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Abstract: Phthalocyanines and their double-decker complexes are interesting in designing rotative
molecular machines, which are crucial for the development of molecular motors and gears. This
study explores the design and synthesis of three bulky phthalocyanine ligands functionalized at the
α-positions with phenothiazine or carbazole fragments, aiming to investigate dynamic rotational
motions in these sterically hindered molecular complexes. Homoleptic and heteroleptic double-
decker complexes were synthesized through the complexation of these ligands with Ce(IV). No-
tably, CeIV(Pc2)2 and CeIV(Pc3)2, both homoleptic complexes, exhibited blocked rotational motions
even at high temperatures. The heteroleptic CeIV(Pc)(Pc3) complex, designed to lower symmetry,
demonstrated switchable rotation along the pseudo-C4 symmetry axis upon heating the solution.
Variable-temperature 1H-NMR studies revealed distinct dynamic behaviors in these complexes. This
study provides insights into the rotational dynamics of sterically hindered double-decker complexes,
paving the way for their use in the field of rotative molecular machines.

Keywords: double-decker complex; homoleptic; heteroleptic; cerium ion; ligand rotation; phthalo-
cyanine; carbazole; phenothiazine

1. Introduction

Phthalocyanines (Pc) [1] represent a class of porphyrinoids that possess intriguing
electronic, optical, and magnetic properties [2]. Thanks to their unique structural features
and versatile properties, they are widely used as a building block in various functional
materials, such as molecular electronics [3], dyes [4], photovoltaic devices [5], and advanced
catalysts [6]. Phthalocyanines can coordinate to various metal ions in their central cavity
of a macrocyclic structure composed of four isoindoles bridged by nitrogen atoms. Their
coordination ability is not limited to alkaline metals, alkaline earth metals, and transition
metals, but also to rare-earth ions. In particular, phthalocyanines form double-decker
complexes with metal ions with large ionic radii like Cd, Hg, and rare-earth ions, in
which the metal ion is sandwiched with two phthalocyanines [7,8]. These double-decker
complexes exhibit unique molecular properties such as multistep redox properties [9–11],
single molecular magnetism [11,12], and photocatalytic properties [13] which are derived
from metal–π and π-π interactions. Moreover, the three-dimensional architecture of these
double-decker structures makes them versatile building blocks for designing molecular
machines with rotary units capable of controlled motion at the molecular level such as
molecular motors and gears [14–19].

The first demonstration of rotation behavior in solution involving phthalocyanine
macrocycles was reported in 2011 by Otsuki et al. [20]. They studied a two-fold symmetric
heteroleptic double-decker complex with a meso-substituted porphyrin and a Pc ligand
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coordinated to a Ce(IV) ion. The inter-ring rotation was observed as a flip by 90◦ from one
antiprismatic geometry to another as evidenced by variable-temperature NMR. In 2023,
Martynov et al. published the intramolecular rotation of Y(III) phthalocyaninates by analyz-
ing the change in the conformational behavior, also using variable-temperature NMR [21].
However, the effect of the bulkiness of peripheral substituents on the rotative motion
around the central metal ion of double-decker complexes was not well investigated for
bis(phthalocyanato) double-decker complexes since the regio-controlled functionalization
and desymmetrization of phthalocyanines are more difficult compared with porphyrins.
This work specifically focuses on the formation of double-decker complexes using bulky
Pc [20,22–26]. The aim is to investigate the dynamic rotation motions under thermal
influence in these sterically hindered molecular complexes.

Here, we report the design and synthesis of three bulky Pc ligands functionalized
at the α-positions with four tert-butyl phenothiazine (H2Pc1) or four tert-butyl carbazole
(H2Pc2). Furthermore, a desymmetrized A3B phthalocyanine (H2Pc3) was also prepared
with one phenothiazine and three tert-butyl carbazole substituents. These ligands were
used to synthesize two homoleptic and one heteroleptic double-decker complexes through
the complexation of these Pc with CeIV. The internal rotating motions of these complexes
were studied in solution using variable-temperature 1H-NMR (VT-1H-NMR).

2. Results and Discussion
2.1. Molecular Design of Sterically Hindered Double-Decker Complexes

Double-decker complexes with sterically hindered peripheral substituents, wherein
a lanthanoid ion is sandwiched between two Pc ligands (Figure 1) can serve as valuable
structural motifs for the study of intramolecular rotating motions since the ligands can
rotate around the metal center (axis of rotation shown in Figure 1). To examine the impact
of bulkiness on the formation of double-decker complexes and the dynamics of their
rotating motions, we designed Pc ligands functionalized at the α-positions with the planar
bulky substituents 3,6-di-tert-butyl phenothiazine and 3,6-di-tert-butyl carbazole. The
tert-butyl groups are present here to improve the solubility of the target ligands and double-
decker complexes.

