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Abstract: Biological activities of six under-utilized medicinal leafy vegetable plants indigenous to
Africa, i.e., Basella alba, Crassocephalum rubens, Gnetum africanum, Launaea taraxacifolia, Solanecio biafrae,
and Solanum macrocarpon, were investigated via two independent techniques. The total phenolic
content (TPC) was determined, and six microtiter plate assays were applied after extraction and frac-
tionation. Three were antioxidant in vitro assays, i.e., ferric reducing antioxidant power (FRAP), cupric
reduction antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging,
and the others were enzyme (acetylcholinesterase, butyrylcholinesterase, and tyrosinase) inhibition
assays. The highest TPC and antioxidant activity from all the methods were obtained from polar and
medium polar fractions of C. rubens, S. biafrae, and S. macrocarpon. The highest acetyl- and butyryl-
cholinesterase inhibition was exhibited by polar fractions of S. biafrae, C. rubens, and L. taraxacifolia,
the latter comparable to galantamine. The highest tyrosinase inhibition was observed in the n-butanol
fraction of C. rubens and ethyl acetate fraction of S. biafrae. In vitro assay results of the different extracts
and fractions were mostly in agreement with the bioactivity profiling via high-performance thin-layer
chromatography–multi-imaging–effect-directed analysis, exploiting nine different planar assays.
Several separated compounds of the plant extracts showed antioxidant, α-glucosidase, α-amylase,
acetyl- and butyrylcholinesterase-inhibiting, Gram-positive/-negative antimicrobial, cytotoxic, and
genotoxic activities. A prominent apolar bioactive compound zone was tentatively assigned to fatty
acids, in particular linolenic acid, via electrospray ionization high-resolution mass spectrometry.
The detected antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and genotoxic
potentials of these vegetable plants, in particular C. rubens, S. biafrae, and S. macrocarpon, may validate
some of their ethnomedicinal uses.

Keywords: ethnomedicine; antidiabetic; antimicrobial; antioxidant; anticholinesterase; planar bioas-
says; planar chromatography; electrospray ionization high-resolution mass spectrometry

1. Introduction

Plants comprise numerous chemicals with potential for adjuvant treatment of diseases
and have played unique and leading roles in drug research. Since phytochemicals from
African flora in particular are still untapped [1,2], some under-utilized medicinal leafy
vegetables grown in West Africa were investigated. The six plants in focus were Launaea
taraxacifolia (Willd.) Amin ex C. Jeffrey, Crassocephalum rubens (Juss. ex Jacq.) S. Moore,
and Solanecio biafrae (Oliv. & Hiern) C. Jeffrey from the family Asteraceae, as well as
Solanum macrocarpon L., Basella alba L., and Gnetum africanum Welw. from the families
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Solanaceae, Basellaceae, and Gnetaceae, respectively. These uncommon vegetable types of
medicinal plants are only available in local markets and rural areas [3,4], which explains
the limited research data available. They are used traditionally for the treatment of diabetes,
body pains, wounds, arthritis, fever, cancer, ulcer, and epilepsy and have been reported
to display antioxidant, antimicrobial, anti-inflammatory, anticancer, wound healing, and
antiulcer activities [5–10].

Bioactivity-guided drug discovery approaches have been used successfully to identify
important drug leads especially from medicinal plants [11]. In vitro biological assays us-
ing 96- or 384-well microtiter plates and chromatographic fractionation (bioassay-guided
fractionation) have been applied in medicinal plant research to screen for biological activi-
ties and to identify the responsible molecules [12]. Combining a cholinesterase inhibitor
with an antioxidant to alleviate oxidative stress is a targeted strategy for the treatment of
Alzheimer’s disease (AD) [13–15]. Hence, the inhibition of acetylcholinesterase (AChE)
and butyrylcholinesterase (BChE), which cleave the neurotransmitters acetylcholine and
butyrylcholine into choline and respective acetic acid and butyric acid, is of interest. Since
the accumulation of metals (iron, copper, lead, zinc, aluminum, cadmium, etc.) has a sig-
nificant impact on its pathogenesis [16], antioxidant potentials of plant extracts, e.g., via
the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) scavenging assay, were also studied to inhibit
the production of reactive oxygen species by metals such as iron and copper. Tyrosinase
(TYR) inhibition has become a recent target in Parkinson’s disease research [17], since TYR
in excess amount (a copper-containing enzyme involved in the synthesis of melanin and
neuromelanin formation) causes deterioration in functions of nigral neurons [18].

In contrast to in vitro assays, planar assays directly point to bioactive compound zones
due to the integrated separation. High-performance thin-layer chromatography–multi-
imaging (HPTLC–ultraviolet/visible/fluorescence detection, UV/Vis/FLD) combined
with effect-directed analysis (EDA) has been proven as a straightforward and efficient
tool in the screening for active phytochemicals, among hundreds to thousands of phy-
tochemicals present in complex plant samples [19]. Its hyphenation to high-resolution
mass spectrometry (HRMS) is highly targeted for further characterization of the detected
bioactive compounds [20–22]. Thus, the mentioned assays were also performed as planar
assays. In addition, α-amylase, α- glucosidase, and antimicrobial assays (Gram-positive
Bacillus subtilis and Gram-negative Aliivibrio fischeri) were applied to identify antidiabetic,
anti-infective, and wound-healing properties of plant extracts [19,20] as well as cytotoxicity
and genotoxicity assays [23] (the latter also with S9 liver metabolization [24]) since it is
important information for the traditional use of medicinal plants.

