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Abstract: This study synthesized (3-aminopropyl)triethoxysilane-functionalized porous silica (AP@MPS)
to adsorb aqueous uranium (U(VI)). To comprehensively analyze the surface properties of the
AP@MPS materials, a combination of SEM, BET, XPS, NMR, and zeta potential tests were con-
ducted. The adsorption experiments for U(VI) revealed the rapid and efficient adsorption capacity of
AP@MPS, with the solution condition of a constant solution pH = 6.5, an initial U(VI) concentration of
600 mg x L~1, a maximum U(VI) capacity of AP@MPS reaching 381.44 mg-U per gram of adsorbent,
and a removal rate = 63.6%. Among the four types of AP@MPS with different average pore sizes
tested, the one with an average pore size of 2.7 nm exhibited the highest U(VI) capacity, particularly
at a pH of 6.5. The adsorption data exhibited a strong fit with the Langmuir model, and the calcu-
lated adsorption energy aligned closely with the findings from the Potential of Mean Force (PMF)
analysis. The outcomes obtained using the Surface Complex Formation Model (SCFM) highlight
the dominance of the coulombic force AG? ) as the principal component of the adsorption energy
(AGP,45). This work garnered insights into the adsorption mechanism by meticulously examining
the AG?, 4, across a pH ranging from 4 to 8. In essence, this study’s findings furnish crucial insights
for the future design of analogous adsorbents, thereby advancing the realm of uranium(VI) removal
methodologies.

Keywords: uranium(VI); APTES-functionalized porous silica; surface complex formation; adsorption
energy

1. Introduction

Nanostructured materials have emerged as advanced adsorbents for aqueous uranium
recovery, gaining substantial attention post-2000s due to the improved methodologies in-
volved. Their full development, especially for challenging contexts like nuclear power plant
wastewater and seawater, still needs to be completed. Among these materials, mesoporous
silica (MPS) is exceptional for uranium recovery adsorbents. MPS boasts surface silanol
groups for easy modification with organic molecules like TEOS (tetraethyl orthosilicate)
and TMOS (tetramethyl orthosilicate). It also offers adjustable pore sizes, high surface
areas, and low environmental toxicity, making it ideal for advanced adsorbent design.

Noteworthy studies include Yang’s exploration of ion-imprinted mesoporous silica,
showing notable uranium selectivity in acidic environments [1]. Khan et al. successfully
immobilized U(VI) and Pb(Il) with silica decorated with magnetite nanorods [2], while
Gunathilake et al. examined amidoxime-modified mesoporous silica, showcasing excellent
uranium recovery in seawater [3].

In the 2000s, renewed interest in nuclear energy post-2010 led the U.S. Department
of Energy to focus on a new generation of uranium sorbents [4-6]. Amino-terminated
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adsorbents drew attention for their intriguing uranium adsorption effects [7], leading to
growing interest in amino-functionalized porous silica materials [4,5].

Prior studies on these materials have mainly focused on aspects like their maximum
capacity [8], selectivity [9], and removal efficiency [10,11]. Some have proposed interaction
mechanisms between uranium and adsorbents theoretically. Examples include Vukovic et al.
using density functional theory (DFT) at the B3LYP level to assess uranium—-amidoxime
bonding [12] and Li et al. introducing the Potential of Mean Force (PMF) model to simulate
changes in adsorption energy at the adsorbent/solution interface [13].

However, certain studies have detected uranium on adsorbent surfaces without fully
explaining the adsorption process. For instance, Abney et al. employed X-ray photoelectron
spectroscopy to reveal uranium-adsorbent chelation motifs, conflicting with the related
density functional theory work [14], and Comarmond et al. provided ATR FT-IR spectral
data indicating the U(VI) adsorption onto TiO, [15].

Many questions remain unanswered: How can positively charged U(VI) adsorb onto
an electropositive surface? What components constitute adsorption energy? Addressing
these gaps requires further exploration, including understanding an adsorbent’s electrical
properties and uranium speciation. Determining the adsorption energy across various
pH values allows for the assessment of energy [16,17], which can be further analyzed
into components such as chemical energy (AGY 1em), coulombic force (AGP.,), solvation
energy (AGYsolv), and lateral interaction energy (AG),,). This study’s results may serve as
a valuable reference for future investigations.

Table 1 details relevant acronyms and the substances they represent.

Table 1. Acronyms and the substances they represent.

TEOS Tetraethylorthosilicate

APTES (8-aminopropyl)trimethoxysilane

AP@MPS (3-aminopropyl)trimethoxysilane-functionalized porous silica
AP@MPS-2.7d AP@MPS with average pore size of 2.7 nm and BET area of 380 m?-g ~!
AP@MPS-3.9d AP@MPS with average pore size of 3.9 nm and BET area of 340 m?.g ~!
AP@MPS-6.3d AP@MPS with average pore size of 6.3 nm and BET area of 170 m?.g ~!
AP@MPS-9.2d AP@MPS with average pore size of 9.2 nm and BET area of 240 m?.g ~!
SCFM Surface Complex Formation Model