Molecules 2024, 29, x FOR PEER REVIEW 2 of 13 
 

 

heteroleptic double-decker complex with a meso-substituted porphyrin and a Pc ligand 
coordinated to a Ce(IV) ion. The inter-ring rotation was observed as a flip by 90° from one 
antiprismatic geometry to another as evidenced by variable-temperature NMR. In 2023, 
Martynov et al. published the intramolecular rotation of Y(III) phthalocyaninates by ana-
lyzing the change in the conformational behavior, also using variable-temperature NMR 
[21]. However, the effect of the bulkiness of peripheral substituents on the rotative motion 
around the central metal ion of double-decker complexes was not well investigated for 
bis(phthalocyanato) double-decker complexes since the regio-controlled functionalization 
and desymmetrization of phthalocyanines are more difficult compared with porphyrins. 
This work specifically focuses on the formation of double-decker complexes using bulky 
Pc [20,22–26]. The aim is to investigate the dynamic rotation motions under thermal influ-
ence in these sterically hindered molecular complexes. 

Here, we report the design and synthesis of three bulky Pc ligands functionalized at 
the 𝛼 -positions with four tert-butyl phenothiazine (H2Pc1) or four tert-butyl carbazole 
(H2Pc2). Furthermore, a desymmetrized A3B phthalocyanine (H2Pc3) was also prepared 
with one phenothiazine and three tert-butyl carbazole substituents. These ligands were 
used to synthesize two homoleptic and one heteroleptic double-decker complexes 
through the complexation of these Pc with CeIV. The internal rotating motions of these 
complexes were studied in solution using variable-temperature 1H-NMR (VT-1H-NMR). 

2. Results and Discussion 
2.1. Molecular Design of Sterically Hindered Double-Decker Complexes 

Double-decker complexes with sterically hindered peripheral substituents, wherein 
a lanthanoid ion is sandwiched between two Pc ligands (Figure 1) can serve as valuable 
structural motifs for the study of intramolecular rotating motions since the ligands can 
rotate around the metal center (axis of rotation shown in Figure 1). To examine the impact 
of bulkiness on the formation of double-decker complexes and the dynamics of their ro-
tating motions, we designed Pc ligands functionalized at the 𝛼-positions with the planar 
bulky substituents 3,6-di-tert-butyl phenothiazine and 3,6-di-tert-butyl carbazole. The tert-
butyl groups are present here to improve the solubility of the target ligands and double-
decker complexes.  

 
Figure 1. Schematic design of the sterically hindered double-decker complex of this work with the 
axis of rotation of interest (the main axis of rotation is given as a dashed line). The phthalocyanine 
rings are shown in green, the lanthanoid ion in purple, and the planar bulky substituents in blue. 

2.2. Synthesis of the Pc Ligands Functionalized at the 𝛼-Positions with Bulky Groups 

Figure 1. Schematic design of the sterically hindered double-decker complex of this work with the
axis of rotation of interest (the main axis of rotation is given as a dashed line). The phthalocyanine
rings are shown in green, the lanthanoid ion in purple, and the planar bulky substituents in blue.

2.2. Synthesis of the Pc Ligands Functionalized at the α-Positions with Bulky Groups

The cyclic tetramerization of mono-substituted phthalonitrile can produce a mixture
of four distinct regioisomers with C4h, Cs, C2v, and D2h symmetries, as illustrated in
Figure 2. It has been firmly established that introducing bulky substituents at the 3-position
of phthalonitrile selectively yields the C4h isomer [22]. The reaction progresses through
heating the phthalonitrile in a solution of lithium octanolate in n-octanol [27].
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ands through Li template synthesis. The metal-free H2Pc1 and H2Pc2 were then quantita-
tively obtained by demetallation of the lithium ions by reaction with concentrated HCl. 
The formation of the Pc ligands functionalized at the 𝛼-positions was confirmed by 1H-
NMR and MS (Figures S1–S3). In particular, the 1H-NMR spectra revealed that, as ex-
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Figure 2. Regioisomers of the Pc ring obtained by cyclic tetramerization of 3-substituted phthalonitrile.

