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Abstract: Systemic lupus erythematosus (SLE) is an idiopathic chronic autoimmune disease that
can affect any organ in the body, including the neurological system. Multiple factors, such as
environmental (infections), genetic (many HLA alleles including DR2 and DR3, and genes including
C4), and immunological influences on self-antigens, such as nuclear antigens, lead to the formation of
multiple autoantibodies that cause deleterious damage to bodily tissues and organs. The production
of autoantibodies, such as anti-dsDNA, anti-SS(A), anti-SS(B), anti-Smith, and anti-neuronal DNA
are characteristic features of this disease. This autoimmune disease results from a failure of the
mechanisms responsible for maintaining self-tolerance in T cells, B cells, or both. Immune complexes,
circulating antibodies, cytokines, and autoreactive T lymphocytes are responsible for tissue injury in
this autoimmune disease. The diagnosis of SLE is a rheumatological challenge despite the availability
of clinical criteria. NPSLE was previously referred to as lupus cerebritis or lupus sclerosis. However,
these terms are no longer recommended because there is no definitive pathological cause for the
neuropsychiatric manifestations of SLE. Currently, the treatment options are primarily based on
symptomatic presentations. These include the use of antipsychotics, antidepressants, and anxiolytic
medications for the treatment of psychiatric and mood disorders. Antiepileptic drugs to treat
seizures, and immunosuppressants (e.g., corticosteroids, azathioprine, and mycophenolate mofetil),
are directed against inflammatory responses along with non-pharmacological interventions.

Keywords: neuropsychiatric systemic lupus erythematosus; autoantibodies; cytokines; steroids;
biomarkers; psychosis

1. Introduction

Systemic lupus erythematosus (SLE) is a chronic idiopathic autoimmune disease
affecting various organs including the central nervous system, presenting as seizures
and psychosis. Patients with SLE also present numerous neuropsychiatric manifestations.
These neuropsychiatric manifestations are referred to as neuropsychiatric systemic lupus
erythematosus (NPSLE). NPSLE affects both the central nervous system (CNS) and the
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peripheral nervous system (PNS) and can present as various symptoms, such as cognitive
dysfunction, organic brain syndromes, delirium, seizures, headache, and psychosis [1].

Some people with NPSLE have problems with their brain and nerves. They may have
strokes, confusion, mood disorders, and trouble with thinking and memory. This is called
NPSLE, and it affects from 3 to 4 out of 10 people with SLE. Sometimes, NPSLE is the first
sign of SLE, and it can happen even when SLE is not very active. Scientists are trying to
figure out what causes NPSLE. They think it may have to do with blood clots, antibodies
that attack the brain, and proteins that cause inflammation. They also want to know how
some chemicals in the body, like TNF, IL-1, IL-6, and IFN-γ, affect the brain and nerves.
Some new studies suggest that another chemical, called TWEAK, may play a role in NPSLE
in humans and mice [2].

In SLE there are eight types of pleuropulmonary involvement: lupus pleuritis, acute lu-
pus pneumonitis, pleural effusion, shrinking lung syndrome, diffuse alveolar hemorrhage,
pulmonary arterial hypertension, interstitial lung disease, and pulmonary embolism [3].

Likewise, the skin is mostly affected by “butterfly rash”, photosensitivity, and vasculi-
tis [4]. SLE affects the heart, including pericarditis and endocarditis. Glomerulonephritis
is a renal involvement of SLE [5], as well as diseases of the joints such as arthritis [6,7].
Lymphadenopathy, autoimmune haemolytic anaemia, autoimmune leukopenia, and au-
toimmune thrombocytopenia [8] are also manifestations of SLE.

When cells fail to die properly, they can trigger autoimmune disease. A faulty ‘death
receptor’ called FAS prevents the removal of self-reactive lymphocytes in the body, causing
them to accumulate and cause inflammation and organ damage in mice (Fas(lpr/lpr) (mice
with a genetic mutation that causes excessive cell growth) and humans. The REL/NF-κB
family of proteins controls many aspects of immunity and is also involved in different
aspects of autoimmunity [9]. Recurrent infections such as pneumonias [10,11], oral ul-
cers [12], and discoid lupus are present in numerous individuals with SLE. Gastrointestinal
manifestations include lupus mesenteric vasculitis, intestinal pseudo-obstruction, and
protein-losing enteropathy [13].

Notably, the presence of neuropsychiatric symptoms (NPS) in SLE patients does not
explicitly indicate the cause of SLE. This is because NPS can be comorbid, coincidental, or a
complication of SLE treatment, most notably psychotropic drugs such as corticosteroids.
NPSLE is further classified as either primary or secondary [1]. Primary NPSLE syndromes
result from direct CNS autoimmune inflammatory processes, whereas secondary NPSLE
syndromes are caused by indirect complications of SLE such as treatment side effects, CNS
infection from chronic immunosuppression, or SLE-related organ damage [14].

Psychosis is an uncommon neuropsychiatric manifestation of NPSLE but can be
secondary to long-term, high-dose glucocorticoids. Glucocorticoids are among the mainstay
drugs for the treatment of NPSLE, which makes management even more difficult as they are
known to have psychiatric side effects and can cause a spectrum of psychiatric symptoms,
including mania, psychosis, anxiety, and depression. On initial clinical examination, it
may be difficult to differentiate the cause of psychosis as a result of steroids or NPSLE
because no single laboratory test is currently available to definitively confirm the diagnosis
of NPSLE [15].

There are 19 neuropsychiatric syndromes observed in SLE, as listed by the American
College of Rheumatology (ACR) Nomenclature for NPSLE [16]. The ACR’s nomenclature
for NPSLE was last revisited in 2021 [12], as shown in Table 1. NPSLE can precede the onset
of lupus or occur at any time during its course [17].
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Table 1. Clinical syndromes in NPSLE. Taken from [18].

Central Nervous System

Neurological syndromes (focal):
Seizure disorder
Aseptic meningitis
Cerebrovascular disease
Demyelinating syndromes
Headache
Myelopathy
Movement disorders

Neuropsychiatric syndrome (diffuse):
Anxiety disorders
Psychosis
Mood disorders
Acute confusional state
Cognitive dysfunction

Peripheral Central Nervous System

Neurological syndromes (focal):
Autonomic disorders
Myasthenia gravis
Polyneuropathy
Guillian Barre Syndrome
Plexopathy
Mononeuropathy

Table 1 shows that, although the frequency of NPSLE syndromes varies tremendously,
they could be used as qualitative diagnostic criteria if present to confirm the diagnosis
of NPSLE. In addition, this should be accompanied by some laboratory findings for SLE,
including the presence of antinuclear antibodies (ANA) such as anti-ds DNA antibodies,
which are the hallmark of SLE [17,19].

2. Most Systemic Lesions Are Due to Loss of Tolerance to Self-Antigens

The exact etiology of SLE remains to be fully delineated; however, most systemic
lesions are due to the loss of tolerance to self-antigens, including histone, ribonucleopro-
tein, double-stranded DNA, antigen Ro (SSA), and antigen La (SSB); direct or indirect
damage from autoantibody formation; and the generation of immune complexes (type III
hypersensitivity) [20]. This was confirmed by the fact that anti-DNA complexes can be
found in many organs such as the kidneys, lungs, and blood vessels. Serum complement
levels, which are also measured during the initial workup and disease monitoring, can
markedly decrease secondary to consumption and granular deposition. Therefore, low
serum complement levels and immunofluorescence which illustrates granular complement
deposits in the glomeruli further support the immunological etiology of the disease.

Alterations in B and T cell activation, along with an impaired clearance of apop-
totic debris, have also been implicated in SLE histopathology. NPSLE patients showed
significantly more microinfarction, macroinfarction, vasculitis, and microthrombi upon
histological analysis than SLE patients without neuropsychiatric manifestations [21]. The
histopathological analysis of NPSLE patients varies from nonspecific findings of focal
vasculopathy to more specific lesions, including C4d- and C5b-9-associated microthrombi
and diffuse vasculopathy [22], which often correlate with the clinical syndromes that define
NPSLE [23].