PMF Potential of Mean Force

WHAM Weighted Histogram Analysis Method

2. Results and Discussion
2.1. Surface Characteristics of Absorbents
2.1.1. Physical Surface Characterization

The outcomes of the XPS analysis are presented in Figure 1. The XPS graph of the
AP@MPS reveals an N1s peak at around 399.5 eV, confirming the successful grafting of
APTES groups onto the MPS surface. After the uranium adsorption, AP@MPS shows
two peaks at 381.9 eV and 392.2 eV in the XPS survey spectrum (Figure 1d). The two peaks
are due to U 4f5/, and U 4f;/,, respectively, and the spin-orbit split close to 10.3 eV
(Figure 1d). After uranium adsorption, the N1s survey spectrum shifted by about 1 eV
(Figure 1c) to the left, indicating the binding energy of the nitrogen in the -NH, group
increased by 1 eV, which means the electron density of the nitrogen atom decreased. The
CP/MAS 3C NMR analysis can be found in Figure 2. Combining the XPS and NMR
results substantiates the successful grafting of APTES onto the MPS surface. Table 2
provides the BET data for the samples, while Figure 3 illustrates the BET curve of AP@MPS-
6.3d. Notably, other adsorbents with varying average pore sizes exhibit similar BET
data. This implies that AP@MPS possesses a consistent and narrow pore distribution.
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Furthermore, the BET data highlight the adsorbents’ substantial surface area. Figure 4
displays SEM images of AP@MPS, revealing its circular-like appearance. The particle size
of AP@MPS ranges from 1 to 10 pm. The images show that this kind of adsorbent’s surface
is covered in creases and that the pores correspond to the creases between the aggregated
silicon nanoparticles. However, these pores are not discernible in Transmission Electron
Microscopy (TEM) images.
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Figure 1. XPS test results for AP@MPS-9.2d; full survey spectra before adsorption (a), N1s spectra
before (b) and after (c) adsorption, U 4f spectra (d).
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Figure 2. CP/MAS '3C nuclear magnetic resonance (NMR) spectra of AP@MPS, a total of four 1>C
signals detected.
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Table 2. Results of BET analysis of adsorbents.

Adsorbent BET Surface Area (m?.g —1) BJH Average Pore Diameter (nm)
AP@MPS-9.3d 170 9.2
AP@MPS-6.3d 240 6.3
AP@MPS-3.9d 340 3.9
AP@MPS-2.7d 380 2.7
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Figure 3. The BET test result of AP@MPS-6.3d; circle and + symbols represent desorb and adsorb
process, respectively.

Figure 4. The SEM images of AP@MPS displaying (al,a2) a low-magnification view (on top) and
(b1,b2). a high-magnification view (on bottom).
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2.1.2. Surface Electrical Properties

The zeta potential curves presented in Figure 5 offer a comprehensive view of the
surface electrical characteristics of the adsorbents across various ionic strengths. The
determination of surface acidity is exhaustively explained in Ref. [18]. For surface acidity
diagrams of AP@MPS-6.3d, refer to the illustrative depictions in Figures 6 and 7. From the
results of the BET analysis (Table 2) and from the zeta potential properties (Figure 5), we
observe each couple of samples with similar pore sizes also have similar surface electrical
properties.
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Figure 5. Zeta potential of samples: (a) MPS-2.6d; (b) AP@MPS-6.3d; the weight of adsorbent is
2 g~L*1 ; ionic strengths are 1071 M, 3 x 1072 M, and 10~2 M with KClOy as electrolyte; contact time
is24 h.
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Figure 6. Linearized plots of surface acidity of AP@MPS-6.3d, (a) amino groups; (b) silica Groups.
Experimental conditions: [W] = 2 g x L™1; ionic strengths = 107! M, 3 x 1072 M, and 10~2 M in
KCIOy; contact time = 24 h.
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Figure 7. The specification of surface functional groups is on AP@MPS-9.2. The surface acidity of
MPS is brought by two functional groups, namely SiOH/SiO™ and R-NH,,_1/RNH,, which are
Bronsted acids and bases.

2.2. Studied Adsorption Parameters: Equilibrium Time and Total Pore Volume
2.2.1. Equilibrium Time

The attainment of equilibrium during adsorption is evident within a few minutes, as
depicted in Figure 8. Therefore, this study selected a contact time of 30 min for subsequent
experiments. While adsorption is theoretically a rapid reaction, achieving equilibrium
swiftly, it is noteworthy that Qiu et al. and Gupta et al. have highlighted the limita-
tions of adsorption kinetics in accurately reflecting the actual adsorption process and
providing meaningful insights into the adsorption mechanism [19,20]. Furthermore, the
pseudo-first-order model’s reliability poses challenges, with notable disparities between
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the experimental and computed equilibrium adsorption capacity values. Hence, this study
emphasizes the equilibrium aspects of U(VI) adsorption rather than its kinetics.
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Figure 8. Equilibrium time experiment, the solution pH is 6.0, the initial U(VI) concentration is
3.6 mg-L~!, and the weight of the adsorbent is 0.5 g-L 1.

2.2.2. Total Pore Volume vs. U(VI) Capacity

As indicated in Figure 9, the total pore volume of AP@MPS appears to have no
impact on its U(VI) adsorption capacity. According to Equation (10), AP@MPS adsorbed a
maximum of 0.31 g-g~! of U(VI), which would only occupy 0.054 cm®-g~! of the total pore
volume. Given this result, it can be concluded that the total pore volume of AP@MPS is a
parameter of negligible significance.
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Figure 9. The results of the pore volume experiment under the following conditions: the solution pH
is 6.5, the initial U(VI) concentration is 400 mg~L_1, the weight of the adsorbent is 1 g-L_l, and the
adsorption time is 30 min. The blue and red symbols represent two adsorbents with the same surface
parameters except for their pore volume.
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2.3. Adsorption Modeling, Average Pore Size, and Functional Groups

The adsorption isotherm of AP@MPS is presented in Figure 10, revealing better
conformity to the Langmuir isotherm (R? > 0.974) than the Freundlich isotherm (R? >
0.864). Despite the assumption of a heterogeneous distribution of surface energy with the
Freundlich adsorption isotherm, the R? value is approximately 0.90, slightly lower than that
of the Langmuir adsorption isotherm. While the Langmuir model assumes a monolayer
coverage of adsorbates on the surface sites of a homogeneous nature, this study identifies
the presence of two distinct types of functional groups on the AP@MPS, showcasing
different surface distributions and adsorption energies that impact the goodness of fit to
the Langmuir model. Consequently, the R? value derived from the Langmuir adsorption
isotherm falls slightly below the ideal value [21-23].
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Figure 10. The Langmuir isotherm (number 1, or the two images on top) and the Freundlich isotherm
(number 2, or the two images on bottom) of U(VI) onto AP@MPS under different experimental
conditions: (al,a2) pH = 4.5, (b1,b2) pH = 6.5. The initial U(VI) concentration ranges from 5 mg-L*1
to 500 mg-Lfl, the weight of the adsorbent is 1 g-Lfl, and the adsorption time is 30 min.