Two symmetric A4 phthalocyanine ligands with four 3,7-di-tert-butyl phenothiazines
(H2Pc1) or four 3,6-di-tert-butyl carbazoles (H2Pc2) at the α-position were synthesized.
Moreover, a desymmetrized A3B phthalocyanine (H2Pc3) was also prepared with one
phenothiazine and three 3,6-di-tert-butyl carbazole substituents (Figure 3).
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2.2.1. Symmetric A4 Pc Ligands H2Pc1 and H2Pc2

The synthesis of the phenothiazine-substituted phthalonitrile was achieved in two
steps. Firstly, 3,6-di-tert-butyl phenothiazine was synthesized in 79% yield via a double
Friedel–Crafts alkylation of phenothiazine with AlCl3 [28] followed by the N-arylation
of the phenothiazine by 3-fluorophthalonitrile in the presence of NaH [29]. The 3,6-di-
tert-butyl carbazolylphthalonitrile was obtained by following a modified published pro-
cedure [19]. Tetramerization of the phthalonitriles selectively gave the C4h symmetric
Li2Pc ligands through Li template synthesis. The metal-free H2Pc1 and H2Pc2 were then
quantitatively obtained by demetallation of the lithium ions by reaction with concentrated
HCl. The formation of the Pc ligands functionalized at the α-positions was confirmed by
1H-NMR and MS (Figures S1–S3). In particular, the 1H-NMR spectra revealed that, as
expected, only one isomer was selectively obtained. Generally, Pc ligands tend to easily
aggregate in solution, resulting in broad signals. Surprisingly, for these bulky ligands, the
signals are sharp, indicating the difficulty for the aromatic rings to interact closely.

2.2.2. Disymmetric A3B Pc Ligand H2Pc3

To facilitate the tracking of the rotation, we envisioned the preparation of a disym-
metric A3B Pc ligand [30]. For this purpose, alongside three 3,6-di-tert-butyl carbazole
subunits, we selected the phenothiazine fragment as the chemical tag to complete the
molecular structure.

The desymmetrized H2Pc3 ligand was synthesized via a statistical condensation
reaction. Six different compounds could be obtained, A4, A3B, A2B2 (cis and trans isomers),
AB3, and B4, in a statistical distribution. Since the two dinitrile compounds are expected
to exhibit comparable reactivity, employing a strict 3:1 molar ratio of each dinitrile favors
the formation of the desired A3B compound with a statistical yield of 44% followed by
the symmetric A4 compound (33%) and the remaining cis and trans A2B2, AB3, and B4 as
minor products [31]. H2Pc3 was obtained by heating a mixture of 3,6-di-tert-butyl-carbazole
phthalonitrile with 3-phenothiazine phthalonitrile in a 3:1 molar ratio in lithium pentoxide
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in n-pentanol at reflux for 21 h (Scheme 1). Purification of the mixture by silica column
chromatography yielded the desired compound in 22% yield.
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2.3. Synthesis of the Double-Decker Cerium(IV) Complexes

Figure 4 presents the three double-deckers synthesized in this work. CeIV(Pc2)2 and
CeIV(Pc3)2 are homoleptic while CeIV(Pc)(Pc3) is heteroleptic.
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2.3.1. Homoleptic Double Deckers CeIV(Pc2)2 and CeIV(Pc3)2

Firstly, we attempted the synthesis of the homoleptic double-deckers with the three bulky
Pc ligands shown Figure 3, using the microwave conditions described by H.G. Jin et al. [32].

The reaction of H2Pc1 with Ce(acac)3·nH2O was initially attempted using microwave
heating in three cycles of 1 h at 270 ◦C, but only the starting material was quantitatively
recovered, as confirmed by 1H-NMR data. A second attempt by refluxing H2Pc1 with
the same cerium source in n-octanol for 8 h also failed, possibly due to excessive steric
hindrance between the phenothiazine groups of two different ligands. To validate this
hypothesis, we attempted to form the double-decker complex with the less hindered H2Pc2.
Connected through a nitrogen atom involved in a five-membered cycle (instead of a central
six-membered ring for the phenothiazine fragment), the carbazole sub-unit is less sterically
hindered. Under the same reaction conditions using microwave heating, the less hindered
H2Pc2 successfully coordinated to the Ce(IV). The reaction was quenched with MeOH, and
the precipitate obtained was purified by silica column chromatography and recycling GPC,
followed by recrystallization to yield the double-decker complex CeIV(Pc2)2 in 70% yield.