This study aimed to detect and evaluate the biological activities and responsible
bioactive compounds of six African under-utilized medicinal leafy vegetables, i.e., Launaea
taraxacifolia (Willd.) Amin ex C. Jeffrey, Crassocephalum rubens (Juss. ex Jacq.) S.Moore,
Solanecio biafrae (Oliv. & Hiern) C. Jeffrey, Basella alba L., Solanum macrocarpon L., and Gnetum
africanum Welw. Two independent techniques (in vitro assays and planar assays) were
applied to explain part of their traditional uses. Therefore, their total phenolic content (TPC)
was determined and six spectrophotometric in vitro microtiter plate assays were applied
and compared with each other. Among these were three antioxidant assays, i.e., ferric
reducing antioxidant power (FRAP), cupric reduction antioxidant capacity (CUPRAC), and
2,2-diphenyl-1-picrylhydrazyl (DPPH•) scavenging, and three enzyme inhibition assays,
i.e., AChE, BChE, and TYR inhibition assays. The results were compared to the HPTLC–
UV/Vis/FLD–EDA profiling exploiting nine assays (i.e., DPPH• scavenging, AChE, BChE,
α-amylase, and α-glucosidase inhibition, Aliivibrio fischeri, Bacillus subtilis, cytotoxicity, and
genotoxicity assays). Prominent bioactive compound zones were further characterized
by heated electrospray ionization high-resolution mass spectrometry (HPTLC–UV/Vis/
FLD–HESI-HRMS).
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2. Results and Discussion
2.1. TPC As Well As FRAP, CUPRAC, and DPPH• Scavenging Antioxidant In Vitro Assays

The TPC of each extract/fraction was determined via the Folin–Ciocalteu method [25]
and calculated as gallic acid equivalents (GAE) per gram of extract dry weight. The FRAP
of the extracts and the reference quercetin was measured based on the reduction of Fe(III) to
Fe(II) at low pH leading to the formation of a colored Fe (II)-tripyridyltriazine complex [26].
Via the CUPRAC assay, antioxidants in the extracts/fractions and the reference gallic acid
reduced the copper–neocuproin complex [Cu (II)-Nc] to a highly colored Cu (I)-Nc, which
was measured [27]. The antioxidant activity of the extracts/fractions and quercetin, the
reference, was also measured by their ability to scavenge the stable DPPH• radical. Their
half maximal effect or inhibition concentrations (IC50) were calculated.

The TPC (Table 1) varied across the studied extracts/fractions with the highest TPC
for n-butanol (40.2 mg GAE/g) and ethyl acetate (38.7 mg GAE/g) fractions of C. rubens,
followed by S. macrocarpon n-butanol (34.9 mg GAE/g), and S. biafrae ethyl acetate fractions
(31.0 mg GAE/g). The TPC was similar to the in vitro FRAP and CUPRAC assay results.
For the in vitro DPPH• scavenging assay, the ethyl acetate fraction of C. rubens exhibited
the highest activity (87.2%, IC50 27.7 µg/mL), followed by its n-butanol fraction (84.7%,
IC50 47.7 µg/mL) as well as the ethyl acetate fraction of S. biafrae (84.4%, IC50 62.8 µg/mL)
as well as the ethyl acetate fraction (84.9%, 73.5 µg/mL) and ethanol extract (78.9%, IC50
62.7 µg/mL) of S. macrocarpon. These three plants (C. rubens, S. biafrae, and S. macrocarpon)
exhibited among the six plants a noteworthy antioxidant activity with results almost
comparable to that of the reference quercetin (89.5%). Yusuff et al. [28] compared the
DPPH• scavenging activity of only methanol extracts of S. macrocarpon and C. rubens,
and reported that S. macrocarpon methanol extract had higher antioxidant activity than
that of C. rubens. Although this is similar to our ethanol extract results, ethyl acetate and
n-butanol fractions of C. rubens led to a higher activity than other fractions of S. macrocarpon
(Table 1). From Pearson’s correlation coefficient analysis, the antioxidant activity of all
plant extracts/fractions showed a strong positive correlation between TPC and FRAP
(r2 = 0.90), TPC and DPPH• (r2 = 0.79), TPC and CUPRAC (r2 = 0.75), FRAP and DPPH•
(r2 = 0.87) as well as FRAP and CUPRAC (r2 = 0.70). Phenolic compounds are known for
their antioxidant properties and other important pharmacological effects [29], which might
be responsible for their antioxidant activity.

Table 1. Total phenolic content (TPC), ferric reducing antioxidant power (FRAP), cupric reduction
antioxidant capacity (CUPRAC), and 2,2-diphenyl-1-picrylhydrazyl (DPPH•) scavenging activity of
Basella alba (BA), Crassocephalum, rubens (CR), Gnetum africanum (GA), Launea taraxacifolia (LT), Solanecio
biafrae (SB), and Solanum macrocarpon (SM) extracts/fractions; ethanol EtOH, dichloromethane
DCM, ethyl acetate EtOAc, 9:1 mixture of methanol MeOH and water H2O; in bold are highest
values discussed.

Plant Extract/Fraction TPC (mg GAE/g)
±S.D. b

FRAP at 700 nm a

Absorbance ± S.D. b

at 107 µg/mL

CUPRAC at 450 nm a

Absorbance ± S.D. b

at 250 µg/mL)

DPPH• Activity
(% ± S.D. b at 200 µg/mL)

IC50 (µg/mL)

BA

EtOH 5.4 ± 0.7 0.78 ± 0.07 0.72 ± 0.03 19.2 ± 0.6

n-Hexane 4.0 ± 0.6 0.79 ± 0.09 0.83 ± 0.05 19.9 ± 2.7

DCM 4.6 ± 0.4 0.95 ± 0.14 0.96 ± 0.03 14.1 ± 4.3

EtOAc 17.3 ± 0.8 0.77 ± 0.05 0.72 ± 0.06 26.9 ± 3.0

n-Butanol 17.0 ± 0.4 0.78 ± 0.03 0.58 ± 0.03 17.0 ± 2.2

MeOH-H2O NA 0.67 ± 0.03 0.16 ± 0.00 4.8 ± 0.4

H2O NA 0.77 ± 0.03 ND NA
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Table 1. Cont.