3. SLE Immunopathogenesis
3.1. Apoptosis Cascade and Role of IFN-α in SLE

A low clearance of apoptotic debris in SLE will lead to an increased formation of
autoantigen-antibody complexes by autoreactive B cells. Initially, granulocytes and other
innate cells, via pattern-recognition receptors, will recognize apoptotic bodies. The binding
of ligands with toll-like receptors (TLRs) activates B-cells, which produce autoantibodies
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leading to immune complex formation and the activation of the complement system.
Plasmacytoid dendritic cells (pDC) stimulate the synthesis of endogenous type I interferon
(IFN-α) via a TLR7- and TLR9-dependent pathway. This causes the synthesis of cytokines
including (IL)-1β and IL-23 and stimulates Th17 differentiation [24]. Figure 1 shows the
type III hypersensitivity mechanism (immunocomplex-mediated) which is involved in the
immunopathogenesis of SLE.
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Figure 1. In Systemic lupus erythematosus (SLE), a type III hypersensitivity reaction occurs. This
involves the formation of immune complexes that trigger the activation of the complement system.
Two components of this system, C3a and C5a, serve as chemotactic factors. They draw neutrophils
to the location where the immune complexes are deposited. The activation of these neutrophils
results in inflammation and damage to the site, leading to conditions such as vasculitis, nephritis,
and arthritis. There may also be other mechanisms at play. Adapted from [24].

3.2. Increased Association of HLA System and SLE in a Population

We found, in the Saudi population, that some HLA alleles increased the risk of SLE: HLA-
A29 (OR = 2.70; 95% CI = 1.03–7.08; p = 0.0035), HLA-B51 (OR = 1.81; 95% CI = 1.17–2.79;
p = 0.0066), HLA-DRB115 (OR = 1.45; 95% CI = 0.98–2.29; p = 0.063), and HLA-DQB106
(OR = 1.67; 95% CI = 1.19–2.36; p = 0.0032). On the other hand, HLA-DRB116 reduced the
likelihood of the disease (OR = 0.18; 95% CI = 0.02–1.3; p = 0.055). HLA-DRB115 haplotypes
had a significant link with SLE (OR = 2.01, 95% CI = 1.20–3.68, p = 0.008), mainly because
of the HLADRB115–DQB106 combination. Our results indicate a relationship between
class I and class II MHC (HLA-A29, HLA-B51, HLA-DRB115, and HLA-DQB106) and SLE
vulnerability in the Saudi population [25].

3.3. Immunopathogenesis of NPSLE
3.3.1. Genetic Factors

The immunopathogenesis of NPSLE is shown in Figure 2. It is shown to include genetic
factors such as the TREX1 gene and HLA-DRB1*04 [12]. The TREX1 gene encodes for
TREX1, which is a protein that is expressed extensively and functions as a component of the
SET complex in the process of granzyme A-mediated apoptosis, where it degrades single-
stranded DNA. The TREX1 gene codes for a 3′-exonuclease 1 protein, which eliminates
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nucleotides from the 3′ ends of DNA strands, thereby removing unnecessary fragments that
might have been produced during DNA replication. The TREX1 gene has been identified
to have a role in the regulation of the immune system and in viral infections. Studies have
discovered that alterations in this gene are associated with numerous diseases, such as
Aicardi-Goutieres syndrome (AGS), systemic lupus erythematosus (SLE), familial chilblain
lupus (FCL), retinal vasculopathy, and cerebral leukodystrophy. A common feature in
these autoimmune diseases is the frequent detection of antibodies to double-stranded DNA
(dsDNA) [26–28]. The homodimer TREX1R114H/R114H exhibits impaired dsDNA and
ssDNA degradation functions and does not noticeably hinder the TREX1WT enzyme. On
the other hand, the heterodimer TREX1WT/R114H retains functional dsDNA degradation
activity, which corroborates the recessive genetic nature of TREX1 R114H in AGS and the
proposed mechanism of the TREX1 exonuclease [28].

As previously mentioned, among the genetic factors for NPSLE, HLA-DRB1*04 could
play a critical role. In Malay SLE patients, HLA-DRB1*04 was found to have a significant
correlation with lupus nephritis, characterized by high levels of anti-ds DNA Ab, and
arthritis. Further analysis of the association of HLA-DRB1*04 with clinical and biological
factors showed that it had a significant correlation with the Systemic Lupus Erythematosus
Disease Activity Index (SLEDAI) scores, C-reactive protein (CRP) in the blood, anti-nuclear
antibody (ANA), and total protein in the urine. It was also observed that SLE carriers
possessing the HLA-DRB1*04 allele had a significant correlation with elevated levels of
cytokines such as IL-17F and GM-CSF [29].

In summary, some the genetic factors involved in SLE are:

• Transcriptomic data analysis has revealed several pathways and immune responses
that are associated with SLE, such as interferons, T cell differentiation, complement
pathways, and coagulation;

• Eight genes (SOCE, CXCL8, MMP9, IL1B, JUN, TNF, NFKBIA, and FOS) are up-
regulated in SLE and have interactions with different pathways. These genes are also
linked to SNPs that are identified by GWAS;

• Several other genes with known SLE-related variations are detected by integrating
GWAS and pathway analysis, such as TYK2, SH2B, C5, IL2RA, IRF5, FCGR2A, TN-
FAIP3, STAT4, LYN, IL7R, and HLA-DRB;

• One of the relevant pathways that is identified by pathway-based analysis is the TSLP
signaling pathway, which is connected to rs7574865, LYN, STAT4, and IL7R;

• The results of this study have increased the number of candidate genes for SLE and
have shown potential pathways and methods for gene discovery. Finding the key
genes would help to understand the mechanisms of SLE [19,30–32].

3.3.2. Comorbidities

Lupus nephritis (LN) and NPSLE are both severe manifestations of SLE, a chronic au-
toimmune disease [33]. LN is a type of glomerulonephritis mediated by immune complex
deposition at glomerular sites, representing one of the severe major organ involvements
seen in SLE. On the other hand, NPSLE refers to a series of neurological and psychi-
atric symptoms directly related to SLE that involve the central and peripheral nervous
system [33].

The comorbidity of LN and NPSLE in SLE patients can be explained by the sys-
temic nature of SLE, which can affect any organ, including the kidneys and the nervous
system [34]. The immune response in SLE patients can lead to inflammation and damage
in various parts of the body, including the kidneys (leading to LN) and the nervous system
(leading to NPSLE) [29].

Moreover, neuropsychiatric symptoms, whether causally associated or comorbid,
negatively impact the quality of life of patients with SLE. In addition, these symptoms
appear to identify patients with a higher mortality than those without neuropsychiatric
symptoms. It is important to note that, while the attribution of neurologic symptoms to
SLE may influence decisions about disease-modifying treatments, the timely recognition



Molecules 2024, 29, 747 6 of 29

of neuropsychiatric comorbidity in SLE patients is also important to provide appropriate
symptomatic management [34]. Therefore, understanding the comorbidity of LN and
NPSLE in SLE patients is crucial for their management and treatment.

The clinical manifestations depend on environmental, immunological, hormonal, and
genetic factors. The blood–brain barrier (BBB) can breach through multiple mechanisms.
These include autoimmune processes, such as immune complex deposition and pathologic
cytokine-mediated destruction, and environmental factors, such as smoking and hyperten-
sion [35]. There are no specific abnormalities noted on the brain images of patients with
NPSLE, and some may even have normal findings, nonspecific white matter changes, or
atrophy [14].

3.3.3. Summary of NPSLE Immunopathogenesis

In summary, NPSLE is a complex condition with a multifaceted pathogenesis involving
genetic factors, cytokines, immune cells, and environmental factors [36], as shown in
Figure 2.

Genetic Factors: Certain genes have been associated with the development of NPSLE.
For instance, specific alleles of the human leukocyte antigen (HLA) genes have been linked
to an increased risk of developing NPSLE [36–38]. We already refer to the TREX1 gene as a
genetic factor in the immunopathogenesis of this autoimmune disorder [12].

Cytokines: Cytokines, which are signaling molecules in the immune system, play
a crucial role in the pathogenesis of NPSLE. They mediate inflammation and immune
responses, contributing to the neurological and psychiatric symptoms observed in NPSLE.
For example, increased levels of certain cytokines (like IFN-y, IL-17F, IL-21, IL-18, GM-CSF,
and VEGF) have been observed in SLE patients [36].
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Immune Cells: The role of immune cells in NPSLE is significant. Autoantibodies
produced by B cells can cross the blood–brain barrier (BBB) and bind to brain tissue,
causing inflammation and damage [40]. T cells also contribute to the pathogenesis of
NPSLE by producing pro-inflammatory cytokines [39], as shown in Figure 2.

Environmental Factors: Environmental factors such as infections, stress, smoking, and
exposure to ultraviolet light can trigger the onset of NPSLE in genetically predisposed
individuals [36].