In addition to giving neutral double-decker complexes, cerium (IV) is also one of the
lanthanide ions that exhibit diamagnetism in double-decker structures [7]. Pc functionalized
at the four α-positions is prochiral. Once coordinated in a double-decker architecture, as
depicted in Figure 5, three stereoisomers can be envisioned [33]: one pair of enantiomers
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(R-R and S-S) and a meso (R-S). It is expected that the (R-S) meso form would be obtained
as the main product since the steric hindrance is reduced between the upper and lower
substituents [34].
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Figure 5. Possible stereoisomers of double-decker complex formed from a Pc functionalized at the
four α-positions: R,R and S,S enantiomers as well as the R,S meso diastereomer (Cbz = 3,6-di-tert-
butyl-carbazole).

Single crystals suitable for X-ray diffraction analysis were obtained by a slow diffu-
sion of methanol into a chloroform solution of the complex. Their analysis confirms the
formation of the expected (R-S) meso stereoisomer of the sterically crowded double-decker
complex CeIV(Pc2)2. The cerium center is coordinated by eight nitrogen atoms of the Pc2,
forming a distorted square antiprismatic coordination geometry with a twisting angle of
33◦ (Figure 6).

The sterically hindered ligand drastically modifies this angle, which is usually about
45◦ in homoleptic double-decker complexes of Pc [19,33]. Similar to the structures of many
double-decker complexes, the two ligands are not strictly planar and display a saucer shape.
This structure reveals that peripheral carbazoles are arranged in a herringbone manner
compared to each other. The carbazole substituents of both Pc rings are not perpendicular
to the average plane of the Pc rings but are tilted at +52◦ in one Pc ring and −48◦ in the
other one. This herringbone arrangement of carbazoles in the crystal could be due to the
T-shaped π-π interaction between neighboring carbazoles.

From the 1H-NMR spectrum of CeIV(Pc2)2 depicted in Figure 7, it is clear that a major
isomer is present, with less intense signals corresponding to minor stereoisomers (R-R
and S-S). The MS data (Figure S11) revealed a single peak corresponding to CeIV(Pc2)2
exhibiting the anticipated isotopic pattern and the absence of free ligands or triple-deckers.
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Figure 6. Side view (a) and top view (b) of the single crystal structure of CeIV(Pc2)2. Hydrogens are
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Figure 7. 1H-NMR spectra of (a) H2Pc2 and (b) CeIV(Pc2)2 in CDCl3 (400 MHz). The full assignments
of the signals (indicated with letters in the molecule shown top right) were made with the assistance
of COSY (Figure S9).

Following complexation, the carbazole protons are no longer equivalent due to re-
stricted rotation along the C-N bond at room temperature. Consequently, the carbazole
signals are split into two groups, as illustrated in Figure 7, with one part of the carbazole
on the side of the Ce(IV) center while the second part is outside. It is known from the
literature that the in signals are shifted downfield and the out signals are shifted upfield
due to the strong ring current generated by the porphyrinoid ligands [35,36]. Consequently,
the aromatic protons of the carbazole resonate can be divided into two groups, in and
out, with signals for Ha at 7.12 ppm (in) and 5.23 ppm (out), for Hb at 8.05 ppm (in) and
5.97 ppm (out), and for Hc at 8.69 ppm (in) and 8.40 ppm (out). Additionally, the protons
of the Pc ring resonate at 7.54 ppm (Hg), 7.21 ppm (Hf), and 6.62 ppm (He). A similar effect
is observed for the tert-butyl protons with two singlets at 1.86 and 1.02 ppm (Figure S7).

Increasing the temperature did not change the spectrum, indicating that the carbazole
substituents cannot freely rotate, which is not surprising considering the X-ray structure.
As this complex is prepared from two symmetrical Pc2 ligands, we cannot be certain if
there is a rotation of the Pc ring around its C4 symmetry axis, as the spectrum remains the
same with or without rotation. To obtain such information, we investigated the rotation in
a double-decker with comparable steric hindrance, prepared using two desymmetrized
Pc3 ligands.

CeIV(Pc3)2 complexation was carried out by following the same strategy. The forma-
tion of the complex was confirmed by MALDI-TOF-MS with the expected molecular ion
peaks and isotopic distribution. The 1H-NMR spectrum at room temperature was very
complex due to the presence of many rotamers (Figure S12). Unfortunately, even at high
temperature (140 ◦C), no changes have been observed (Figure S13). This indicates that the
energy barrier is too large in this sterically overcrowded system, preventing any rotation
around the pseudo-C4 symmetry axis.