Plant Extract/Fraction TPC (mg GAE/g)
±S.D. b

FRAP at 700 nm a

Absorbance ± S.D. b

at 107 µg/mL

CUPRAC at 450 nm a

Absorbance ± S.D. b

at 250 µg/mL)

DPPH• Activity
(% ± S.D. b at 200 µg/mL)

IC50 (µg/mL)

CR

EtOH 23.3 ± 1.3 1.29 ± 0.04 ** 1.89 ± 0.02 *** 64.7 ± 5.8 *
IC50 157.8 ± 27.7

n-Hexane 5.9 ± 0.5 0.84 ± 0.12 0.99 ± 0.04 17.4 ± 3.0

DCM 10.2 ± 0.4 0.83 ± 0.11 1.33 ± 0.14 22.5 ± 4.6

EtOAc 38.7 ± 3.2 *** 1.83 ± 0.04 **** 1.96 ± 0.02 *** 87.2 ± 0.5 ***
IC50 27.7 ± 4.5

n-Butanol 40.2 ± 1.0 *** 1.69 ± 0.01 *** 1.69 ± 0.04 *** 84.7 ± 0.4 ***
IC50 47.7 ± 7.8

MeOH-H2O 7.1 ± 0.3 0.97 ± 0.05 0.87 ± 0.02 28.9 ± 4.2

H2O 7.4 ± 0.1 0.75 ± 0.20 ND NA

GA

EtOH 10.2 ± 1.1 0.73 ± 0.09 0.93 ± 0.15 18.5 ± 1.5

n-Hexane 9.6 ± 0.7 0.86 ± 0.06 1.16 ± 0.10 30.6 ± 1.2

DCM 22.2 ± 0.6 0.98 ± 0.06 1.62 ± 0.07 *** 37.2 ± 4.9

EtOAc 21.6 ± 1.6 0.99 ± 0.03 1.12 ± 0.05 45.6 ± 5.2

n-Butanol 5.9 ± 0.1 0.72 ± 0.08 0.50 ± 0.00 16.1 ± 2.7

MeOH-H2O NA 0.70 ± 0.06 0.18 ± 0.00 12.2 ± 2.4

H2O 8.1 ± 0.4 0.82 ± 0.03 ND 10.7 ± 2.4

LT

EtOH 3.3 ± 0.4 0.70 ± 0.01 0.90 ± 0.03 9.4 ± 1.5

n-Hexane 5.2 ± 0.6 0.79 ± 0.06 0.97 ± 0.06 8.6 ± 3.9

DCM 3.6 ± 0.5 0.81 ± 0.03 0.74 ± 0.03 14.0 ± 2.1

EtOAc 12.6 ± 0.6 0.97 ± 0.11 1.16 ± 0.02 38.5 ± 1.3

n-Butanol 2.6 ± 0.4 0.71 ± 0.04 0.62 ± 0.03 13.6 ± 1.6

MeOH-H2O NA 0.74 ± 0.03 0.31 ± 0.01 13.6 ± 2.4

H2O 12.5 ± 1.0 1.04 ± 0.13 ND 52.0 ± 3.6
IC50 201.8 ± 14.3

SB

EtOH 8.6 ± 1.1 0.84 ± 0.04 1.22 ± 0.06 27.0 ± 1.9

n-Hexane 6.7 ± 0.8 0.76 ± 0.10 1.02 ± 0.07 5.4 ± 1.6

DCM 7.9 ± 0.4 0.85 ± 0.05 1.18 ± 0.06 9.9 ± 1.5

EtOAc 31.0 ± 4.0 * 1.56 ± 0.04 *** 1.72 ± 0.05 *** 84.4 ± 1.1 ***
IC50 62.8 ± 2.2

n-Butanol 13.5 ± 0.4 1.00 ± 0.03 1.03 ± 0.06 32.5 ± 2.4

MeOH-H2O NA 0.77 ± 0.04 0.31 ± 0.00 45.1 ± 3.6

H2O 1.0 ± 0.1 0.82 ± 0.06 ND 15.9 ± 4.4
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Table 1. Cont.

Plant Extract/Fraction TPC (mg GAE/g)
±S.D. b

FRAP at 700 nm a

Absorbance ± S.D. b

at 107 µg/mL

CUPRAC at 450 nm a

Absorbance ± S.D. b

at 250 µg/mL)

DPPH• Activity
(% ± S.D. b at 200 µg/mL)

IC50 (µg/mL)

SM

EtOH 15.2 ± 2.0 1.15 ± 0.03 ** 1.26 ± 0.14 78.9 ± 2.3 **
IC50 62.7 ± 4.4

n-Hexane 4.2 ± 0.4 0.92 ± 0.02 0.79 ± 0.01 36.6 ± 0.6

DCM 8.4 ± 1.1 0.93 ± 0.03 1.08 ± 0.03 51.2 ± 2.0
IC50 313.5 ± 11.4

EtOAc 20.0 ± 1.7 1.11 ± 0.02 ** 1.51 ± 0.04 *** 52.6 ± 2.4
IC50 186.4 ± 3.3

n-Butanol 34.9 ± 2.0 ** 1.61 ± 0.09 *** 1.70 ± 0.05 *** 84.9 ± 2.0 ***
IC50 73.5 ± 3.9

MeOH-H2O 4.8 ± 1.2 0.90 ± 0.02 0.74 ± 0.01 64.4 ± 2.4 *
IC50 84.1 ± 7.5

H2O 1.2 ± 0.2 0.79 ± 0.01 ND NA

References

Quercetin
(200 µg/mL) 2.01 ± 0.03 **** 89.5 ± 0.3 ***

IC50 6.7 ± 0.8

Gallic acid
(100 µg/mL) 2.85 ± 0.55 ****

a Higher absorbance indicates higher antioxidant activity in FRAP and CUPRAC; b standard deviation (n = 3);
activity in comparison with reference: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001; NA: no activity at tested
concentration; ND: activity not determined.