Pathogenesis: The pathogenesis of NPSLE is thought to involve a combination of the
above factors. The presence of certain autoantibodies (like anti-ribosomal P, anti-NR2, and
anti-16/6 Id antibodies) and brain cytoplasmic ribonucleic acid (BC RNA) antibodies, which
disrupt normal brain function, have been found in NPSLE patients [40,41]. These antibodies,
along with the cytokines, can cause neurocognitive symptoms [18,36,41,42]. Additionally,
the dysfunction of the BBB and vascular lesions may contribute to the development of
NPSLE [36]. It is important to note that the exact mechanisms are still being researched, and
the pathogenesis likely involves a complex interplay of these factors [36,39]. Other factors
to take into consideration regarding the immunopathogenesis of NPSLE are the presence
and interaction of chemokines with the innate and acquired immune system, the existence
of lymphocytic infiltrate, the activation of endothelial cells in the brain, the activation of
microglial cells, and neuronal cell death by apoptosis [42].

3.4. IL-2, IL-10, and IFN-γ Produced by T-Helper Cells Are Elevated in NPSLE

IL-2, IL-10, and IFN-γ produced by T-helper cells are elevated in NPSLE, and this is
directly related to autoimmune and pro-inflammatory states [18,43]. The neuropsychiatric
manifestations of SLE are likely due to antibodies that react with neurons either directly or
indirectly via the activation of other neural cells and cross the BBB due to its disruption.
Other immunological factors, such as cytokine-mediated CNS toxicity, may also play a role.
Some of the cytokines found to be elevated in patients with NPSLE include IL-2, IL-10, and
IFN-γ produced by T-helper cells [44]. The pathogenesis of compromised BBB integrity is
not yet fully understood. However, once they enter the CNS, antibodies and cytokines can
cause clinical effects. Therefore, clinically useful biomarkers must be identified [37].

3.5. Noninflammatory or Thrombotic/Ischemic Vascular Injury

Noninflammatory complications are associated with vascular thrombosis and hem-
orrhage. The thrombosis of large and small intracranial vessels can occur due to immune
complex damage, antibody-mediated damage, complete deposition, accelerated atheroscle-
rosis, or leucoagglutination [1,18,45]. Cerebral vasculitis has also been associated with
NPSLE. CNS vasculopathy via antibodies, such as anti-phospholipid antibodies, may dam-
age the BBB and allow CNS immune complex deposition, resulting in NPSLE. However,
CNS inflammatory vasculopathy is rare, and non-inflammatory vasculopathy is more
commonly observed [46].

While this classification is useful for descriptive purposes, both inflammatory and
non-inflammatory complications can occur [47]. These manifestations of NPSLE are clas-
sified based on the 19 syndromes described by the ACR; however, they are not yet fully
understood. The predominant inflammatory syndromes can result from the generation of
pathological autoantibodies associated with cytokine-mediated damage [44].

4. Autoantibodies Can Lead to Neuronal Damage in NPSLE

An overriding feature of SLE is the involvement of the immune system and the produc-
tion of autoantibodies. The immune mediators of NPSLE are quite extensive and include
autoantibodies, cytokines, and chemokines. Autoantibodies can lead to neuronal damage
and promote the pathogenesis of NPSLE. More than 116 antibodies have been reported
for SLE, and at least 11 brain-specific and 9 systemic antibodies have been associated with
NPSLE [36,48]. However, none of these autoantibodies have definitive implications in the
pathogenesis of NPSLE, and their association remains controversial [49].
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Brain-specific antibodies associated with NPSLE include anti-neuronal Abs, brain-
reactive Abs (BRAA), Anti-N-methyl-D-aspartate receptor Abs (NMDA), anti-microtubule-
associated protein 2 Abs (MAP-2), anti-neurofilament Abs (ANFA), anti-ganglioside Abs
(AGA), anti-central nervous system tissue (CNS) Abs, anti-brain-synaptosomal Abs, anti-
triosephosphate isomerase (TPI) Abs, anti-glial fibrillary acidic protein (GFAP) Abs, and
anti-serum-lymphocytoxic Abs (LCA) [50]. Systemic antibodies include antiphospholipid
(aPL)/cardiolipin (aCL) Abs, lupus anticoagulant (LAC), anti-beta 2- glycoprotein I (2GPI)
Abs, anti-ribosomal P Abs (anti-P), anti-Ro Abs, anti-Sm Abs, antiendothelial Abs (AECA),
anti-serine proteinase (anti-PR3/C-ANCA) Abs, and anti-Nedd5 Abs [50].

4.1. Antiphospholipid Antibodies (β2-Glycoprotein 1, Cardiolipin Anticardiolipin (Anti-CL) and
Lupus Anticoagulant (LA)

The aPL antibodies have an affinity to, and therefore target, anionic phospholipids,
including β2GPI (rather than being against anionic phospholipids, which their name would
suggest [51]) in the plasma membrane that regulates the blood clotting cascade [52]. The
subsequent activation of procoagulants promotes thrombosis and cerebral infarction [53],
and aPL antibodies have been identified for focal and diffuse NPSLE symptoms such as
cognitive dysfunction [54], seizures [55], stroke, transient ischemic attack [56,57], movement
disorders, chorea [58,59], and myelopathy [60].

4.2. Ribosomal P Protein (Anti-Ribosmal P Ab)

Anti-ribosomal P (anti-Rib-P) antibodies are specific serological markers observed in
patients [61]. Anti-ribosomal-P antibodies are located at the carboxy-terminal end of the
60S subunit of ribosomes and target three phosphorylated proteins, P0, P1, and P2 [62].
Anti-ribosomal-P-antibodies are believed to breach the BBB, penetrate neuronal cells, and
inhibit protein synthesis [63–65]. Antibodies against ribosomal-P proteins are associated
with diffuse NPSLE, psychosis, and clinically significant depression in patients [66–68].
Their presence may be a risk factor for the development of NPSLE [69] and a predictor of
psychosis in patients already diagnosed with NPSLE [70]. These antibodies may also be
associated with complications of the peripheral nervous system [71]. In animal studies,
depressive behavior was noted when anti-ribosomal P antibodies were introduced into
the cerebral ventricles [72]. These antibodies cross-react with the neuronal surface P
antigen on the membranes of neurons in the hippocampus and can manifest as clinical
depression [73,74]. The anti-Rib-P antibody can also cross-react with NMDA receptors,
resulting in psychosis [75], although the presence of anti-rib-P is not always associated
with NPSLE manifestations [76]. Therefore, the clinical significance of anti-rib-P antibodies
remains controversial.

4.3. Anti-Human N-Methyl-D-Aspartate Receptor Abs (Anti-NMDA)

The NMDA receptor is an ionotropic glutamate receptor in the CNS that is responsible
for synaptic plasticity and memory [77]. The NR2A and NR2B subunits are found in
the hippocampus, amygdala, and hypothalamus [78]. NMDA receptors are tetramers
composed of NR1 subunits and two of the four NR2 (A–D) subunits [79]. Anti-NMDAR
encephalitis is an autoimmune neurological condition associated with SLE; however, its
pathophysiology is not fully understood [80,81]. Anti-NR2 antibodies cross-react with
anti-double-stranded DNA antibodies [82]. Anti-NR2 antibodies can enter the CNS via
intrathecal IgG synthesis or by breaching the BBB [83]. The severity of BBB damage plays
a significant role in diffuse NPSLE syndromes, including the potential acute confusional
state, because it allows large titers of anti-NR2 to enter the CNS [84].

In NPSLE patients, anti-NR2 antibodies pathologically bind to the extracellular do-
mains of the NR2A and/or NR2B subunits of the NMDA receptor. These autoantibodies
have a much higher sensitivity to the NR2A subunit, resulting in excessive activation of
the NMDA receptor [85]. Pathological NMDA receptor activation in patients has been
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found to manifest as epilepsy, encephalitis, schizophrenia, mania, stroke, and cognitive
impairment [78,86].

4.4. Microtubule-Associated Protein (Anti-MAP-2 Ab)

MAP-2 is a cytoskeletal protein expressed primarily in neuronal cells that is responsible
for microtubule nucleation and stabilization, and regulates organelle transport protein
kinases involved in signal transduction [87,88]. Anti-MAP-2 antibodies are associated
with neuronal injury and death and are significantly elevated in the CSF of patients with
NPSLE [89]. Anti-MAP-2 antibodies are associated with neuropsychiatric symptoms, such
as psychosis, schizophrenia [90], bipolar disorder [91], major depression [92], seizures,
neuropathy, and cerebritis [42].