2.3.2. Heteroleptic Double-Decker CeIV(Pc)(Pc3)

Since CeIV(Pc3)2 was unsuitable for studying rotational motions due to the tight en-
gagement of the upper and lower decks, we prepared a heteroleptic CeIV double-decker
complex with Pc3 and the unfunctionalized Pc. Lowering the symmetry of the phthalocya-
nine ring is crucial for fine-tuning the physicochemical properties [30] but also to facilitate
the tracking of rotation. There are only a few examples in the literature of heteroleptic
double-decker complexes incorporating one desymmetrized Pc ring [7,37–39].
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To prepare the heteroleptic double-decker complex, one equivalent of H2Pc3 and one
equivalent of H2Pc were reacted with Ce(acac)3·nH2O using microwave in o-DCB at 270 ◦C.
This reaction led to a mixture of three compounds, with two homoleptic complexes, CeIV

(Pc3)2 and CeIV (Pc)2, and the desired complex, CeIV (Pc)(Pc3), obtained with a yield of
37% after column chromatography. Their structures were confirmed by 1H-NMR and MS
with the expected molecular ion peaks and isotopic distribution (Figure S18).

2.4. 1H-NMR Studies of the Dynamic Internal Rotating Motions in CeIV(Pc)(Pc3)

The rotational flexibility of double-decker structures has been a subject of notable
interest. Extensive studies employing variable-temperature 1H NMR have been conducted
on lanthanoid and zirconium (IV) double-decker complexes [20,21]. In 2000, Aida and
co-workers investigated this type of intramolecular rotation using chiral cerium(IV) and
zirconium(IV) double-decker complexes of an ABAB porphyrin ring [40]. The ligand
rotation in these double-decker complexes was largely influenced by the steric hindrance
of the substituent and the central metal atom. To the best of our knowledge, the dynamic
behavior of heteroleptic double-decker complexes comprising an A3B Pc ring with highly
sterically hindered perpendicular substituents has not been reported.

The 1H-NMR spectrum of CeIV(Pc)(Pc3) is very complex as revealed by the number
of signals (Figure S15). As expected, the aromatic region of the spectrum contains a large
number of well-resolved signals but also some overlapped and broad signals. Due to
the low symmetry and the lack of rotation around the metal center, all the protons are
inequivalent, even the four subunits of the unfunctionalized Pc.

The total integration of all aromatic signals fits well with the number of aromatic
protons (54H) and the tert-Bu protons (also 54H). The tert-Bu signals are divided into two
groups, with three singlets at around 1 ppm (out) and three singlets at around 2 ppm (in).
Thus, variable-temperature NMR spectroscopy has been measured in the range of −20 to
120 ◦C (Figure S16) to see if the rotation processes around the axis shown in green and blue
in Figure 8 can be investigated. Firstly, the tert-Bu signals are still divided into two groups
(Figure 8c), even at high temperatures, which means the carbazole substituents cannot fully
rotate around the C-N bond of the carbazole functionalization (green axis). They are just
oscillating faster, inducing a shift for some singlets. A full and fast rotation would have
given one set of three singlets without discrimination of the in and the out tert-butyl groups.
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Figure 8. VT-1H-NMR spectra of CeIV(Pc)(Pc3) in C2D2Cl4 (600 MHz): (a) In the aromatic region,
the signals corresponding to the α and β protons (green region) are shifted and simplified at higher
temperatures. (b) The molecular structure with the color code of the discussed protons; in red and
blue are the in and out tert-butyl protons, and in green is the Pc protons. (c) In the aliphatic region,
the signals corresponding to the tert-butyl protons are splitted in two groups. While the in signals
are not changed, The blue and green arrows correspond to the rotation axis around the pseudo-C4

symmetry axis (blue-dotted axis) and the C-N bound axis between the phthalocyanine and carbazole
(green-dotted axis).
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The expected 18 signals for the carbazole sub-units and the 8 signals for the phenoth-
iazine sub-unit were all identified (Figure S15). The remaining aromatic protons, therefore,
arise from the α and β protons of the two Pc rings. Sixteen protons were sharp while twelve
were shown to be broad, sometimes visible or overlapping with other signals. The signals
correlating by group of three protons (from the 1H-1H COSY experiment) correspond to the
functionalized Pc ring, and the signals correlating by group of four protons were assigned
to the unfunctionalized Pc. The broad signals could be due to a slow exchange between
different conformers due to the rotation of the ligands around the cerium ion [21]. A full
and fast rotation would have given only one signal for each of the α and β protons. In our
case, even at high temperature we can notice that the signals corresponding to the α and β

protons are shifted and simplified (Figure 8a, green region) but remain as more than two
signals, which means the unfunctionalized Pc ring is rotating faster at high temperature,
but is still slower than the NMR timescale.