2.2. AChE, BChE, and TYR In Vitro Inhibition Assays

The potentials of the plant extracts/fractions to inhibit AChE, BChE, and TYR were
evaluated. According to Ellman’s spectrophotometric method [30] modified by [31], thiol
esters used as substrates are hydrolyzed by AChE or BChE to release thiocholine, which re-
act with 5,5′-dithio-bis(2-nitrobenzoic) acid to form a yellow-colored 2-nitro-5-thiobenzoate.
Inhibition of the enzymes is measured as lighter coloration. The results indicated a better
BChE than AChE inhibition (Table 2). The highest BChE inhibition was given by the wa-
ter extract of L. taraxacifolia (66.4%, IC50 114.0 µg/mL), which was close to the reference
galantamine (69.6%). The water extract (52.6%, IC50 183.4 µg/mL) and methanol–water
fraction of S. biafrae (58.8%, IC50 135.3 µg/mL), the ethanol extract of B. alba (53.0%, IC50
121.5 µg/mL), and the methanol–water fraction of C. rubens (52.0%, IC50 176.8 µg/mL)
followed. Only the methanol–water fraction of S. biafrae showed moderate inhibition of
AChE (53.6%, IC50 207.0 µg/mL). For tyrosinase inhibition, only the n-butanol fraction
of C. rubens (42.9%) and ethyl acetate fraction of S. biafrae (37.4%) displayed a notewor-
thy inhibition. These results indicated that both samples contain some polar compounds
that are able to inhibit these enzymes, but comparatively lower than the reference α-kojic
acid (87.5%).

Only a few reports exist in the literature on the potentials of these plants to allevi-
ate neurodegenerative diseases. Adedayo [32] reported AChE and BChE inhibition by
phenolic-rich L. taraxacifolia extracts. Oboh et al. [33] studied the efficacy of dietary inclusion
of C. rubens, a closely related species to C. rubens on the improvement of memory indices
in fruit fly (Drosophila melanogaster) Alzheimer’s disease model. The result revealed that
addition of the leaf powder of C. crepidioides, a close species to C. rubens, in the fruit fly
feed improved survival rate and behavioral performance by 70–80% and also significantly
inhibited AChE, BChE, and monoamine oxidase (MAO). Phenolic extract of S. biafrae was
reported to inhibit both AChE and BChE (Ajiboye et al. [34]), which is consistent with
our result, where S. biafrae aqueous methanol fraction solely inhibited both AChE and
BChE. The neuroprotective effects of S. biafrae may be attributed to the phenolic com-
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pounds (gallic acid, chlorogenic, caffeic acid, rutin, quercetin, and kaempferol) identified in
the extract [34,35].

Table 2. Butylrylcholinesterase (BChE), acetylcholinesterase (AChE), and tyrosinase (TYR) inhibitory
activities of Basella alba (BA), Crassocephalum, rubens (CR), Gnetum africanum (GA), Launea taraxacifolia
(LT), Solanecio biafrae (SB), and Solanum macrocarpon (SM); in bold are highest values discussed.

Plants Extract/Fraction
BChE Inhibition

(% ± S.D. a at 200 µg/mL)
IC50 (µg/mL)

AChE Inhibition
(% ± S.D. a at 200 µg/mL)

IC50 (µg/mL)

TYR Inhibition
(% ± S.D. a at 667 µg/mL)