4.5. U1 Ribonucleoprotein (Anti-U1RNP Ab)

Anti-UIRNP antibodies are observed in autoimmune conditions such as mixed con-
nective tissue disease (MCTD), systemic sclerosis (SSc), and systemic lupus erythematosus
(SLE) [93]. The small nuclear ribonucleoproteins (snRNP) are RNA–protein complexes
found in abundance in the nucleus and are involved in the processing of pre-mRNA and
other proteins comprising the spliceosome [94]. Anti-U1RNP antibodies react with one or
more of the three proteins (70-kD, A, and C) that are specifically present in the U1 RNP
complex to form U1 small nuclear ribonucleoprotein (snRNP) [95]. The snRNP is a target
of autoreactive B and T cells in several rheumatic diseases, including SLE [96]. Anti-U1
RNP antibodies range from 3 to 69 percent in patients with SLE [97]. Anti-U1RNP Ab is
associated with NPSLE manifestations such as anxiety, seizures, and CVD [98].

4.6. Structural Endothelial Proteins (AECA)

Endothelial cells (ECs) are found on the inner walls of blood vessels and form a
layer of cells referred to as the endothelium. Endothelial cells have not been previously
considered as components of the immune system. ECs are important for regulating blood
pressure and play important roles in coagulation, fibrinolysis, angiogenesis, and immune
cell activation via both physiological and pathological processes [99]. The modulation of
endothelial cells via the adaptive and innate immune systems plays an integral role in
autoimmune diseases, as endothelial cells promote chronic inflammation via angiogenesis,
attracting immune cells, and antigen presentation [100]. Anti-endothelial cell antibodies
(AECA) are a heterogeneous group of autoantibodies directed against structural endothelial
proteins, along with antigens on endothelial cells [101]. The activation of ECs leads to
increased leukocyte adhesion, the activation of coagulation, and vascular thrombosis in a
dose-dependent manner [102]. The pathologic activation of ECs results in endothelial injury
and an increased risk of complications, such as atherosclerosis and vascular thrombosis,
which are the most common causes of premature mortality in patients with SLE [103].

4.7. Triosephophate Isomerase (Anti-TPI Ab)

Triosephosphate isomerase (TPI) is a glycolytic enzyme found in neuronal and red
blood cells that are involved in the interconversion of dihydroxyacetone phosphate (DHAP)
and glyceraldehyde-3-phosphate (G3P) [104]. Anti-TPI antibodies have been associated
with NPSLE with a higher frequency of aseptic meningitis and elevated serum IgG levels in
anti-TPI-positive NPSLE patients compared to anti-TPI negative NPSLE patients [105]. Anti-
TPI antibodies likely breach the BBB via meningeal inflammation. Anti-TPI antibodies form
immune complexes in the CSF and activate the classical complement system, contributing
to the pathogenesis of NPSLE [106].

4.8. Glyceraldehyde-3-Phosphate Dehydrogenase Antibodies (Anti-GAPDH)

GAPDH is a glycolytic enzyme that also plays a role in cell membrane fusion, micro-
tubule bundling, nuclear RNA export, and DNA replication and repair [107]. Anti-GAPDH
antibodies have been associated with increased disease activity, increased inflammation,
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and increased intracranial pressure in NPSLE patients [108]. GAPDH antibodies have been
found in at least 50% of NPSLE patients with schizophrenia and major depression and may
be a future potential biomarker of NPSLE [109]. A significant positive relationship between
the levels of anti-GAPDH antibodies in the serum and detrimental cognitive and mood
conditions (such as schizophrenia and major depression) in patients with SLE has been
reported. The levels of anti-GAPDH antibodies were found to be higher in SLE patients
exhibiting psychotic symptoms compared to those without such symptoms [109]. This
finding is further supported by a study conducted by Sun and collaborators, which discov-
ered that the levels of anti-GAPDH antibodies in the serum were significantly increased in
NPSLE patients and were correlated with increased SLEDAI-2K, ESR, IgG, and IgM [108].

Anti-GAPDH antibodies are used in the immunodetection of the protein encoded by
the GAPDH gene. GAPDH is an enzyme that catalyzes the sixth step of glycolysis and
serves to break down glucose for energy and carbon molecules. In addition to its role in
metabolism, GAPDH is involved in the initial stages of apoptosis and the oxidative stress
response where GAPDH is translocated to the nucleus. Such actions may reflect the role of
GAPDH in DNA repair or as one nuclear carrier for apoptotic molecules. GAPDH has also
been found to bind specifically to proteins implicated in the pathogenesis of a variety of
neurodegenerative disorders [110,111].

4.9. Anti-Aquaporin Four Antibodies (NMO-IgG/AQP4-Ab)

Anti-AQP4 antibodies, also known as NMO-IgG, have been identified in patients
with NPSLE [112]. These antibodies target the Aquaporin 4 (AQP4) water channel protein,
which is predominantly found in the central nervous system. In one study, it was found
that these antibodies were present in a patient with transverse myelitis, a rare but serious
complication of SLE [1,112]. However, they were not detectable in NPSLE patients with
other neurological manifestations. This suggests that testing for NMO-IgG/AQP4-Ab
positivity should be considered in patients presenting with SLE and TM [1,112].

4.10. Anti-Endothelial Cell Antibodies (AECAb)

Anti-endothelial cell antibodies (AECAb) are autoantibodies that target endothelial
cells, which are the cells that line the interior surfaces of blood vessels [36]. In the context
of neuropsychiatric systemic lupus erythematosus (NPSLE), these antibodies have been
associated with various pathogenic mechanisms [2,113]. AECAb has been implicated in
inducing a proadhesive and proinflammatory endothelial phenotype through nuclear factor
kappa B (NF-κB) activation, with the involvement of an autocrine loop of interleukin-1β
secretion [36].

AECAb may contribute to the dysfunction of BBB, a layer of cells that prevents
harmful substances in the blood from crossing into the brain. The presence of AECAb in
NPSLE patients could potentially lead to cerebrovascular ischemia as a result of a generally
prothrombotic state [36].

4.11. Anti-Ubiquitin Carboxyl Hydrolase L 1 Antibodies (Anti-UCH-L1 Ab)

Anti-UCH-L1 Abs have been studied as potential biomarkers for NPSLE. In partic-
ular, the autoantibody against the amino acids 58–69 of UCH-L1 (UCH58-69) has shown
significant diagnostic power in distinguishing NPSLE patients from SLE patients without
neuropsychiatric symptoms. The specificity and sensitivity of anti-UCH58-69 were found to
be 92.3% and 37.5%, respectively. Increased serum levels of anti-UCH58-69 were associated
with an increased disease severity, suggesting that this autoantibody could be a novel serum
biomarker for the non-invasive diagnosis of NPSLE. This might be applicable for early
screening and diagnosis of NPSLE. However, it is important to note that these findings are
based on research studies, and further validation is needed before these antibodies can be
used in clinical practice [39,114]. In a study conducted by Li et al. in 2019, it was found
through a randomized controlled trial that antibodies against UCH-L1 could serve as a
reliable biomarker in the cerebrospinal fluid (CSF) for diagnosing NPSLE. The study also
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found that the levels of UCH-L1 in the CSF could indicate the severity of NPSLE [115]. In
a similar vein, a recent study on autoantibodies showed that the autoantibody targeting
the amino acids 58–69 of UCH-L1 (UCH58-69) demonstrated a high level of specificity
and diagnostic significance in differentiating NPSLE patients from SLE patients without
neuropsychiatric symptoms. The study further revealed that the levels of anti-UCH58-69 in
the serum were considerably higher in NPSLE patients compared to SLE patients without
neuropsychiatric symptoms, and these levels were found to be associated with the severity
of the disease [36]. Table 2 illustrates autoantibodies associated with NPSLE.

Table 2. Illustrating common NPSLE-associated symptoms in NPSLE.

Autoantibody Location Isolated Associated NPSLE Symptoms References

Phospholipid:
β2-glycoprotein 1 and cardiolipin
(aCL-Ab)

Serum, CSF CVD, seizures, chorea cognitive dysfunction,
psychosis, depression, headache [54–58]

Ribosomal P protein
(anti-ribosmal P Ab) Serum, CSF psychosis, depression, cognitive impairment [66–68]

NMDA receptor
(anti-NMDA) Serum, CSF depression cognitive dysfunction [84]

MAP-2 (anti-MAP-2 Ab) Serum, CSF seizures, chorea, sensory neuropathy,
psychosis, headache) [90–92]

U1 ribonucleoprotein
(Anti-U1RNP Ab) Serum, CSF Diffuse NPSLE symptoms [98]

Structural endothelial proteins (AECA) Serum Psychosis, depression [102,103]

Triosephosphate isomerase(anti-TPI Ab) Serum, CSF aseptic meningitis [105]

GAPDH (anti-GAPDH Ab) Serum
Involved in various in neurodegenerative
disorders, increased intracranial pressure,
cognitive dysfunction

[108,110,111]

Autoantibodies against autoantigens were detected in the sera of NPSLE patients,
as well as in the CSF. However, the authors did not compare the prevalence of these
autoantibodies in the sera of NPSLE and non-NPSLE patients, so it is not clear if they are
specific to NPSLE. Based on their results, the autoantibody that has the highest possibility of
being a marker of NPSLE is anti-SS-A, because it showed a significantly higher positive rate
in the CSF of NPSLE patients than in the CSF of non-NPSLE patients, and it was also related
to neuropsychiatric syndromes of the central nervous system in SLE patients. The authors
used a human proteome microarray to screen for autoantibodies in the cerebrospinal
fluid (CSF) of patients with neuropsychiatric systemic lupus erythematosus (NPSLE), a
subtype of SLE that affects the nervous system. They identified autoantigens that were
specifically associated with NPSLE, and found that they were enriched for functions
involved in neurological diseases. They also found 22 autoantigens that were shared by
NPSLE and non-NPSLE patients, and found that they were enriched for functions involved
in inflammatory responses. They validated some of the candidate autoantigens using
a focused autoantigen microarray and western blot, and confirmed that anti-SS-A and
anti-PCNA autoantibodies were significantly associated with NPSLE. They also found that
the titers of anti-RPLP2 and anti-SS-A autoantibodies in CSF and serum specimens were
significantly correlated, suggesting that they leaked from the blood due to the compromised
BBB [116].