3. Materials and Methods
3.1. General Informations

All reagents and solvents were purchased at the highest commercial quality available
and used without further purification, unless otherwise stated. Anhydrous tetrahydro-
furan, hydrochloric acid, and chloroform were purchased from FUJIFILM Wako Pure
Chemical Corporation (Osaka, Japan). Lithium and Ce(acac)3·nH2O were purchased from
Sigma Aldrich (St. Louis, MO, USA). Dichloromethane and phenothiazine were purchased
from Nacalai tesque, Inc. (Kyoto, Japan). 3-fluorophthalonitrile and 3,6-di-tert- butyl-9H-
carbazole were purchased from BLD Pharmatech Ltd. (Shangai, China). Aluminium(III)
chloride was purchased from TCI (Tokyo, Japan).

Silica gel column chromatography and thin-layer (TLC) chromatography were per-
formed using Wakosil® 60 and Merck silica gel 60 (F254) TLC plates, respectively. 1H and
13C NMR spectra were recorded on a JEOL JNM-ECA600 (600 MHz for 1H; 150 MHz for
13C) spectrometer, a JEOL JNM-ECZ500 (500 MHz for 1H; 125 MHz for 13C) spectrometer,
or a JEOL JNM-ECX400P (400 MHz for 1H; 100 MHz for 13C) spectrometer at a constant
temperature of 25 ◦C unless otherwise specified. Tetramethylsilane (TMS) was used as an
internal reference for 1H and 13C-NMR measurements in CDCl3 and C2D2Cl2. A residual
peak of a solvent was used as an internal reference for 1H-NMR measurements in CD2Cl2,
o-DCB-d4, and DMSO-d6, and chemical shifts (δ) are reported in ppm. Coupling con-
stants (J) are given in Hz and the following abbreviations are used to describe the signals:
singlet (s); broad singlet (br. s); doublet (d); triplet (t); quadruplet (q); quintuplet (qt);
and multiplet (m). Full assignments of 1H-NMR spectra were made with the assistance
of COSY. The numbering system used for the assignment of signals is provided along
with the corresponding spectra in the supporting information. The EI mass spectrometry
was performed using JEOL AccuTOF JMS-T100LC. MALDI-TOF mass spectrometry was
performed using a JEOL JMS-S3000 spectrometer. CEM Discover SP was used for reactions
using a microwave irradiator. Single-crystal X-ray structure analysis was performed using
Rigaku ValiMax RAPID (Rigaku, Tokyo, Japan).

3.2. Synthesis

3.2.1. Homoleptic Cerium(IV) Double-Decker Complex CeIV(Pc2)2

In a 10 mL microwave vial, H2Pc2 (0.81 g, 1.6 eq., 500 µmol and Ce(acac)3·nH2O
(0.17 g, 1 eq., 382 µmol) was mixed in 5 mL of o-DCB. N2 was purged into the mixture
and the sample was irradiated with microwave at 270 ◦C for 3 cycles of 1 h. The reaction
was monitored after each cycle by TLC in hexane/CH2Cl2 (7:3). After precipitation with
MeOH and filtration, the collected solid was purified by column chromatography on silica
eluted with CH2Cl2. The three stereoisomers give only one spot on TLC (Rf = 0.37 in
hexane/CH2Cl2 3:1). A green compound was further purified by recycling GPC (JAIGEL
2H-2.5H; eluent: CHCl3), followed by recrystallization with CHCl3 and MeOH to obtain
CeIV(Pc2)2 in 70% yield (0.60 g). 1H-NMR (400 MHz, CDCl3): δ 8.69 (d, J = 1.2 Hz, 8H,
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cin), 8.40 (d, J = 2.0 Hz, 8H, cout), 8.05 (dd, J = 1.6, 8.4 Hz, 8H, bin), 7.53 (d, J = 7.2 Hz, 8H,
g), 7.19 (t, 8H, f), 7.12 (d, J = 8.4 Hz, 8H, ain), 6.61 (d, J = 7.6 Hz, 8H, e), 5.97 (dd, J = 1.6,
8.8 Hz, 8H, bout), 5.23 (d, J = 8.4 Hz, 8H, aout), 1.86 (s, 72H, din), 1.02 (s, 72H, dout). 13C
NMR (100MHz, CDCl3): 156.2, 154.2, 143.0, 142.1, 140.2, 139.6, 136.3, 132.6, 131.8, 129.9,
127.1, 124.1, 123.8, 122.3, 115.9, 115.1, 111.5, 111.2, 35.3, 34.4, 32.7, 31.8. UV-vis (CHCl3)
λmax (ε): 298 (159,090), 334 (110,460), 566 (23,360), 635 (sh, 29,440), 700 (113,230). HR-MS
(MALDI-TOF-MS): m/z calculated for [CeIV(Pc2)2]+ (C224H216N24Ce) 3381.6690; found
3381.6817. Elemental analysis: calcd. C224H216N24Ce (%): C(79.49), H(6.43), N(9.93); found
(%): C(79.63), H(6.40), N(9.57).