Table 3 indicates that AP@MPS exhibits a higher U(VI) adsorption capacity at a
pH = 6.5 compared to a pH = 4.5. Among the four adsorbents, AP@MPS-2.7d demonstrates
the highest U(VI) adsorption capacity, followed by AP@MPS-3.9d, AP@MPS-9.2d, and
AP@MPS-6.3d.
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Table 3. The relationship between the functional group density of adsorbents and the amount of
[U(VI)] adsorbed at pH = 6.5.

: — +
Adsorbent Surface Aream?.g~1 Pore ]I)li;meter m{l\)/([-lif mli/)l(-L}*l
AP@MPS X*:uads oo
AP@MPS-9.2d 240 9.2 0.81 1.25 1:0.368
AP@MPS-6.3d 170 6.3 1.01 1.13 1:0.370
AP@MPS-3.9d 340 3.9 0.98 1.26 1:0.436
AP@MPS-2.7d 380 2.7 1.04 1.23 1:0.546

Table 3 provides detailed information on the relationship between the activating site
density and the corresponding amount of adsorbed U(VI) ({X*}: Uads ), while Figure 11
visually illustrates this connection. Noteworthy is the significant impact of the pore size
of AP@MPS on its maximum adsorption capacity. In line with the findings of Kerisit
et al. (2013) and Antonchenko (2008), the hydrated U(VI) ion has a radius ranging from
1 to 1.2 nm [24,25]. Based on this information, it can be inferred that, especially with an
AP@MPS pore size of 2.7d, U(VI) ions may have more difficulty escaping from the pores.

1801 S I
S T
I'4 - -
160 - i ~m |}
f, Ao
T 1401 iy ~a s
>< 5 ~
o0 !I . Cra, . o -0
£ 1201 o o o -
2 § ' "o -0
S 1001 é;";o‘ —o— AP@VPS-9. 2d I
g o APGWPS 6. 3d
80 . S%5 —#= APGVPS-3. 9d -
g — e = AP@VIPS-2. 7d
601 ° -
3 4 5 6 7 8
pH

Figure 11. Maximum U(VI) adsorbance capacity experiment; conditions: each point of adsorption
performs at a constant pH, the initial U(VI) concentration is 500 mg-L~!, the weight of the adsorbent
is 1 g-L~!, and the adsorption time is 30 min. Adsorption performed at constant pH.

2.4. PMF and SCFM

The calculations for the PMF and SCFM are illustrated in Figures 12 and 13.

The calculation results indicate that in an aqueous environment, the U(VI) ions and
hydroxyls form complex aqueous U(VI) compounds, with the size of these compounds
increasing at higher solution pH levels (Table 4, Figure 14). Figure 14 illustrates U(VI)
speciation diagrams under different ionic strengths. Within the experimental solution at
pH levels spanning from 4 to 8, two primary types of hydrated U(VI) ions are discernible.
Consequently, leveraging the functional group density acquired on the adsorbent surface,
the formulation of the surface adsorption reaction can be deduced:
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Figure 12. The potential of [U(VI)] ions moving out of AP@MPSs. Panels (a-d) correspond to
AP@MPS-2.7d, AP@MPS-3.9d, AP@MPS-6.3d, and AP@MPS-9.3d, respectively. The black line
demarcates the interface between the adsorbent and the solution. The solution pH is 6.5, the initial
U(VI) concentration is 500 mg-L_l, the weight of the adsorbent is 1 g'L_l, and the adsorption time is

30 min.
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Figure 13. The SCFM results for AP@MPS. Panels (a-d) represent AP@MPS-2.7d, AP@MPS-3.9d,
AP@MPS-6.3d, and AP@MPS-9.3d, respectively. The initiation U(VI) concentration is 500 mg~L*1,

the weight of the adsorbent is 1 g~L_1, and the adsorption time is 30 min.
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Table 4. The adsorption energy of AP@MPS-9.2d in kcal-mol 1.

Equation AGY, 4 AG em AGY, AG® o1 AG
APTES+(UO,)3(OH)5* ~16.32 £ 0.1 —2.3540.1 0 —14.21 £ 0.1 024 +0.1
APTES+(UO,)4(OH);* —15.58 + 0.1 —1.61+0.1 0 —14.21 £ 0.1 024 +0.1
APTES+(UO,),(OH),2* —12.10 + 0.1 16.09 + 0.1 0 —28.43 +0.1 0.24 +0.1

SiO~ + UO,%* —4553 + 0.2 —17.34 £ 0.2 0 —28.43 + 0.2 024 +£0.2
SiO~ + (UO,),(OH),2* —44.96 £ 0.2 —16.77 £0.2 0 —28.43 + 0.2 024 +0.2
100 . . . .
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Figure 14. Speciation diagram of aqueous uranyl; initial U(VI) concentration is 500 mg-L~!, ionic
strength is 6.3 mM.
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Table 5 presents the intrinsic stability constants of the UO,%** complex, and the ad-
sorption energy is analyzed by dissecting it into specific components: the chemical energy
(AG t1em), coulombic force (AG? ), solvation energy (AG;,), and lateral interaction
(AGP},y). The formula utilized for this analysis is as follows:

AGads AG 1+ AGchem + AGsolv + AG?a’t (5)

cou
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Table 5. The intrinsic stability constants of the UO,?* complex.
Amino Groups Silica Groups
Adsorbent S S S . S
PK®wo2s0m)5+ PK® wo2ua0m7+ PK wozz0m22+  PK wo220m)22+ PK°vo22+
AP@MPS-9.2d —2.86 —2.73 —2.12 —7.98 —7.88
AP@MPS-6.3d —2.76 —2.69 —225 —8.01 —7.88
AP@MPS-3.9d —2.89 —2.82 —2.12 —8.02 —-791
AP@MPS-2.7d —2091 —2.86 —225 —8.02 —7.95

For example, James and Healy studied SiO, adsorbing Fe?*, Cr3*, Co?*, and Ca?* [21];
Park and Huang investigated hydrous CdS(s) adsorbing Ni%**, Co?*, and Zn?* [22]; and
Weng et al. explored Cr®* adsorption onto hydrous concrete particles [23]. Additionally,
the calculated AG?,4, values align well with the results from the PMF test (Figure 12). It
is important to note that the PMF outcomes were used solely for comparison with the
calculated results of this study and were not further analyzed. Table 4 displays the AGY 4,
AGO gems AG? o1, AGY 1, and AGY, values of AP@MPS-9.2d, while the SCEM results are
depicted in Figure 13.

2.5. The Mechanism of AP@MPS Adsorbing U(VI)

From the presented results, it can be inferred that the pH of the solution significantly
influences the U(VI) absorption capacity of AP@MPS. When the pH of the U(VI) solution
is below 4, the dominant species is UO,%*, which can bind to the SiO~ groups on the
surface of the AP@MPS. As the pH increases, OH™ ions start to compete for binding sites
on the surface, leading to the elution of U(VI) from the AP@MPS and the formation of
hydrated U(VI) species (Table 4 and Figure 14). The hydrated U(VI) forms atomic clusters,
with positively charged UO,2* surrounded by negatively charged OH~ ions [24-26]. This
hydrated U(VI) species can then interact with the NH** groups on the AP@MPS surface,
primarily according to coulombic interactions (AGY ) (Table 4). As the pH rises beyond
8, the NH** groups on the AP@MPS surface transform into NH3, losing their ability to
interact with the hydrated U(VI). Throughout our U(VI) adsorption experiments using
AP@MPS, the predominant component of the adsorption energy (AG?,4,) in solutions with
pHs of 3 to 8 was the coulombic energy (AG’ ). Consequently, AP@MPS exhibits a weak
selectivity toward hydrated U(VI).

3. Materials and Methods
3.1. Chemicals

The tetraethylorthosilicate (TEOS) (98%), (3-aminopropyl)triethoxysilane (APTES)
(99%), toluene (99%), and anhydrous ethanol (99.7%) were sourced from Acros, Morris
Plains, NJ, USA. The urea (99%), hydrochloric acid (36.5-38.0%), nitric acid (68-70%),
aqueous ammonia (25-28%), potassium hydroxide (>99%), sodium hydroxide (>99%),
and potassium perchlorate (>99%) were acquired from Fisher Scientific Co., Fair Lawn, NJ,
USA. The formaldehyde solution (~37.0%) was obtained from J.T.Baker, Radnor, PA, USA.
The uranyl nitrate hexahydrate (UO2(NOg3);2-6H,0) (=>99%) was ordered through EHS, the
University of Delaware, with the SPI from West Chester, PA, USA, as the distributor.

3.2. Synthesis of MPS and AP@MPS
3.2.1. MPS Synthesis

The mesoporous silica synthesis method utilized in this study was adapted from the
work of Hao et al. [17]. Under ambient conditions and vigorous stirring, combine 22.5 mL
of anhydrous ethanol with 20 mL of TEOS, followed by 75 mL of deionized water. Adjust
the pH to 2 using diluted hydrochloric acid (1 M) and diluted ammonium hydroxide (1 M).
Stir the mixture for 4 h. Subsequently, re-adjust the pH of the mixture to 2, dissolve 2.1 g
of urea, and add 2.63 mL of formaldehyde under vigorous stirring. Place the mixture in
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a 50 °C water bath and let it sit for two days. Afterward, filter the intermediate solution
using filter paper, collecting the residue, which is porous silica with its template. To remove
the template, subject this composite to heat treatment in an oven: 70 °C for 24 h, 200 °C for
2h, 280 °C for 2 h, and 580 °C for 4 h. The resultant product is porous silica.

3.2.2. AP@MPS Synthesis

Under a nitrogen shield, 1 g of porous silica was placed into a reactor. Subsequently,
100 mL of toluene (99%) and 1 mL of APTES were sequentially added to the reactor.
The solution in the beaker was then agitated and heated at 70 °C for 12 h. The solution
was filtered after the reaction, and the resulting residue was collected. The residue was
subsequently washed with anhydrous ethanol and then dried at 100 °C for 12 h. This
process led to the formation of (3-aminopropyl)triethoxysilane-functionalized porous silica
(AP@MPS), which was exhibited as a yellow powder. Figure 15 is at representation of the
grafting reaction.
-
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Figure 15. A schematic diagram of the entire synthesis-grafting process of AP@MPS.