5. Investigations

NPSLE diagnosis is achieved on a case-by-case basis based on the constellation of
clinical signs and symptoms, along with laboratory, electrophysiological, neuroimaging,
and histopathological findings, which can also aid in the diagnosis [117,118].
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5.1. Biomarkers

Anti-nuclear antibodies (ANAs) are positive for most patients with SLE. However,
ANAs are also found in the healthy general population and have a low specificity. There-
fore, ANA titers cannot be used to diagnose SLE, and must be followed up with specific
antibodies. However, ANAs have high sensitivity; therefore, the lack of this antibody
in laboratory work makes SLE unlikely, and other diagnoses should be considered. To
further complicate the diagnosis, cases of ANA-negative SLE have been reported; therefore,
clinical suspicion is of the utmost importance, and once ANAs are shown to be positive,
follow-up tests for specific antibodies should be performed. These antibodies include
anti-dsDNA, anti-Smith, anti-Ro/SSA, anti-La/SSB, and U1 ribonucleoprotein (RNP) anti-
bodies. Anti-dsDNA has a very high specificity (of >95%) for SLE, and its presence confirms
the diagnosis. Anti-Smith antibodies have an even higher specificity (of >90%), and their
presence confirms the diagnosis. However, anti-dsDNA and anti-Smith antibodies are
observed in only 70% and 30% of patients with SLE, respectively. Therefore, negative
anti-dsDNA and anti-Smith antibodies should not rule out the diagnosis of SLE if there is a
high clinical suspicion [119–121]. Anti-Ro/SSA and anti-La/SSB antibodies were observed
in only 30% and 20% of patients with SLE [122], respectively. These antibodies are observed
in >90% of patients with Sjögren’s syndrome. Their presence in patients with SLE warrants
workup for secondary Sjögren’s syndrome. Pregnant mothers should also be advised
about the possibility of a congenital heart block. Anti-U1 RNP antibodies are present in
approximately 25% of patients with SLE. Their presence is typically observed in mixed
connective tissue diseases. They are almost always found concurrently with the anti-Smith
antibodies [122,123].

A complete blood count with a differential diagnosis can also be performed, as it may
reveal thrombocytopenia, anemia, and/or leukopenia. Inflammatory markers, such as
ESR and CRP, may also be elevated. Creatinine levels can be raised in patients with renal
involvement along with an elevated urine protein-to-creatinine ratio. Urine analysis can
reveal proteinuria, hematuria, and cellular casts. Changes C3, C4, and CH50 levels can also
be found, as a decrease in their levels suggests complement activation and consumption,
and can be related to disease activity [124]. Antiphospholipid antibodies (e.g., lupus
anticoagulant, anticardiolipin antibodies, and anti-beta2-glycoprotein 1, are associated
with a higher likelihood of thrombotic events. Anti-ribosomal P protein antibodies have
a high specificity but a low sensitivity for SLE [125,126]. They are present in a minority
of SLE patients; however, some studies have suggested that this antibody is a marker of
CNS disease, although this is controversial. Testing for anti-ribosomal P protein antibodies
has limited clinical value; however, there is an association between their presence and
neuropsychiatric manifestations of SLE, especially psychosis.

5.2. Serum and CSF Analyses

The 2019 EULAR/ACR classification criteria for SLE and the SLE Disease Activity In-
dex (SLEDAI) include several serological parameters along with signs, symptoms, radiolog-
ical features, and histologic and pathological findings for the classification of SLE [127,128].
However, in the absence of concurrent systemic inflammation, these parameters often
cannot be used to predict neuropsychiatric disease activity [129].

CSF analysis can be useful in excluding other etiologies; however, the findings are often
nonspecific. CSF analysis can reveal nonspecific findings of inflammation such as elevated
total protein, elevated IgG, pleocytosis, and mildly reduced CSF glucose levels. Pleocytosis
observed in CSF analysis is associated with ‘lupus psychosis’ and delirium [130]. Pleocyto-
sis has been reported in approximately 20% of NPSLE cases and is typically at a low level,
although it has been reported with white cell counts greater than 100 cells/µL [131,132].
Protein elevation may be observed in 20–30% of NPSLE patients, with levels ranging from
1 g/L to greater than 2 g/L [133,134]. CSF abnormalities are seen in 30–40% of cases and,
therefore, do not provide a reliable differentiation of NPSLE from non-neuropsychiatric
SLE patients [135].



Molecules 2024, 29, 747 13 of 29

5.3. Biomarkers in NPSLE

Ni et al., in 2023, discussed the discovery of novel biomarkers for improving the
diagnostic efficiency for NPSLE. The study used a quantitative planar protein antibody
microarray to screen 1000 proteins in cerebrospinal fluid from controls, systemic lupus
erythematosus (SLE, non-NPSLE) patients, and NPSLE patients. Differentially expressed
proteins (DEPs), as candidate biomarkers, were developed into a custom multiplexed
protein antibody array for further validation in a larger independent cohort. Subsequently,
they used least absolute shrinkage and selection operator regression (LASSO) analysis
and multivariable logistic regression analysis for optimizing their feature selection and
constructing a diagnostic model. A receiver operating characteristic curve (ROC) was
generated to assess the effectiveness of the models. The study identified five DEPs as
biomarkers for NPSLE, including TCN2, KLK5, CST6, Trappin-2, and L-selectin. The
diagnostic model included three hub proteins (CST6, KLK5, TCN2) and was the best
at discriminating NPSLE from SLE patients. These CSF biomarkers were also highly
associated with the disease activity. In addition, there were six molecules with remarkable
changes in NPSLE CSF and the hippocampus, which indicated the consistency of the
environment in the brain and their promise as molecular targets in the pathogenesis of
NPSLE [136].

6. NPSLE Complications Caused Directly by NPSLE or the Treatment

Drug-induced psychosis can occur at any time during the treatment of NPSLE. The
symptoms include anxiety, agitation, irritability, and insomnia. More severe symptoms, such
as mania, psychosis, and depression, can also occur. Steroid-induced psychosis is thought to
be dose-dependent and more likely to occur in patients in long-term therapy [137].

6.1. Steroid Induced Psychosis

In patients receiving long-term steroid therapy for the management of systemic lu-
pus erythematosus, the diagnosis becomes more complicated as the differentiation of a
neuropsychiatric flare from steroid-induced psychosis is often clinically difficult at the
initial presentation [138,139]. Steroid-induced psychosis occurs due to abnormalities in the
hypothalamic–pituitary–adrenal axis [140]. Exogenously administered steroids lead to the
suppression of steroid secretion via the adrenal glands and eventual atrophy, resulting in
disturbances in cortisol levels.

The imbalance in glucocorticoid receptor stimulation can lead to cognitive impairment
and psychiatric disturbances such as psychosis [140,141].

6.2. Progressive Multifocal Leukoencephalopathy (PML)

Progressive multifocal leukoencephalopathy (PML) is caused by reactivation of the JC
virus in immunosuppressed individuals with SLE and/or drug therapy with cyclosporine
and methylprednisolone [142,143].

7. Management of NPSLE

The validity of biomarkers for systemic lupus erythematosus that are used for mak-
ing clinical decisions is limited. The lack of reliable and specific biomarkers for NPSLE
negatively affects the current and future e management of patients with SLE [144]. Spe-
cific treatment modalities depend on whether the symptoms are due to inflammatory,
non-inflammatory, or thrombotic reasons [145].