IC50 not determined

BA

EtOH 53.0 ± 3.6 *
IC50 121.5 ± 23.5 10.4 ± 2.7 NA

n-Hexane 34.7 ± 0.8 12.1 ± 1.8 NA

DCM 14.1 ± 0.7 17.6 ± 2.1 NA

EtOAc 15.1 ± 5.0 11.3 ± 1.3 7.9 ± 2.0

n-Butanol 23.6 ± 1.9 5.3 ± 0.6 5.3 ± 1.5

MeOH-H2O 22.9 ± 3.4 13.5 ± 4.0 3.3 ± 0.7

H2O 36.3 ± 3.6 NA 6.2 ± 0.1

CR

EtOH 20.7 ± 1.8 29.8 ± 3.7 8.5 ± 0.8

n-Hexane 25.7 ± 6.6 12.0 ± 3.8 NA

DCM 4.9 ± 0.9 16.1 ± 2.9 NA

EtOAc 20.6 ± 5.9 13.7 ± 0.9 27.9 ± 1.0

n-Butanol 19.2 ± 5.8 17.8 ± 4.1 42.9 ± 0.2 **

MeOH-H2O 52.0 ± 2.4 *
IC50 176.8 ± 13.6 NA 7.6 ± 0.7

H2O 29.2 ± 3.7 NA NA

GA

EtOH 18.6 ± 1.5 13.3 ± 3.0 10.2 ± 1.4

n-Hexane 28.8 ± 7.1 20.0 ± 6.2 NA

DCM NA 23.8 ± 4.1 NA

EtOAc 15.4 ± 4.4 NA 33.9 ± 3.7 *

n-Butanol 24.3 ± 1.6 18.3 ± 3.2 8.7 ± 0.2

MeOH-H2O 32.2 ± 0.1 13.9 ± 1.7 5.1 ± 1.5

H2O 16.5 ± 1.6 NA 10.7 ± 2.4

LT

EtOH 30.1 ± 3.5 11.5 ± 2.9 NA

n-Hexane 34.3 ± 2.6 24.0 ± 2.4 NA

DCM NA 22.9 ± 0.2 2.1 ± 0.1

EtOAc NA 25.7 ± 3.7 20.7 ± 3.7

n-Butanol 13.8 ± 2.1 19.6 ± 1.6 12.3 ± 3.0

MeOH-H2O 26.9 ± 2.8 25.7 ± 2.5 7.0 ± 3.2

H2O 66.4 ± 6.4 ***
IC50 114.0 ± 24.2 30.4 ± 2.2 3.6 ± 0.1
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Table 2. Cont.

Plants Extract/Fraction
BChE Inhibition

(% ± S.D. a at 200 µg/mL)
IC50 (µg/mL)

AChE Inhibition
(% ± S.D. a at 200 µg/mL)

IC50 (µg/mL)

TYR Inhibition
(% ± S.D. a at 667 µg/mL)

IC50 not determined

SB

EtOH 44.6 ± 0.9* 23.5 ± 0.5 NA

n-Hexane 39.1 ± 0.7 26.5 ± 2.9 NA

DCM NA 28.2 ± 1.2 NA

EtOAc 13.8 ± 1.7 16.7 ± 2.3 37.4 ± 0.7 *

n-Butanol 28.6 ± 4.4 NA 27.0 ± 2.1

MeOH-H2O 58.8 ± 4.1 **
IC50 135.3 ± 16.6

53.6 ± 3.8 *
IC50 207.0 ± 26.2 8.2 ± 1.8

H2O 52.6 ± 4.7 *
IC50 183.4 ± 26.3 30.7 ± 4.8 7.4 ± 2.7

SM

EtOH 19.6 ± 6.0 22.4 ± 1.7 15.2 ± 1.3

n-Hexane 9.9 ± 2.0 21.1 ± 3.3 NA

DCM NA 30.8 ± 1.4 NA

EtOAc 24.8 ± 2.1 38.2 ± 0.3 17.4 ± 1.2

n-Butanol NA 30.4 ± 1.6 18.2 ± 2.0

MeOH-H2O 36.1 ± 3.2 18.5 ± 0.9 13.3 ± 2.9

H2O 35.7 ± 2.2 20.2 ± 2.9 3.3 ± 0.5

References

Galantamine
(50 µg/mL)

97.8 ± 0.1 ****
IC50 0.8 ± 0.1

Galantamine
(200 µg/mL)

69.6 ± 1.7 ***
IC50 112.2 ± 9.7

α-Kojic acid
(500 µg/mL) 87.5 ± 1.2 ***

a Standard deviation (n = 4); activity in comparison with control: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001;
NA: no activity at tested concentration.

2.3. Effect-Directed Profiling via Nine Different Planar Assays by HPTLC–UV/Vis/FLD–EDA

The bioactivity profiling was performed by HPTLC–UV/Vis/FLD–EDA for these
plants for the first time. As extractant of each lyophilized plant powder, the mixture
ethyl acetate–ethanol–water (1:1:1, V/V/V) was chosen because it has been proven in other
studies [36,37] to be a good compromise across polarities to extract most compounds at
a time in order to avoid the preparation of so many extracts as prepared for the in vitro
assays for fractionation of the many compounds present. Such mixtures are not so com-
monly used, but very effective for bioactivity screening in terms of more sustainable
analytical chemistry workflows. However, the extraction of comparatively more apolar
compounds (ethyl acetate component) can cause solubility problems for buffered, highly
polar in vitro assays. In contrast, planar assays do not have such solubility issues. As
a mobile phase, the solvent mixture consisting of ethyl acetate–toluene–methanol–water
(4:1:1:0.4, V/V/V/V) was used. This mobile phase originated from a previous study on
botanicals Schreiner et al. [21] (ethyl acetate–toluene–formic acid–water 16:4:3:2, V/V/V/V),
but substituting formic acid by methanol and adjusting the ratios of the two polar solvent
components. In the microtiter plate assay (Table 1), C. rubens, S. biafrae, and S. macrocarpon
had the highest TPC. This was similar to the presence of many strong absorbing zones (most
likely phenolic compounds among others) in the HPTLC–UV chromatogram detected at
254 nm (Figure 1B), wherein C. rubens showed the most intense zones followed by S. biafrae
and S. macrocarpon. In the HPTLC chromatogram at FLD 366 nm (Figure 1C), coumarins
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and other phenolic compounds, often observed as blue fluorescent zones, were present in
all samples along with red fluorescent chlorophyll zones.
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Figure 1. HPTLC fingerprints (A–D) and radical scavenging autogram (E) of Basella alba (BA),
Crassocephalum rubens (CR), Gnetum africanum (GA), Launaea taraxacifolia (LT), Solanecio biafrae (SB),
and Solanum macrocarpon (SM) along with solvent blank (B), all 5 µL/band, developed on HPTLC
plates silica gel 60 F254 with ethyl acetate–toluene–methanol–water (4:1:1:0.4, V/V/V/V) and detected
under (A) white light illumination (Vis), (B) UV 254 nm, and (C) FLD 366 nm as well as (D) white
light illumination and FLD 366 nm after the Aliivibrio fischeri bioassay, followed by derivatization
with the anisaldehyde sulfuric acid reagent; also shown with a slightly less polar mobile phase
in the ratios (4:1:0.75:0.375, V/V/V/V; color changes due to reagent stored too long) and (E) white
light illumination after the DPPH• assay (only 3 µL/band applied) instantly and after 1 day; zone 1
marked was recorded by HRMS.