3.3. Surface Properties
3.3.1. Images and Element Compositions of Samples

Images of the adsorbents at varying scales were captured using two scanning electron
microscopes (SEM). The first one, a JEM-2010F from JEOL Ltd., Tokyo, Japan, was employed
to analyze the particle shape of the samples. The second microscope, a ZEISS Auriga 60
CrossBeam from Carl Zeiss Microscopy, White Plains, NY, USA, was utilized to explore
the finer details on the adsorbents’ surface. For in-depth analysis, X-ray photoelectron
spectroscopy (XPS) was conducted using an ESCALAB 250Xi from Thermo Scientific,
Waltham, MA, USA. Operating at 150 W using an Al Kx X-ray source, this technique
was employed to investigate the elemental composition on the surface of the samples.
Furthermore, an Avance III 400 MHz CP/MAS 3C nuclear magnetic resonance (NMR)
instrument was employed to analyze the adsorbents” molecular structure.

3.3.2. Brunauer—Emmett—Teller (BET) and Barrett—Joyner—Halenda (BJH) Analysis

The porous properties of the adsorbents” surface were evaluated using a BET analyzer,
specifically the model ASAP 2020 from Micromeritics, Norcross, GA, USA. The experimen-
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tal conditions involved N, adsorption/desorption at 77 K. By employing the BET method,
both the surface area and pore parameters of the adsorbent were quantified. The pore
diameter of the adsorbents was determined using the BJH method. The total pore volume
of the adsorbents was computed at a P/Py value of 0.98 via the N, adsorption isotherm.
For each zeta potential test, an adsorbent sample with a weight of approximately 0.15 g
was utilized. Before the test, this sample was subjected to freeze-drying for a duration of
24 h.

3.3.3. The electrical Properties of Samples

To investigate the surface electrical properties of the adsorbents, a Zetasizer Nano ZS
model from Malvern, Westborough, MA, USA, was employed as a particle size analyzer.
The sample preparation for the zeta potential test involved two crucial steps: First, the
adsorbent was ground and subsequently sieved using a 1200 mesh sieve. Next, the sieved
material was placed in a KClOy electrolyte solution for the zeta potential test. The ionic
strength of the KClOj electrolyte solution was individually adjusted to three concentrations
ranging from 10~ M to 1072 M.

The point of zero charge (pHpzc) can be calculated using the following equation:

(pKL + K
pHp,c = aza) (6)

The molecular structure of the functional groups on the adsorbent’s surface (Figure 15)
provides insight into the anticipated reactions when there is a shift in the solution’s pH.
As the pH of the solution undergoes variations, the following reactions are expected to
take place:

St ={R—NH; } + {R—NHz} + {Si— OH} + {Si— O~ } (7)
{R—NH] } = {R—NHz} + {H" }; K} (8)
{Si—OH} = {Si— O} + {H" };KY¥ 9)

Consequently, utilizing the data gathered from the BET test and the zeta potential test,
it becomes possible to compute the total NH** site density and the total SiO~ site density
of a given sample. The Supplementary Information contains detailed calculations for the
surface acidity, with the corresponding results in Table 6.

Table 6. The surface electrical properties of adsorbents.

Sample Cm  Em ML @iy PKMN pKMG pHrc

0.315 0.259 1.24 1.02

AP@MPS-2.7d 3 x 102 0.297 0.269 1.17 1.06 6.69 4.95 5.82
0.317 0.264 1.25 1.04
0.352 0.278 1.24 0.98

AP@MPS-3.9d 3 % 1072 0.355 0.278 1.25 0.98 6.70 4.96 5.83
0.358 0.275 1.26 0.97
0.631 0.580 1.11 1.02

AP@MPS-6.3d 3 x 102 0.652 0.571 1.15 1.01 6.63 4.97 5.80
0.633 0.591 1.12 1.04
0.511 0.326 1.27 0.81

AP@MPS-9.2d 3 %1072 0.503 0.322 1.25 0.80 6.66 4.94 5.80

0.490 0.323 1.22 0.83
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3.4. Experimental Conditions
3.4.1. U(VI) Solution Preparation

To prepare the U(VI) solution, a mixture of 10.55 g of uranyl nitrate hexahydrate and
100 mL of nitric acid at 0.2 mol-L~! was introduced into a 1 L volumetric flask. After adding
deionized water, the flask was sealed and allowed to sit for a week. After this incubation,
the volumetric flask was unsealed and topped with deionized water to reach the mark. The
above steps resulted in the initial solution with a total uranium concentration of 5 g-L 1.
The rest of the experiments in this study involved the preparation of the experimental
solutions by diluting this initial solution. For instance, to create a solution with a total
uranium concentration of 50 mg-L~!, 100 mL of the initial solution was transferred into a
1 L volumetric flask and then diluted with deionized water to the mark.

3.4.2. Analysis of [U(VI)]

The quantification of [U(VI)] in this study employed ICP-MS (Inductively Coupled
Plasma with a Mass Selective Detector, model 7500c), manufactured by Agilent Technolo-
gies, Santa Clara, CA, USA. This work consistently adjusted the solution’s pH to a specific
value throughout the adsorption experiments. The pH adjustments were made using
diluted HNO;3 (1 M) or NaOH (1 M), administered with precision using micro syringes.
A water bath was also employed to ensure that the experimental temperature remained
consistent at 25 °C.

The subsequent equations (Equations (10) and (11)) were utilized to calculate the
adsorption capacity and the percentage of [U(VI)] removal for a given adsorbent:

Co — Cea) Va
go = 0= CalV (10)

(CO - Cea)
0

Removal percent(%) = x 100% (11)

In the given equation, g, is expressed in mg-g~!; m (g) represents the weight of
AP@MPS; and V,, denotes the solution volume (L). The initial uranyl concentration is C,
and the uranyl concentration at equilibrium is Ce,, expressed in mg-L 1.