The management of NPSLE can be challenging due to the complexity of its pathogene-
sis, difficulty in its accurate diagnosis, and a lack of clinical trials in NPSLE. The current
treatment options for NPSLE are usually derived from observational studies and refer to
the experience of the treatment of other SLE subtypes, such as lupus nephritis and similar
neuropsychiatric disorders, as shown in Figure 3. The management of NPSLE has two
main goals. The first goal is to provide symptomatic therapy, which includes administering
antiepileptics for seizures, and anxiolytics, antidepressants, mood-stabilizers, or antipsy-
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chotics as appropriate. Neurotrophic and neuroleptic agents are generally adopted in cases
with peripheral nervous system involvement. The second goal is to treat the underlying
SLE process based on whether the pathogenesis is primarily related to an inflammatory or
ischemic disease pathway [18,39].
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7.1. Symptomatic Therapy
7.1.1. Antiepileptics

Antiepileptic treatment is needed for NPSLE patients with seizures, especially those
with high-risk features, such as a second seizure, evidence of brain injury, and focal neuro-
logical deficits. Generalized and recurrent seizures warrant the use of antiepileptic drugs
such as phenytoin and barbiturates. Partial complex seizures can be managed using drugs
such as carbamazepine, valproic acid, and gabapentin. Patients with generalized convul-
sive status epilepticus (GCSE) require immediate treatment to prevent neurological injury
and death. After treatment and stabilization, neuroimaging should be performed as in
non-NPSLE patients to evaluate any underlying structural abnormality, hemorrhage, or
area of ischemia. Patients with seizures who do not return to normal consciousness can
undergo continuous electroencephalography to rule out non-convulsive status epilepticus,
and there is no consistent evidence-based therapy for cognitive dysfunction in SLE patients.
This is likely because cognitive dysfunction has been associated with many psychosocial
factors such as fatigue, sleep deprivation, depression, and anxiety. However, antidepres-
sants and psychotherapy may improve symptoms in patients with comorbid depression.
Antimalarial drugs are commonly used in patients with SLE, and there is evidence sup-
porting their use in patients with NPSLE. Antimalarials have been demonstrated to reduce
the risk of CVD and antiphospholipid antibody titers. Another benefit of antimalarials is
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their antithrombotic effect. Antimalarials have also been shown to protect against seizures.
However, antimalarial drugs are rarely known to cause psychosis, and chloroquine is
associated with epilepsy in patients with a history of epilepsy. The LUMINA study showed
a protective role of hydroxychloroquine and time against NPSLE manifestation, but it may
have been confounded by indication since patients with a milder disease were more likely
to be treated with this drug [39,138,145,146].

7.1.2. Antipsychotics in NPSLE

Antipsychotics, in the treatment of NPSLE, are used to treat psychosis, agitation,
and catatonia, which are common and severe manifestations of NPSLE. Antipsychotics
can also help reduce inflammation and modulate immune responses in the brain. The
choice of antipsychotic depends on the type and severity of the NPSLE symptoms, the
underlying pathophysiology, and the patient’s response and tolerance. Second-generation
antipsychotics (SGAs) are preferred over first-generation antipsychotics (FGAs) because
they have fewer extrapyramidal side effects and a lower risk of neuroleptic malignant
syndrome. Clozapine, an SGA, may be the safest option for NPSLE, followed by quetiapine.
Aripiprazole, another SGA, has partial dopamine agonist effects and may be useful for
NPSLE patients with Parkinsonism or dopamine deficiency. Antipsychotic monitoring is
essential to assess the efficacy and safety of the treatment, as well as to prevent or manage
adverse effects, such as metabolic syndrome, QTc prolongation, agranulocytosis, and infec-
tion. The antipsychotic dose should be adjusted according to the clinical response and the
pharmacokinetic properties of the drug. Antipsychotic discontinuation should be gradual
and cautious, especially if the patient has a history of NPSLE recurrence [22,145,147].

7.1.3. Anxiolytics in NPSLE

Anxiolytics are a class of medication that is used to alleviate anxiety, and they can play
a role in managing NPSLE. This pathology is a complex condition that can result in a broad
range of psychiatric syndromes such as psychosis, mood disorders, acute confusion, and
cognitive dysfunction. Anxiolytics work by modulating the activity of neurotransmitters
in the brain, and they can be particularly useful in managing anxiety disorders that can
occur in patients with NPSLE. The choice of anxiolytic medication and the dosage will
depend on the specific symptoms, the severity of the disease, and the patient’s response to
medication [22,145,147–149].

7.1.4. Mood Stabilizers in NPSLE

Mood stabilizers are a class of medication that can help regulate mood swings and
reduce symptoms of mania and depression. They are often used to treat bipolar disorder,
but they may also be helpful for some people with neuropsychiatric systemic lupus erythe-
matosus (NPSLE). Mood stabilizers are part of the European League Against Rheumatism
(EULAR) recommendations for the management of NPSLE, especially for mood disorders,
psychosis, and seizures. A 2015 comparative study compared the EULAR recommendations
with the usual care in two European centers and found good concordance between them
for the diagnosis and treatment of NPSLE. The study also identified some issues that need
further investigation, such as the overutilization of brain MRI, the suboptimal evaluation
of cognitive dysfunction, and the frequent use of immunosuppressives in cerebrovascular
disease [149]. Some of the mood stabilizers that may be used for NPSLE include:

Lithium: This is the oldest and most established mood stabilizer for bipolar disorder.
It can help prevent mood episodes and reduce the risk of suicide. However, it can also
cause side effects such as weight gain, tremors, thyroid problems, and kidney damage.
Regular blood tests are needed to monitor the lithium level and avoid toxicity [150].

Antiepileptics: These are medications that were originally used to treat seizures, but
they can also stabilize a patient’s mood and prevent manic or depressive episodes. Some
examples are valproate, lamotrigine, carbamazepine, and topiramate. They can have
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different side effects depending on the drug, such as weight changes, rash, liver problems,
blood count abnormalities, and birth defects [151].

Antipsychotics: These are medications that are mainly used to treat psychosis, but
they can also have mood-stabilizing effects and help with agitation, insomnia, and anxiety.
Some examples are olanzapine, quetiapine, risperidone, aripiprazole, and lurasidone. They
can cause side effects such as weight gain, diabetes, high cholesterol, movement disorders,
and sedation [152].

The choice of mood stabilizer for NPSLE depends on several factors, such as the type
and severity of the symptoms, the presence of other medical conditions, the potential for
drug interactions, the patient’s preference, and the doctor’s experience. Mood stabilizers
should be used with caution and under close supervision by a rheumatologist and a
psychiatrist [18,36,39,149].

7.2. Inflammatory Pathway
7.2.1. Glucocorticoids

NPSLE is a complex disease that can be challenging to manage. The use of glucocor-
ticoids and other immunosuppressants has been studied as a potential treatment option
for NPSLE. A study by Monahan et al., in 2023, investigated the short-term and long-term
outcomes of inflammatory NPSLE with immunosuppressive treatment. The study found
that the outcome of inflammatory NPSLE after immunosuppressive treatment is generally
good, with improvement in neuropsychiatric symptoms occurring in approximately 70%
of events. The most common neuropsychiatric manifestation was cognitive dysfunction,
often present in combination with other NPSLE manifestations. The treatments mostly
consisted of (combinations of) prednisone, methylprednisolone, azathioprine, and cy-
clophosphamide. The study recommended glucocorticoids alone or in combination with
other immunosuppressants (e.g., azathioprine or cyclophosphamide) for the treatment of
inflammatory NPSLE [153].

Glucocorticoids have inhibitory effects on a broad range of immune responses. They
are often used to treat autoimmune diseases, including NPSLE. Glucocorticoids work by
suppressing the immune system, which can help reduce inflammation and prevent damage
to organs [154]. However, long-term use of glucocorticoids can lead to side effects such as
weight gain, high blood pressure, and osteoporosis [153].

Glucocorticoids are the mainstay of lupus psychosis treatment. As NPSLE syndromes
are suggested to be caused by autoimmune inflammatory processes, such as psychosis,
an acute confusional state, and transverse myelitis, high-dose glucocorticoids and steroid-
sparing agents such as cyclophosphamide and mycophenolate are the mainstay of treat-
ment. Refractory cases of NPSLE can be treated using rituximab, intravenous immunoglob-
ulin, or plasmapheresis [22].