As a reagent/detection sequence (Figure 1D), the derivatization with anisaldehyde
sulfuric acid reagent even worked on the bioautogram after performance of the Aliivibrio
fischeri bioassay, discussed later. This more universal derivatization reagent revealed
organic compounds such as steroids and terpenes present in the samples as violet, blue,
and gray colored zones. When the anisaldehyde sulfuric acid reagent was stored too long
(e.g., for a year), the background color turned rose under white light illumination and
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lightened at FLD 366 nm. Thus, it had to be prepared freshly depending on the frequency
of its use.

In the DPPH•-Vis autogram (Figure 1E), antioxidant compounds appeared as yellow
zones against a purple background. Polar antioxidant compounds were detected in all
samples, especially with strong intensity in C. rubens, S. macrocarpon, and S. biafrae. In-
tense zones were observed close to the start zone (hRF 0–20), indicating polar antioxidant
compounds. These results are in accordance with the antioxidant in vitro microtiter assay
results, where C. rubens, S. macrocarpon, and S. biafrae had the highest antioxidant activity
(Table 1). In the microtiter plate assay, the ethyl acetate and n-butanol fractions had the
highest antioxidant activity, which is supported by the intense antioxidant zones detected at
the low hRF range in the HPTLC–DPPH•–Vis autogram. To detect time-dependent changes
in the antioxidative profile and thus antioxidant reactions over time, the same autogram
was recorded after one day. As a result, it expressed more differentiated antioxidative
zones (Figure 1E), strong ones got weaker and minor ones got stronger. This showed
that time-dependent changes and the antioxidant reactivity rate over time can be studied
via the planar DPPH• assay. Such differentiated information cannot be obtained by the
corresponding in vitro assay, providing only a sum value.

The following four enzyme assays revealed inhibiting compounds as colorless white
zones on the respective purple background (Figure 2A–C) or as purple zones on a white
background (Figure 2D). Both HPTLC–AChE/BChE inhibition–Vis autograms (Figure 2A,B)
showed a similar compound pattern. The most prominent colorless inhibition zone was at
hRF 90 (zone 1) and inhibited both AChE and BChE in all samples. In contrast to the re-
spective in vitro assays, the inhibition was stronger for AChE than BChE. However, colored
compounds, which mitigate/suppress the inhibition signal of in vitro assays (providing
only a mixed sum value), were clearly separated here. The AChE inhibition zone 1, which
was close to the solvent front, was eluted to only hRF 35 using an apolar mobile phase
and thus better detectable. White inhibition zones, which remained at the start zone, were
comparatively more prominent in the BChE inhibition autogram (Figure 2B).

Similar AChE and BChE inhibition zones (hRF 15 and 20) were seen in C. rubens and
S. biafrae, though weaker in S. biafrae (Figure 2B). This similar compound pattern can be
explained by their phytochemical similarity since both are from the family Asteraceae,
although L. taraxacifolia from the same plant family showed a different compound pattern.
The visually evaluated sum of all inhibition zones in the BChE autogram (Figure 2B)
decreased in intensity from C. rubens, L. taraxacifolia, S. biafrae and S. macrocarpon, which
was consistent with the respective in vitro microtiter plate assay result, where the water
extract of L. taraxacifolia (66.4%, IC50 114.0 µg/mL) and aqueous methanol fractions of S.
biafrae (58.8%, IC50 135.3 µg/mL) and C. rubens (52.0%, IC50 176.8 µg/mL) exhibited highest
BChE inhibition. Differences in the order can be explained by the different extraction
system (a compromise mixture of solvents across polarities) for the planar bioassays.

Respective autograms for the antidiabetic activity revealed the presence of α-glucosidase-
(Figure 2C) and α-amylase-inhibiting compounds (Figure 2D) in all plant samples. Re-
garding the α-glucosidase inhibition, C. rubens, L. taraxacifolia, S. biafrae, and S. macrocarpon
showed comparatively strong polar inhibition zones at hRF 0–20 (Figure 2C), similar, though
much stronger, in pattern to the previous BChE assay. Regarding the α-amylase inhibi-
tion, a prominent zone was evident at hRF 90 (Figure 2D, zone 1). It was assumed to be
the same compound, which showed antioxidative activity (after 1 day) and AChE/BChE
inhibition as discussed, due to the similar horizontal pattern of zone 1 across all samples.
It showed that these vegetable plants contain compounds with strong α-amylase and
α-glucosidase inhibitory activity. Inhibition of these enzymes, which delays the breakdown
of saccharides leading to reduction in the rate of glucose absorption and lowering the
postprandial serum glucose level, is a key mechanism in the management of diabetes
mellitus [38]. Hence, this outcome underlined the traditional use of these leafy vegetables
(S. biafrae, C. rubens, and L. taraxacifolia) for the treatment of diabetes in West-Africa [9,39,40].
Our results are also in agreement with in vivo and in vitro studies about their antidiabetic
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activity. Ayoola et al. [41] and Ajiboye et al. [42] reported the antihyperglycemic activity
of S. biafrae determined from in vivo alloxan-induced hyperglycemic experiments using
rats. Ajiboye et al. [34] reported α-amylase (IC50 126.9 µg/mL) and α-glucosidase (IC50
139.7 µg/mL) inhibition by phenolic extract of S. biafrae. Oyebode et al. [43] reported
α-glucosidase and lipase inhibition by C. rubens ethyl acetate and aqueous extracts, where
C. rubens extracts also inhibited intestinal glucose absorption in ex vivo studies by the
same group with results comparable to controls. Gbadamosi et al. [44] and Adjei et al. [45]
reported the antidiabetic activity of L. taraxacifolia through alloxan- and streptozotocin-
induced diabetic rat models, respectively.