3.2.2. Homoleptic Cerium(IV) Double-Decker Complex CeIV(Pc3)2

In a 10 mL microwave vial, H2Pc3 (0.10 g, 1.6 eq., 65 mmol) and Ce(acac)3·nH2O
(17 mg, 1 eq., 0.041 mmol) were mixed in 1 mL of o-DCB. After N2 was purged into the
mixture, the solution was irradiated with microwave at 270 ◦C for 3 cycles of 1 h. The
reaction was monitored after each cycle by TLC in hexane/CH2Cl2 (4:1). After precipitation
with MeOH and filtration, the collected solid was purified by column chromatography on
silica eluted with CH2Cl2. The first eluted green band was collected and was subjected
to size-exclusion column chromatography (Biobeads SX-1, 4ø × 65 cm) with toluene.
The dark blue compound in the first fraction corresponded to CeIV(Pc3)2 in 39% yield
(51.5 mg) along with 28% (18 mg) of H2Pc3 in a second fraction (dark green). 1H-NMR: δ
8.89–5.27 (m), 4.68–4.32 (m), 2.11–1.74 (m, din), 1.28–0.95 (m, dout). A complicated 1H-NMR
spectrum was obtained due to many conformers. UV-vis (CHCl3) λmax (ε): 299 (91,380),
335 (76,310), 682 (65,190). HR-MS (MALDI-TOF-MS): m/z calculated for [CeIV(Pc3)2]+

3221.3627; found 3221.3639.