3.4.3. Duration of Reaching Equilibrium

The duration required to reach equilibrium holds significant importance as it enables
an assessment of whether mass transfer is the rate-limiting step. Mass transfer is likely
not the limiting factor if the equilibrium duration is relatively short. The experimental
conditions in this section were as follows: a constant solution pH of 6.0, the total uranium
concentration set to 3.6 mg-L~!, and the weight of the adsorbent set to 0.5 g-L 1. In a typical
experimental setup, the adsorbent was introduced into an agitated reactor containing the
U(V]) solution. The solution was filtered once the designated contact time was reached,
and the residual [U(VI)] within the filtrate was measured.

3.4.4. The Total Pore Volume of the Adsorbents vs. the Volume of U(VI) Adsorbed

There are four surface properties that could potentially influence the maximum U(VI)
capacity of the adsorbent. These properties are the functional group density, average
pore size, specific surface area, and total pore volume. Notably, based on a parallel study
conducted by the authors, the total pore volume was found to have no impact on the
adsorbent capacity [18]. Furthermore, the adsorbents tested in this study demonstrated
consistent adsorption behavior.

3.4.5. The Average Pore Size of the Adsorbents vs. the Mass of U(VI) Adsorbed

Drawing from a parallel study, it has been established that the maximum U(VI)
capacity is notably influenced by the average pore size of the adsorbent [18]. In this section,
the objective is to evaluate the degree of influence exerted by the average pore size of
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AP@MPS on its maximum U(VI) capacity. Four different AP@MPS samples were prepared
to achieve this, each possessing distinct average pore sizes (as detailed in Table 3). The
adsorption experiments involving these prepared samples were conducted under consistent
conditions: a pH range maintained between 4.0 and 7.0, the initial uranium concentration
being 500 mg-L !, the weight of the adsorbent being 1 g-L ™!, and the contact time being
30 min.

3.4.6. Surface Electrical Properties

Several physics methods, including XEDS, XPS, and NMR, can offer information about
the surface element density of an adsorbent. However, while active group atoms may exist
on the adsorbent’s surface, it is not assured that all of these atoms will contribute to the
surface electrical properties of the adsorbent in a solution. Also, there were challenges
in distinguishing activated silanol from other signals and determining whether nitrogen
signals indicated activated amino groups; external factors like air exposure may influence
these analyses. Furthermore, potential reactions between positively charged amino groups
and negatively charged silanol groups could interact, further complicating the situation.
Therefore, obtaining group density data for AP@MPS using zeta potential testing in an
aqueous solution would provide more substantial evidence. This underscores the signifi-
cance of the zeta potential properties of adsorbents. Figure 5 illustrates the zeta potential
properties of the adsorbents. The experiment employed KClOy as the electrolyte in the
solution, with the solution’s ionic strength ranging from 10~! M to 10~2 M. Each data point
in Figure 5 represents the average result of 30 zeta potential tests at a specific pH value.

3.5. Adsorption Experiments

To ensure accurate adsorption data, the pH of the solution needs to be stable. Thus,
two micro syringes were prepared, filled with 1 M nitric acid and 1 M sodium hydroxide,
respectively. These syringes were used to adjust and stabilize the solution’s pH. The ionic
strength of the solution was below 6.3 mM.

Langmuir and Freundlich Thermodynamic Isotherms

Both the Langmuir and Freundlich thermodynamic isotherms are robust tools for
analyzing adsorption behavior. The Langmuir isotherm operates assuming that homo-
geneous particles are adsorbed onto a uniform surface. This model posits a monolayer
adsorption assumption, with no interactions between the adsorption sites. The Freundlich
isotherm, on the other hand, is an empirical model that suggests a relationship between the
concentration of the adsorbate in the solution and the maximum adsorption capacity of
the adsorbent.

The mathematical expression of these two isotherms is as follows:

K

Langmuir isotherm : g, = % (12)
1

Freundlich isotherm : g, = K;C/' (13)

where §;u4¢ represents the maximum capacity of the U(VI) adsorption in g/g, C, signifies
the equilibrium concentration of U(VI) in g/L. K and Ky stand for the Langmuir constant
and Freundlich constant, respectively.

Previous studies have indicated that the maximum capacity of AP@MPS is achieved
with a solution pH ranging from 4 to 8. Thus, two pH points, 4.5 and 6.5, were selected
for the adsorption experiments. The initial uranium concentration range spanned from
5 mg/L to 500 mg/L, with an adsorbent weight of 1 g/L and a contact time of 30 min.

3.6. The Speciation Diagram of [U(VI)]

This study adopted the MINTEQ software v3.1 and the Eidgenossische Technische
Hochschule (ETH) database to simulate the speciation of [U(VI)] under a specific ionic
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strength. Essential details such as the solute concentrations (U(VI) and NO?~) and ionic
strength can be entered into the primary interface of the software (“Temperature” set as
25 °C, “Concentration unit” set as Molal). Moving to the multi-problem/Sweep page, we
selected the “Sweep: one parameter is varied” option. pH was chosen as the variable
parameter, starting from a value of 2. We configured the “state the number of problems”
option to 80, incorporating an increment of 0.1 between values. Following these settings,
we executed the process by clicking the “save and back” button and selecting “run” on
the software’s main interface. This sequence initiates the generation of the percentage
distribution of components at each pH step. These results could be copied and transferred
into software such as Excel to construct an aqueous U(VI) speciation diagram.