Molecules 2024, 29, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 2. HPTLC–enzyme inhibition–Vis autograms of Basella alba (BA), Crassocephalum rubens (CR), 
Gnetum africanum (GA), Launaea taraxacifolia (LT), Solanecio biafrae (SB), and Solanum macrocarpon 
(SM) along with solvent blank (B), all 5 µL/band, developed on HPTLC plates silica gel 60 F254 with 
ethyl acetate–toluene–methanol–water (4:1:1:0.4, V/V/V/V), or apolar mobile phase toluene–ethyl ac-
etate (7:3, V/V), and detected under white light illumination (Vis) after the (A) AChE, (B) BChE, (C) 
α-glucosidase, and (D) α-amylase assays; zone 1 marked was recorded by HRMS. 

Respective autograms for the antidiabetic activity revealed the presence of α-gluco-
sidase- (Figure 2C) and α-amylase-inhibiting compounds (Figure 2D) in all plant samples. 
Regarding the α-glucosidase inhibition, C. rubens, L. taraxacifolia, S. biafrae, and S. macro-
carpon showed comparatively strong polar inhibition zones at hRF 0–20 (Figure 2C), simi-
lar, though much stronger, in pattern to the previous BChE assay. Regarding the α-amyl-
ase inhibition, a prominent zone was evident at hRF 90 (Figure 2D, zone 1). It was assumed 
to be the same compound, which showed antioxidative activity (after 1 day) and 
AChE/BChE inhibition as discussed, due to the similar horizontal pattern of zone 1 across 
all samples. It showed that these vegetable plants contain compounds with strong α-am-
ylase and α-glucosidase inhibitory activity. Inhibition of these enzymes, which delays the 
breakdown of saccharides leading to reduction in the rate of glucose absorption and low-
ering the postprandial serum glucose level, is a key mechanism in the management of 
diabetes mellitus [38]. Hence, this outcome underlined the traditional use of these leafy 
vegetables (S. biafrae, C. rubens, and L. taraxacifolia) for the treatment of diabetes in West-
Africa [9,39,40]. Our results are also in agreement with in vivo and in vitro studies about 
their antidiabetic activity. Ayoola et al. [41] and Ajiboye et al. [42] reported the antihyper-
glycemic activity of S. biafrae determined from in vivo alloxan-induced hyperglycemic ex-
periments using rats. Ajiboye et al. [34] reported α-amylase (IC50 126.9 µg/mL) and α-glu-
cosidase (IC50 139.7 µg/mL) inhibition by phenolic extract of S. biafrae. Oyebode et al. [43] 
reported α-glucosidase and lipase inhibition by C. rubens ethyl acetate and aqueous ex-
tracts, where C. rubens extracts also inhibited intestinal glucose absorption in ex vivo stud-
ies by the same group with results comparable to controls. Gbadamosi et al. [44] and Adjei 
et al. [45] reported the antidiabetic activity of L. taraxacifolia through alloxan- and strepto-
zotocin-induced diabetic rat models, respectively. 

Figure 2. HPTLC–enzyme inhibition–Vis autograms of Basella alba (BA), Crassocephalum rubens (CR),
Gnetum africanum (GA), Launaea taraxacifolia (LT), Solanecio biafrae (SB), and Solanum macrocarpon (SM)
along with solvent blank (B), all 5 µL/band, developed on HPTLC plates silica gel 60 F254 with
ethyl acetate–toluene–methanol–water (4:1:1:0.4, V/V/V/V), or apolar mobile phase toluene–ethyl
acetate (7:3, V/V), and detected under white light illumination (Vis) after the (A) AChE, (B) BChE,
(C) α-glucosidase, and (D) α-amylase assays; zone 1 marked was recorded by HRMS.

Apart from enzyme assays, biological suspension cell assays were used. In the Gram-
positive Bacillus subtilis bioautogram (Figure 3A), antibacterial zones were detected as white
zones on a purple background under white light illumination. In all samples, a very strong
(already overloaded) antibacterial zone was detected at hRF 90 (zone 1). Two further less
prominent zones were at hRF 14 and 45, though absent or weak in G. africanum.