Glucocorticoids are a class of steroid hormone that exerts its systemic and tissue-
specific actions by binding glucocorticoid receptors. Glucocorticoids bind to the glucocorti-
coid receptor (GR) in the cytoplasm of target cells and modulate the expression of genes
involved in inflammation, apoptosis, and metabolism [155]. They regulate the immune
system by inhibiting the production of pro-inflammatory cytokines and chemokines, and
by repressing the expression of pro-inflammatory cytokines by resident immune cells and
extravasated immune cells. For instance, glucocorticoids have been shown to inhibit the
production of cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis
factor-alpha (TNF-α) [156,157]. Glucocorticoids also inhibit the activation of macrophages
and dendritic cells, and reduce the production of reactive oxygen species (ROS) and nitric
oxide (NO). Glucocorticoids have been shown to interact with antibodies. They inhibit
the production of immunoglobulin E (IgE) and immunoglobulin G (IgG), and reduce the
expression of Fc receptors on immune cells. However, the molecular mechanisms underly-
ing the systemic and tissue-specific actions of glucocorticoids are still a subject of intense
investigation [157–159].
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There are different types of glucocorticoids that vary in their potency, duration of
action, and side effects. Some of the commonly used glucocorticoids in NPSLE are:

1. Prednisone is a synthetic glucocorticoid that is converted to its active form pred-
nisolone in the liver. It has a moderate potency and a short half-life of about 3–4
h. Prednisone is usually given orally in doses ranging from 0.5 to 1 mg/kg/day for
NPSLE [160];

2. Methylprednisolone is a synthetic glucocorticoid that has a higher potency and a
longer half-life than prednisone of about 18–36 h. It can be given orally or intra-
venously in doses from 0.5 to 1 g/day for severe NPSLE [160];

3. Dexamethasone is a synthetic glucocorticoid that has a very high potency and a long
half-life of about 36–54 h. It can be given orally or intravenously in doses from 10 to
100 mg/day for refractory NPSLE [160].

Glucocorticoids exert their anti-inflammatory and immunosuppressive effects by two
main mechanisms:

Genomic mechanism: Glucocorticoids bind to the GR and form a complex that translo-
cates to the nucleus and regulates the transcription of target genes. Some of these genes are
upregulated by glucocorticoids and encode anti-inflammatory proteins, such as annexin
A1, lipocortin, and IL-10. Other genes are downregulated by glucocorticoids and encode
pro-inflammatory proteins, such as cytokines, chemokines, and adhesion molecules [155].

Non-genomic mechanism: Glucocorticoids can also bind to membrane-bound GRs
and activate or inhibit various signaling pathways, such as MAPK, NF-κB, and PI3K/Akt.
These pathways modulate the activity of inflammatory cells, such as macrophages, T cells,
and B cells, and affect their survival, proliferation, differentiation, and function [155].

7.2.2. Cyclophosphamide

Cyclophosphamide is a potent immunosuppressive agent that has been used in the
treatment of neuropsychiatric systemic lupus erythematosus (NPSLE). It is often used for
severe manifestations of NPSLE that are thought to reflect inflammation or an underly-
ing autoimmune process [161]. Cyclophosphamide is the mainstay of NPSLE treatment.
However, it is important to note that this drug can have serious side effects. For instance, a
case report describes a patient with NPSLE who developed seizures soon after her first and
second doses of low-dose cyclophosphamide. The exact pathophysiological mechanism
underlying cyclophosphamide-induced seizures is not well- understood [161].

Despite its potential side effects, cyclophosphamide has been reported to benefit
patients with systemic lupus erythematosus (SLE)-related Guillain-Barré syndrome, a
rare neurological disorder [162]. These findings underscore the importance of careful
monitoring and individualized treatment plans when using cyclophosphamide in the
management of NPSLE [161,162].

Cyclophosphamide, as an immunosuppressive agent, works by suppressing the im-
mune system and reducing the production of immune complexes, thereby reducing inflam-
mation and damage to the nervous system. However, the use of cyclophosphamide can lead
to serious side effects. For instance, severe acute hyponatraemic encephalopathy resulting
from severe hyponatremia secondary to cyclophosphamide use has been reported [161].

7.2.3. Azathioprine

Azathioprine is an immunosuppressive antimetabolite that has been used in the
treatment of NPSLE. The mechanism of action of azathioprine is not entirely understood
but it may be related to the inhibition of purine synthesis, along with the inhibition of B
and T cells [163,164].

Azathioprine interferes with purine nucleic acid metabolism at steps required for
lymphoid cell proliferation that follows antigenic stimulation. The purine analogs are
cytotoxic and destroy stimulated lymphoid cells; 6-thioguanine triphosphate, a metabolite
of azathioprine, modulates the activation of rac1 when co-stimulated with CD28, inducing
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T cell apoptosis [165]. This may be mediated through rac1′s action on the mitogen-activated
protein kinase NF-kappaB [145].

Azathioprine’s effects as an antagonist of purine metabolism result in the inhibition
of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein synthesis. This
leads to a reduction in the immune response, which can help manage the symptoms of
NPSLE [145,163].

7.2.4. Mycophenolate Mofetil

Mycophenolate Mofetil (MMF) is an immunosuppressive drug that is often used in
the treatment of various autoimmune diseases, including neuropsychiatric systemic lupus
erythematosus (NPSLE) [39].

MMF is a prodrug of Mycophenolic Acid (MPA), which inhibits inosine monophos-
phate dehydrogenase (IMPDH), a key enzyme in the de novo synthesis pathway of guano-
sine nucleotides. This inhibition primarily affects lymphocytes, which rely heavily on this
pathway for proliferation; thus, MMF has a selective effect on the immune system [166].

In NPSLE, MMF has been used as an alternative to cyclophosphamide for induction
therapy in lupus nephritis, with comparable efficacy and a better safety profile [167].
A study comparing the efficacy of MMF with that of cyclophosphamide in lupus nephritis
found that both drugs were effective, but that MMF had a better safety profile [168].

7.2.5. Biologics

Rituximab, Belimumab, and Anifrolumab have been used in the treatment of NPSLE [39].
Rituximab is a monoclonal antibody that targets B cells, which play a key role in systemic
lupus erythematosus (SLE). Clinical trials have shown that it can effectively deplete B
cells and improve clinical outcomes [169,170]. Belimumab is an immunosuppressive drug
that has been used as an alternative to cyclophosphamide for induction therapy in lupus
nephritis, with comparable efficacy and a better safety profile [171]. Anifrolumab is a novel
drug that targets the type I interferon pathway, which is implicated in the pathogenesis of
SLE. Clinical trials have shown its potential benefits in treating these diseases [172].

7.3. Ischaemic Pathway
7.3.1. Use of Aspirin in NPSLE

Aspirin is a nonsteroidal anti-inflammatory drug (NSAID) that has analgesic, an-
tipyretic, anti-inflammatory, and antiplatelet effects [173]. Aspirin may be used in NPSLE
for the following purposes:

• Prevention of thrombotic events: Aspirin inhibits the enzyme cyclooxygenase-1 (COX-1),
which reduces the production of thromboxane A2, a prothrombotic mediator. This
prevents platelet aggregation and reduces the risk of arterial and venous thrombosis,
which can cause stroke, transient ischemic attack, or other neurological complications
in NPSLE patients [174,175];

• Treatment of headache: Aspirin has analgesic and anti-inflammatory properties that
can relieve headaches, one of the most common symptoms of NPSLE [176];

• Modulation of type I interferon response: Aspirin may have immunomodulatory
effects on the type I interferon pathway, which is implicated in the pathogenesis of SLE
and NPSLE. Aspirin may reduce the expression of interferon-stimulated genes and the
levels of interferon-alpha, a cytokine that promotes inflammation and autoimmunity
in NPSLE patients [177,178].

7.3.2. Use of Heparin and Warfarin in NPSLE

Anticoagulant therapies, such as Heparin and Warfarin, can block the vicious cycle
between inflammation and thrombosis, which may greatly improve the long-term prognosis
of patients with SLE [179]. Heparin is often used as an initial treatment. It is given by
injection and, in most cases, Warfarin (Coumadin), which is given orally, is then started. The
level of anticoagulation is frequently monitored, most often using the INR test [180,181].
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There is less evidence available on the use of Warfarin in patients with SLE. However,
a prospective multicenter research trial showed that Warfarin (1–5 mg/day) started at
the same time as a steroid therapy for at least 3 months can prevent the occurrence of
osteonecrosis associated with SLE [179].