3.7. The PMF Analysis

Muegge and Martin pioneered applying the Potential of Mean Force (PMF) model to
predicting the binding affinity in protein-ligand complexes based on their 3D structure [27,28].
Extending this paradigm, Kovalenko and Hirata expanded the model to compute the
orientationally dependent Potential of Mean Force (PMF) between polyatomic solutes
immersed in a polar molecular solvent [29]. Further refinement by Muegge introduced
general metal ion atom types (ME), facilitating interactions with ions like Zn, Ca, K, Mg, Mn,
and Fe. This enhancement allowed the estimation of binding affinities involving nitrogen
atoms and ME [30]. Trzesniak et al. proposed a PMF-based method for computing the
Gibbs free energies in different states in 2007 [31]. Nalaparaju and Jiang employed the PMF
to simulate the exchange of Pb?* ions with Na* ions in rho-zeolite-like MOF, uncovering
the more potent bond energy of Pb?* ions to the MOF [32]. Investigating the bond energy
between amino-derived MOF and uranium, Li et al. reported the uranium adsorption
energy (AGY,4) on the MOF without elaborating on the AGY 46 composition [13].

Independent umbrella sampling was conducted for each adsorbent, consisting of
30 snapshots, each lasting 1 nano-second. The sampling window dimensions were set at
0.5nm x 0.5 nm, with a harmonic biasing force constant of 10 kJ/mol-A2. Subsequently,
the estimation of the Potential of Mean Force (PMF) for the adsorbents was carried out
using the Weighted Histogram Analysis Method (WHAM) [33,34].

4. Comparison and Discussion
4.1. The Beta Study

In 2016, the author initiated a beta study [11,26] to assess the efficacy of amino-
functionalized MPS in removing aqueous U(VI). The three adsorbents synthesized during
the beta study demonstrated the effective removal of aqueous U(VI). The results indicated
that, for these adsorbents, a higher pHpzc was associated with a larger U(VI) capacity.
In an actual wastewater U(VI) removal experiment, AFPSs showed noticeable selectivity
toward U(VI), although the specific removal mechanism remained unclear.

Additionally, the beta study investigated the U(VI) desorption from loaded adsorbents
and subsequent adsorbent regeneration. The findings suggested that 0.1 mol x L~! HNO;
could rapidly elute the adsorbed U(VI). After 5 and 15 adsorption-desorption cycles, the
adsorbents retained 60-70% and 50-60% of their maximum capacity, respectively.

4.2. The Parallel Study

The authors have conducted a series of studies in recent years to analyze the mecha-
nism of adsorption of U(VI) in AFPS further. For instance, in a parallel study, they assessed
the distribution of the adsorption energy (AG?,4,) in AEPTES-functionalized porous silica
with multiple average pore sizes [18]. According to this investigation, the adsorption curve
aligns well with the predictions of the SCFM. The U(VI) adsorption energy of AE@MPS-
9.3d, as calculated using the SCFM, reveals that at a pH < 4, AG 4, is primarily influenced
by the chemical energy (AG 4,e) between the SiO~ and UO,?*. In the pH range of 4 to
8, with an increase in the OH™ concentration, the SiO™ attaching to UO?_2+ is replaced by
OH™, resulting in AG, 4, being the combined effect of the AGO e and AG?,,,; between
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the AFPS and UO,2*. For AE@MPS, AG® jer, is slightly weaker than AG?;. Elevating
the pH enhances the contribution of AGP om to the total adsorption energy.

4.3. Discussion
4.3.1. Insights from the Beta Study

The beta study’s outcomes have shown that AFPS adsorbents effectively eliminate
U(V]) from water within a pH range of 3 to 9. Analysis of the thermodynamic isotherms
indicates that adsorption is the primary process for U(VI) removal, and the ease with which
it can be desorbed using acid treatment further confirms this. The rapid achievement of an
adsorption equilibrium suggests that mass transfer is not a rate-limiting step. The regenera-
tion process highlights the durability of AFPS, and its solubility in alkaline conditions offers
a practical method for disposal by incorporating used AFPS into concrete for applications
in anaerobic environments, such as underground mining.

Although the beta study successfully positioned AFPS as a potential U(VI) adsorbent,
it used adsorbents with a consistent pore size of about 8 nm, leaving room for investigating
how different pore sizes might affect the adsorption efficiency. Thus, it is essential to create
MPSs with adjustable pore sizes to assess the effect of synthesis parameters on the surface
characteristics.

Furthermore, the beta study’s use of XPS and XEDS to analyze the functional group
density on the AFPS surfaces has limitations, as these techniques can only detect the silica
signal and cannot accurately measure the silanol group density on the AFPS. While physical
methods can be used to measure the density of amino groups, the activation state of these
groups during adsorption remains uncertain. The thermodynamic isotherms and pseudo-
first-order kinetic models applied in the beta study provide only partial insights into the
adsorption process, and a more comprehensive understanding still needs to be provided.

To further unveil the underlying mechanisms of adsorption, the parallel and present
studies have synthesized AFPS with varying average pore sizes to adsorb U(VI) from water.
The surface group densities of these adsorbents were determined using zeta potential
measurements, and the SCFM was used to evaluate the distribution of the adsorption-
free energy.

4.3.2. Insights from the Parallel Study

The parallel research [18] has elucidated the adsorption process of U(VI) using AE@MPS,
implying that a similar mechanism may apply to AP@MPS in the current study. Given
the critical influence of the pore size on AE@MPS’s maximum U(VI) adsorption capacity,
it is expected that the ideal pore size for AP@MPS would be distinct. This work also
seeks to contrast its findings with the parallel study to elucidate any disparities in the
adsorption energy distribution, which could arise from the differences in the functional
group geometry and dimensions between AE@MPS and AP@MPS.