3.2.3. Heteroleptic Cerium(IV) Double-Decker Complex CeIV(Pc)(Pc3)

In a 10 mL microwave vial, H2Pc3 (150 mg, 0.8 eq., 972 µmol) and Ce(acac)3·nH2O
(53 mg, 1.0 eq., 121 µmol) and Ce(acac)3·nH2O (53 mg, 1.0 eq., 121 µmol) were mixed in
2 mL of o-DCB. After N2 was purged into the mixture, the solution was irradiated with
microwave at 270 ◦C for 3 cycles of 1 h. The reaction was monitored after each cycle by
TLC in hexane/CH2Cl2 (1:1) and MALDI-TOF-MS. After precipitation with MeOH and
filtration, the collected solid was purified by column chromatography on silica eluted
with CH2Cl2. The first eluted green band was collected and concentrated under reduced
pressure. The compound with an Rf value of 0.26 was found to be the desired compound
but a second column chromatography was necessary to purify it (SiO2, hexane/CH2Cl2
1:1). Pure CeIV(Pc)(Pc3) was obtained with a yield of 37% (47.1 mg). 1H-NMR (600 MHz,
CDCl3): δ 8.82 (d, J = 1.2 Hz, 1H, cin), 8.79 (d, J = 1.2 Hz, 1H, cin), 8.66 (d, J = 8.4 Hz, 1H,
ain), 8.61(d, J = 8.4 Hz, 1H, ain), 8.63 (s, 1H, cin), 8.48 (s, 1H, cout) 8.44 (d, J = 1.2 Hz, 1H,
cout), 8.49 (s, 1H, αPc3), 8.35 (d, J = 1.2 Hz, 1H, cout), 8.34 (d, J = 1.8 Hz, 1H, bin), 8.32 (s, 1H,
ain), 8.30 (dd, J = 9.0Hz, 1.8 Hz, 1H, bin), 8.23 (d, J = 7.2 Hz, 1H, βPc3), 8.15–8.11 (m, 2H, bin,
αPc), 7.98 (d, J = 7.2 Hz, 1H, βPc3), 7.89 (t, J = 6.6 Hz, 1H, βPc3), 7.62–7.58 (m, 2H, βPc),
7.51 (t, J = 7.2 Hz, 1H, βPc3), 7.43–7.33 (m, 2H, aout), 7.36 (b, 1H, αPc), 7.28–7.22 (m, 1H,
βPc), 7.24–7.28 (m, 1H, bout), 6.82 (d, J = 8.4 Hz, 1H, kout), 6.39 (d, J = 9.0 Hz, 1H, hin), 6.35
(d, J = 8.4 Hz, 1H, kin), 6.28 (d, J = 8.4 Hz, 1H, bout), 6.24 (d, J = 7.2 Hz, 1H, αPc), 6.19 (d,
J = 6.6 Hz, 1H, αPc3), 6.10 (t, J = 7.8 Hz, 1H, jout), 5.94 (d, J = 7.2 Hz, 1H, aout), 5.94–5.88
(m, 2H, i,jout), 5,44 (t, J = 7.8 Hz, 1H, iin), 5.71 (d, J = 8.4 Hz, 1H, bin), 4.63 (d, J = 9.0 Hz, 1H,
hout), 2.03 (s, 9H, tBuin), 2.00 (s, 9H, tBuin), 1.98 (s, 9H, tBuin), 1.21 (s, 9H, tBuout), 1.17 (s,
9H, tBuout), 1.15 (s, 9H, tBuout). 13C NMR (150 MHz, CD2Cl2): 154.2, 154.1, 153.9, 153.6,
151.4, 151.2, 151.0, 150.7, 144.3, 143.4, 143.3, 143.1, 142.9, 142.1, 141.9, 141.1, 141.0, 141.0,
140.8, 138.8, 138.3, 138.0, 134.5, 133.1, 132.8, 132.5, 131.2, 131.1, 131.0, 130.9, 130.7, 130.5,
130.2, 127.4, 126.7, 126.0, 125.7, 124.7, 124.6, 124.3, 124.2, 124.1, 124.0, 123.7, 123.3, 121.8,
121.3, 120.8, 120.2, 119.7, 119.2, 118.7, 118.1, 117.6, 117.1, 116.6, 116.1, 115.5, 115.0, 114.5,
114.0, 113.4, 112.9, 112.4, 111.9, 111.3. UV-vis (CHCl3) λmax (ε): 298 (63,780), 571 (26,850),
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668 (27,330), 740 (13,350). HR-MS (MALDI-TOF-MS): m/z calculated for [CeIV(Pc)(Pc3)]+

2192.7836; found 2192.7835.

4. Conclusions

In summary, three highly sterically hindered double-decker complexes have been
prepared with phthalocyanines functionalized at the α-position despite their high steric
hindrance. CeIV(Pc2)2 is a homoleptic complex of a tetrasubstituted Pc with carbazole and
CeIV(Pc3)2 is a homoleptic complex of a desymmetrized Pc with three carbazoles and one
phenothiazine. Since the rotative motions were blocked even at high temperatures in these
homoleptic complexes, a heteroleptic CeIV(Pc)(Pc3) complex was also prepared with one
unfunctionalized ligand.

The dynamic behaviors of the CeIV(Pc3)2 and CeIV(Pc)(Pc3) complexes were analyzed
by VT-NMR from −20 ◦C to 140 ◦C. In the case of CeIV(Pc3)2, no change in the spectrum
was observed, illustrating the too-high steric hindrance preventing any rotation from
occurring. In the case of CeIV(Pc)(Pc3), we demonstrated that rotation along the pseudo-C4
symmetry axis can be switched on by heating the solution. The observed rotation is slow
at room temperature, but as the temperature increases, some signals corresponding to
the α- and β- protons of the Pc ligands appear as well-resolved signals. Additionally, the
carbazole substituents do not fully rotate even at higher temperatures, but their faster
oscillation allows the unfunctionalized Pc fragment to rotate, which was not possible in the
case of the homoleptic complexes. We are now working on modifying such complexes to
deposit them on a metallic surface to build a train of gears and observe the intermolecular
transfer of rotating motions.
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Picture of the crystal of CeIV(Pc2)2; Figure S20: ORTEP representation, table of crystal data and
structure refinement for complex of CeIV(Pc2)2. Additional experimental section with the synthesis of
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2024). CCDC deposit numbers for double-decker complex CeIV(Pc2)2: 2324826.
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