7.3.3. Novel Oral Anticoagulants (NOACs)

Novel oral anticoagulants (NOACs) are a class of drugs that acts as direct inhibitors of
either thrombin or factor Xa, two key enzymes in the coagulation cascade. They are used to
prevent and treat thromboembolic disorders, such as stroke, deep vein thrombosis, and
pulmonary embolism. Some of the NOACs that have been approved [182] are:

1. Dabigatran etexilate: a direct thrombin inhibitor that is approved for stroke prevention
in atrial fibrillation, the prevention and treatment of venous thromboembolism, and
the prevention of thromboembolism after hip or knee replacement surgery [183];

2. Rivaroxaban: a direct factor Xa inhibitor that is approved for stroke prevention in
atrial fibrillation, the prevention and treatment of venous thromboembolism, the pre-
vention of thromboembolism after hip or knee replacement surgery, and the secondary
prevention of acute coronary syndrome [182];

3. Apixaban: a direct factor Xa inhibitor that is approved for stroke prevention in atrial
fibrillation, the prevention and treatment of venous thromboembolism, and the pre-
vention of thromboembolism after hip or knee replacement surgery [184];

4. Edoxaban: a direct factor Xa inhibitor that is approved for stroke prevention in atrial
fibrillation and the treatment of venous thromboembolism [185].

NPSLE syndromes attributed to the prothrombotic state due to the presence of an-
tiphospholipid antibodies warrant the use of anticoagulants and antiplatelet drugs. An-
ticoagulation may be superior to antiplatelet therapy for the secondary prevention of
thrombotic events in patients undergoing antiphospholipid therapy [22].

7.4. Other Treatments
7.4.1. Intravenous Immunoglobulins (IVIGs)

IVIGs have been used with success in autoimmune conditions, e.g., Kawasaki’s disease
and idiopathic thrombotic purpura. IVIGs are an experimental form of the management
of SLE. IVIGs are beneficial in autoimmune conditions due to their immunomodulatory
effects via Fc receptor blockage, complement regulation, T cell regulation, and anti-idiotype
regulation [186]. IVIGs have been shown to decrease serum titers of anti-dsDNA, reduce
proteinuria, and decrease daily steroid requirements, which can be beneficial in patients
with lupus nephritis [187]. IVIGs have also demonstrated benefits in the management of
SLE during the maintenance phase, in cases of lupus flares, and in refractory cases [188].
While more definitive research is required, IVIGs appear to reduce disease activity in SLE
patients along with improving complement levels [187].

7.4.2. Non-Pharmacological Intervention in NPSLE

Recent studies have shed light on the role of certain proteins, such as S100A8/A9,
in the immunopathogenesis of NPSLE. S100A8/A9 is a marker of inflammation and has
been found to have higher concentrations in the serum of NPSLE patients compared to
non-NPSLE patients. This protein has been linked to various neurological diseases and
may play a role in the development of NPSLE [189].

While pharmacological interventions, including immunosuppression and psychiatric
therapy, are imperative for managing NPSLE [18,39,137,145], non-pharmacological inter-
ventions also play a crucial role. Non-pharmacological interventions can help manage
symptoms, improve patients’ quality of life, and potentially influence the course of the
disease. However, specific non-pharmacological interventions for NPSLE are not well-
documented in the literature. In general, non-pharmacological interventions for autoim-
mune diseases like SLE often involve lifestyle modifications, such as regular exercise, a
balanced diet, adequate sleep, and stress-management techniques.
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Exercise: Exercise stimulates cellular immunity by increasing the circulation of im-
mune cells in the individual. This helps the body better prepare for a future infection by
detecting it earlier. A study conducted in rats showed that muscle inflammation caused by
exertion mobilizes inflammation-countering T cells, or Tregs, which enhance the muscles’
ability to use energy as fuel and improve overall exercise endurance [190,191]. Physical
exercise may have beneficial effects on the Health-Related Quality of Life (HRQoL), disease
activity, fatigue, depression, pain, and inflammatory markers in SLE patients, as well as
preventing cardiovascular complications. It includes aerobic, resistance, and flexibility
exercises [145,148].

Balanced Diet: Nutrients obtained through a balanced diet are essential for growth,
cellular function, tissue development, energy, and immune defense. Macronutrients (pro-
teins, carbohydrates, fatty acids) and micronutrients (vitamins, minerals, phytochemicals,
antioxidants, probiotics) play an important role in modulating immune homeostasis. Nutri-
ents exert their role in innate immunity and inflammation by regulating the expression of
TLRs, as well as pro- and anti-inflammatory cytokines, thus interfering with immune cell
crosstalk and signaling [192,193].

Adequate Sleep: Sleep has long been linked to immune function. A study showed
that getting enough sleep influenced the environment where monocytes—a type of white
blood cell-form—develop and get primed to support immune function. This process,
hematopoiesis, occurs in the bone marrow [194,195].

Stress Management Techniques: The so-called “fight-or-flight” response heightens
immune responsiveness. This response is associated with PBMC (peripheral blood mononu-
clear cells) expression profiles related to immune defense and recovery in swine [196].

Psychoeducational interventions: These are group-based programs that aim to im-
prove memory, self-efficacy, coping skills, and the quality of life in SLE patients with
cognitive dysfunction or mild NP symptoms. They may also reduce depression, anxiety,
and fatigue. These interventions combine the elements of cognitive behavior therapy,
group therapy, and education to provide patients and their families with knowledge about
various facets of the illness and its treatment so that they can work together with mental
health professionals for a better overall outcome. A meta-analysis of studies evaluating the
effectiveness of passive psychoeducational interventions in reducing depression, anxiety,
or psychological distress compared to no intervention, attention-placebo, or waitlist com-
parison groups revealed that brief passive psychoeducational interventions for depression
and psychological distress can reduce symptoms. The quality of psychoeducation may be
important in achieving positive outcomes [197].

Complementary and alternative medicine (CAM): This is a broad category that en-
compasses various modalities such as acupuncture, massage, herbal medicine, yoga, and
meditation. CAM may offer some relief for NP symptoms such as headache, mood disor-
der, and anxiety, as well as improving the HRQoL [148]. Complementary and alternative
medicine (CAM) has been found to be effective in improving immune function in pa-
tients with SLE. Innate immune cells and molecules have been found to play a key role
in promoting and potentiating SLE. Recent studies have highlighted the involvement of
different innate immune cells and pathways in the pathogenesis of SLE. The overproduc-
tion of cytokines such as interferons and interleukins causes the immune system to become
overactive, leading to increased inflammation and tissue injury [198,199].

Laser treatment/phototherapy: This technique uses light energy to stimulate tissue
healing, reduce inflammation, and modulate pain. Laser treatment/phototherapy may be
useful for NPSLE patients with skin lesions and oral ulcers [200]. Collagen is a protein that
is essential for wound healing and tissue repair. It is a fibrillar protein that constitutes a
major component of the conjunctive and connective tissues, providing mechanical stability,
elasticity, and strength to organisms [201].

Other molecules that have been shown to improve healing and inflammation include
hyaluronic acid, vitamin C, and curcumin. Hyaluronic acid is a natural component of
the extracellular matrix and has been shown to promote wound healing by increasing



Molecules 2024, 29, 747 21 of 29

cell migration and proliferation. Vitamin C is an antioxidant that is involved in collagen
synthesis and has been shown to improve wound healing. Curcumin is a natural anti-
inflammatory compound found in turmeric and has been shown to reduce inflammation
and improve wound healing [202,203].

In summary, non-pharmacological interventions, in conjunction with pharmacological
treatments, can play a vital role in managing NPSLE. They can help manage symptoms
and improve patients’ quality of life. However, more research is needed to identify specific
non-pharmacological interventions for NPSLE and to understand their impact on the
immunopathogenesis of the disease. As our understanding of NPSLE continues to evolve, it
is hoped that more effective interventions, both pharmacological and non-pharmacological,
will be developed to improve the lives of those affected by this complex disorder [148].

These interventions may be linked to the immunopathogenesis of NPSLE by modulat-
ing the inflammatory, autoimmune, and vascular processes that underlie NPSLE. However,
more studies are needed to confirm their efficacy and safety, as well as to identify the
optimal type, dose, and duration of these interventions.

8. Conclusions

The immunopathogenesis of NPSLE is complex and remains a major cause of mor-
tality in patients with SLE. The immune mediators of NPSLE include genes, cytokines,
chemokines, cells, and autoantibodies. Despite the increasing number of biomarkers and
autoantibodies that have been tested and advancements in imaging techniques, there is
still not a “gold standard” for the diagnosis of NPSLE.

Treatment options often require multiple medical therapies to manage symptoms.
Immunosuppressants are the mainstay of management, and the use of antidepressants,
antipsychotics, anxiolytics, and antiseizure medications is often required. Biologics such
as Rituxumab, Belimumab, and Anifrolumab; anticoagulants including Aspirin, Heparin,
Warfarin; and novel oral anticoagulants, plasmapheresis, intravenous immunoglobulins,
and non-pharmacological interventions all play a critical role in the management of this
neuropsychiatric and autoimmune condition.
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