4.3.3. Findings from the Current Study

Table 7 showcases recent discoveries pertinent to this research, which provides novel
perspectives while employing methodologies and materials similar to a prior study by the
same authors [18]. The surface amino group ratio enhancement resulted in a higher pHpzc.
Additionally, AP@MPS, characterized by an average pore size of 2.7 nm, demonstrated
a superior X*+:Uads \, (as detailed in Table 3). The AG?,4, values derived from the
experimental data were found to be in concordance with those from PMF simulations.
The SCFM analysis across a pH range of 4 to 8 underscored the critical role of pH in the
adsorption of U(VI) by AP@MPS. Minimal U(VI) adsorption by AP@MPS was noted at
pH levels below 2, with U(VI) primarily interacting with SiO™ between pHs of 2 and 4
and with NH** at pHs from 4 to 8. Figure 14 illustrates that U(VI) species carry a positive
charge within the pH range of 4 to 8, corresponding to the amino groups’ positive charge.
The attraction between the positively charged amino groups and the hydrated uranyl
is facilitated by the uneven distribution of the OH- groups within the hydrated uranyl
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particles. The substantial size of uranyl (0.62-0.64 nm) and the consequent larger size of
hydrated uranyl (1.2-1.4 nm) enable the smaller OH- groups (0.096-0.098 nm) to reposition,
creating an uneven charge distribution that allows the positively charged amino groups to
attract the net-positively charged hydrated uranyl through its evenly distributed hydroxyls.

Table 7. Recent results related to the present study.

No. Material Experiment Conditions Performance Ref.
AEPTES-functionalized Hy = 6.5; [U]p = 600 mg x L™1; o
! porous silica FX]O= 1gx L*01; T=25 §C I'm =551.97 mg-U/g; R =92% @ 0.5 h [18]
Phosphorylated pHo=7;[UJp=60mg x L™1; _ 5 b _ oro
2 hyper-cross-linked polymers  [X] =02g x L™1;, T =25°C Tm =297.14 mg-U/g; R =85% @0.08h  [3]
3 Eg;‘?f;gf}ﬁfed pHy=7;[Ulg=100mg x L™};  T'm =369.5mg-U/g; R =56.3% @2 h [36]
Amidoxime-functionalized pHo = 6; [U]p =23.8 mg x L™, _ .
4 Fe30,@TiO, microspheres [X]=02g x L™, T=25°C Im =3136 mg-U/g; @12 h (571
Amidoximized porous pHo =6; [UJp =117 mg x L™; _ 5 o o
5 polyacrylonitrile X101 g x L1 T2 25 °C I'm=1058 mg-U/g; R=9050% @5h  [38]
. _ -1,
6 Layered silicate RUB-15 }[DXP]Io: —0 65, c[éUiol}%(')?f;; OLC ; I'm=152mg-U/g;R=74%@12h [39]
Amide and phosphorous pHp = 1.7; [U]p = 120 mg x L™%; _ 1.5 Ano
7 functionalized silica [X]=5g x L1 T =95mg-U X gags ™ ;R =40% @24 h  [4]
8 Ion-imprinted mesoporous [U]p = 1.68 mM; pHy = 0; m =80mg-U X g.qs " 1; [1]
silica X]=1g x L L, T=25°C R=20% @0.67 h
9 Amino-functionalized pHo =6; [U]p =200 mg x L L I'm =509.89 mg-U x gadsfl; 7]
magnetic titanate nanotubes  [X] =0.4 g x L1, T=25°C R=83% @0.83h
: : _ 7. — —1.
10 1(\Z/Ioglljaser bimetallic central ¥I-=102; 03&[U]0 =30mg x L™F; T = 617.814 mg-U X g,q—'@ 12 h [40]
Copper/iron bimetallic . B _1.
11 cegtral %ilozg 7 ’C[U]° =60mg x L% T =354724mg-U X g5~ @12 h [40]
MOFs
APTES-functionalized pHp = 6.5; [U]y = 600 mg x L~1; _ o o present
12 orous silica X]=1g x L-1; T = 25°C I'm=381.44mg-U/g; R=63.6 % @0.5h work
p g

I'm = maximum adsorption capacity; pHy = initial pH; [X] adsorbent concentration, [U]y = initial uranium
concentration.

The referenced study [18] and the current research suggest that an elevation in the
surface amino group ratio elevates the pHpzc of AFPS and the maximum U(VI) adsorption
capacity. The large size and strong electropositivity of the hydrated U(VI) cations result
in the repulsion of other aqueous cations. The positively charged amino groups on the
adsorbent surface cannot adsorb these cations directly, leading to a selectivity bias against
U(VI) ions.

A comparative analysis of the SCFM results reveals notable disparities in the AG® 4,
and AGC values between the adsorbent from the previous study and AP@MPS. In the
former, both energy components contribute equally to AG,4s, whereas in AP@MPS, the
AG? ) values are considerably larger, playing a more significant role in AG?,4,. Upon
examining the functional group structure of the adsorbents from the previous study, an
increase in the number of amino groups per active site could lead to a higher proportion of
AG? iem, potentially enhancing the U(VI) adsorption capacity and selectivity over other
ions. On the other hand, a reduction in the number of amino groups per functional group,
as observed in AP@MPS, would increase the proportion of AGO o, facilitating the elution
of the adsorbed U(VI).
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5. Conclusions

This study underscores the pivotal influence of the surface group density, average pore
size, and solution pH on the maximum U(VI) adsorption capacity of AP@MPS. These find-
ings offer valuable insights for formulating similar U(VI) removal adsorbents. Achieving
the optimal results may involve controlling the average pore size of the AP@MPS during
synthesis to align with the dimensions of the hydrated U(VI) in the target solution. As
determined using the SCFM, the adsorption energy distribution elucidates the mechanism
by which AP@MPS adsorbs U(VI). This knowledge proves crucial for designing adsor-
bents with amino functional groups to remove aqueous U(VI) effectively. However, it is
essential to acknowledge the limitations of the SCEM, particularly in scenarios where high
acidity or chemical reactions prevail. The assumption of no electron transfer or chemical
reaction in the solution may introduce an unavoidable inaccuracy into the SCFM under
such conditions.
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