with the traditional strategies of drug discovery, ML-based approaches
have the potential to reduce time and costs, improve safety, and bridge the gap between
drug discovery and drug effectiveness, making them increasingly favored by the pharma-
ceutical industry and academia. In particular, the introduction of chatGPT has sparked
researchers’ growing interest and exploration in leveraging the Transformer model’s NLP
capabilities, particularly its self-attention mechanisms, to accelerate multiple stages of the
drug discovery process, thereby opening up new opportunities for advancements.

However, the current challenges in ML-based models can result in generating false
positives or false negatives, potentially leading to incorrect predictions and resource waste.
Further in vitro and in vivo experiments as well as clinical trials are needed to fully demon-
strate the practicability of ML-based drug discovery and obtain more reliable and accurate
results. Therefore, future research should focus on improving data quality, enhancing the in-
terpretability of ML algorithms, and integrating them with human professional knowledge
to increase the efficacy of drug discovery.
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AI, artificial intelligence; ML, machine learning; DL, deep learning; ANN, artificial neural network;
NLP, natural language processing; DTI, drug–target interaction; 3D, three-dimensional; DNN, deep
neural network; PPI, protein–protein interaction; GAT, graph attention network; CNN, convolutional
neural network; VAE, variational auto-encoder; AAE, adversarial auto-encoder; RNN, recurrent
neural network; RF, random forest; XGBoost, eXtreme gradient boosting; GCN, graph convolutional
network; SVM, support vector machine; NBC, naïve Bayes classifier; NTN, neural tensor network;
GAN, generative adversarial network; GCNN, graph convolutional neural network; ResNet, residual
network; GBM, gradient boosting machines; RL, reinforcement learning; GRU, gated recurrent unit;
GNN, graph neural networks; k-NN, k-nearest neighbor; LightGBM, light gradient boosting machine;
MCTS, Monte Carlo tree search, NTN, neural tensor network; GAN, generative adversarial network;
GCNN, graph convolutional neural network; ADME/T, absorption, distribution, metabolism, and
excretion and toxicity; BBB, blood–brain barrier; PPB, plasma protein binding, CYP2D6, cytochrome
P450 2D6; XGBoost, extreme gradient boosting; CYP450, cytochrome P450;MCTS, Monte Carlo Tree
Search; GPT, Generative Pre-Training Transformer; BERT, bidirectional encoder representations from
transformers; SC2, Challenge to Predict Aqueous Solubility; MCC, Matthews’ Correlation Coefficient;
AUC, area under the curve; AUPR, area under precision-recall; PDB, Protein Data Bank; QED,
quantitative estimate of drug-likeness; SA, synthetic accessibility;NP, natural products; LIME, Local
Interpretable Model-agnostic Explanations; SHAP, SHapley Additive exPlanations.

References
1. DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health

Econ. 2016, 47, 20–33. [CrossRef] [PubMed]
2. Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov.

2004, 3, 673–683. [CrossRef]
3. Dowden, H.; Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019, 18, 495–496. [CrossRef]

[PubMed]
4. Deng, J.; Yang, Z.; Ojima, I.; Samaras, D.; Wang, F. Artificial intelligence in drug discovery: Applications and techniques. Brief.

Bioinform 2022, 23, bbab430. [CrossRef] [PubMed]
5. Mak, K.K.; Pichika, M.R. Artificial intelligence in drug development: Present status and future prospects. Drug Discov. Today 2019,

24, 773–780. [CrossRef]
6. Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development.

Drug Discov. Today 2021, 26, 80–93. [CrossRef]
7. Chen, H.; Engkvist, O.; Wang, Y.; Olivecrona, M.; Blaschke, T. The rise of deep learning in drug discovery. Drug Discov. Today

2018, 23, 1241–1250. [CrossRef]
8. Wang, K.; Zhou, R.; Li, Y.; Li, M. DeepDTAF: A deep learning method to predict protein-ligand binding affinity. Brief. Bioinform.

2021, 22, bbab072. [CrossRef]
9. Karimi, M.; Wu, D.; Wang, Z.; Shen, Y. DeepAffinity: Interpretable deep learning of compound-protein affinity through unified

recurrent and convolutional neural networks. Bioinformatics 2019, 35, 3329–3338. [CrossRef]
10. Zhang, S.; Fan, R.; Liu, Y.; Chen, S.; Liu, Q.; Zeng, W. Applications of transformer-based language models in bioinformatics:

A survey. Bioinform. Adv. 2023, 3, vbad001. [CrossRef]
11. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv.

Neural Inf. Process. Syst. 2017, 30, 1–11.
12. Kalakoti, Y.; Yadav, S.; Sundar, D. TransDTI: Transformer-Based Language Models for Estimating DTIs and Building a Drug

Recommendation Workflow. ACS Omega 2022, 7, 2706–2717. [CrossRef] [PubMed]
13. Du, Z.; Su, H.; Wang, W.; Ye, L.; Wei, H.; Peng, Z.; Anishchenko, I.; Baker, D.; Yang, J. The trRosetta server for fast and accurate

protein structure prediction. Nat. Protoc. 2021, 16, 5634–5651. [CrossRef]
14. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al.

Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef]
15. Zhang, L.; Wang, S.; Hou, J.; Si, D.; Zhu, J.; Cao, R. ComplexQA: A deep graph learning approach for protein complex structure

assessment. Brief. Bioinform. 2023, 24, bbad287. [CrossRef] [PubMed]
16. Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A universal deep-learning model of protein sequence and

function. Bioinformatics 2022, 38, 2102–2110. [CrossRef]
17. Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Smetanin, N.; Verkuil, R.; Kabeli, O.; Shmueli, Y.; et al. Evolutionary-scale

prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [CrossRef]

https://doi.org/10.1016/j.jhealeco.2016.01.012
https://www.ncbi.nlm.nih.gov/pubmed/26928437
https://doi.org/10.1038/nrd1468
https://doi.org/10.1038/d41573-019-00074-z
https://www.ncbi.nlm.nih.gov/pubmed/31267067
https://doi.org/10.1093/bib/bbab430
https://www.ncbi.nlm.nih.gov/pubmed/34734228
https://doi.org/10.1016/j.drudis.2018.11.014
https://doi.org/10.1016/j.drudis.2020.10.010
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1093/bib/bbab072
https://doi.org/10.1093/bioinformatics/btz111
https://doi.org/10.1093/bioadv/vbad001
https://doi.org/10.1021/acsomega.1c05203
https://www.ncbi.nlm.nih.gov/pubmed/35097268
https://doi.org/10.1038/s41596-021-00628-9
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1093/bib/bbad287
https://www.ncbi.nlm.nih.gov/pubmed/37930021
https://doi.org/10.1093/bioinformatics/btac020
https://doi.org/10.1126/science.ade2574


Molecules 2024, 29, 903 16 of 20
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