In the Gram-negative Aliivibrio fischeri bioautogram (Figure 3B), bioactive zones were
revealed as dark (lower energetic metabolism of the bacteria) or brightened zones (higher
energetic metabolism) on the instantly bioluminescent plate background in all samples.
The bacterial bioluminescence, depicted as greyscale image, was monitored for 30 min
and revealed no substantial time-dependent changes. In all samples, one prominent
zone was evident at hRF 90 (zone 1) and another though weaker zone in the solvent
front. The antibacterial zone pattern was different for G. africanum, which showed one
intense antibacterial zone at hRF 83. Another more intense zone at hRF 70 was evident for
S. biafrae. Further antibacterial zones were weaker. These results support other reports on
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the antimicrobial activity of the plants [46–49]. Brightened compound zones near the start
zone indicated an increased energetic metabolism in the bacteria, which can be caused by
saccharides or sugar alcohols or glycosides, etc.
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Figure 3. HPTLC–biological assays–Vis/BL/FLD bioautograms of Basella alba (BA), Crassocephalum
rubens (CR), Gnetum africanum (GA), Launaea taraxacifolia (LT), Solanecio biafrae (SB), and Solanum
macrocarpon (SM) along with solvent blank (B), all 5 µL/band (except 15 µL for SOS-Umu-C and
cytotoxicity bioassays), developed on HPTLC plates silica gel 60 F254 (for C/D on HPTLC plates
silica gel 60) with ethyl acetate–toluene–methanol–water (4:1:1:0.4, V/V/V/V) and detected after the
(A) Bacillus subtilis bioassay under white light illumination (Vis), (B) Aliivibrio fischeri bioassay as
bioluminescence (BL) depicted as greyscale image, (C) cytotoxicity bioassay using the Salmonella Ty-
phimurium cells with thiazol blue tetrazolium bromide substrate under white light illumination, and
(D) SOS-Umu-C genotoxicity bioassay with fluorescein-digalactoside substrate, and for comparison,
on a separate plate, the same with metabolization via the S9 liver enzyme system detected at FLD
254 nm; zone 1 (marked) was recorded by HRMS.

In the cytotoxicity bioautogram (Figure 3C), using Salmonella Typhimurium cells
incubating for 18 h and thiazol blue tetrazolium bromide as the substrate, few cytotoxic
compounds were observed as colorless zones on a purple background. However, after
one day, the polar cytotoxic zones (hRF 0–20) of C. rubens, L. taraxacifolia, S. biafrae, and
S. macrocarpon increased substantially, indicating an increase in cytotoxicity over time.
In contrast, G. africanum showed only one weak cytotoxic compound zone at hRF 83
(Figure 3C), which decreased over time. Only a few reports exist in the literature on the
cytotoxic potentials of these species. Kumar et al. [50] reported the cytotoxicity effect
of B. alba aqueous stem extract on HepG2 (hepatocellular carcinoma), A431 (epidermoid
carcinoma), and MG63 (osteosarcoma) cell lines. Alhassan and Atawodi [51] investigated
the effect of dietary inclusion of C. rubens on colon cancer induced through N-methyl-
N-nitrosourea in Wistar rats. The results suggested that C. rubens could be effective in
preventing the onset and progression of chemically induced colon carcinogenesis. Gnetin-
C, a stilbene present in G. africanum, has been shown by some studies to possess potent
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anticancer property [52,53]. Koukoui et al. [54] reported the cytotoxic effect of L. taraxacifolia
aqueous ethanol extract on HepG2 cells. According to Oluremi [55], S. macrocarpon extracts
displayed potent cytotoxic activity against HeLa, HEp-2, and MCF-7 cancer cells.

In the genotoxicity bioautogram (Figure 3D), genotoxic substance zones were evident
as the formed green fluorescent fluorescein end-product detected at FLD 254 nm [56].
Only a few weak genotoxic substance zones were detected at hRF 40, 50, and 75 in several
plants. However, prominent dark blue zones were observed indicating cytotoxicity. At
these zone positions, the usually light green fluorescent background was not expressed
due to cell death. The dark blue zones are in agreement with the previous cytotoxic
compound zones. However, the fluorogenic fluorescein-digalactoside substrate used here
is more sensitive in detection than the chromogenic thiazol blue tetrazolium bromide
substrate used in the previous cytotoxicity bioassay, which explains the stronger response.
It confirmed in particular the previous cytotoxicity results for C. rubens, L. taraxacifolia,
S. biafrae, and S. macrocarpon. For these dark blue zones, genotoxicity cannot be excluded
at lower amounts, and further dose–response studies are needed for clarification of the
genotoxic potential.

Almost all genotoxic and cytotoxic compound responses were substantially reduced
after on-surface detoxification via the S9 liver metabolization system (Figure 3D). The S9
liver metabolization system on HPTLC plates mimics the liver detoxification system of
a healthy liver in the human body [24]. This indicated that the observed genotoxic and
cytotoxic molecules can largely be detoxified in a healthy liver.

2.4. Comparison of Both Effect-Directed Analysis Techniques

For the first time, the results of in vitro microtiter plate assays were compared with
those of the bioactivity profiling by HPTLC–UV/Vis/FLD–EDA for these plants. Generally,
both methods are very useful in the drug discovery process. Microtiter plate assays are
more commonly used for quantitatively evaluating biological activity [57]. However, IC50
values can also be calculated as well via HPTLC–UV/Vis/FLD–EDA, which is a more new
area of research [56]. The used microtiter plate assays analyzed up to 96 samples at the
same time, which gives room for the relevant dilutions and controls and it is cost effective.
The solvent for dissolution of the plant extracts should not interfere or inhibit the enzyme
reaction in the microtiter plate well. For solubility reasons, medium polar plant extracts are
re-dissolved with low concentrations of dimethyl sulfoxide, ethanol, or methanol before
in vitro assay screening [12]. In contrast, HPTLC–UV/Vis/FLD–EDA is compatible with
any kind of extraction solvent, such as water, methanol, chloroform, ethyl acetate, n-hexane,
etc., without affecting enzyme activity, since all solvents are evaporated before planar assay
screening [58]. Otherwise, the same type of chemicals, buffers, and enzymes were used for
both assay methods. For microtiter plate assays, a mixed sum value is obtained as result
for a complex sample, therefore, it has to be used with caution since it is highly prone to
signal interferences. For example, the presence of other colored compounds may counteract
or suppress or cancel the measurement of the colorless inhibition signal. In contrast, the
effect-directed HPTLC profiling can separate colorless inhibitors from interfering colored
compounds, since the separation is integrated into planar assays. HPTLC–UV/Vis/FLD–
EDA allows for the differentiation and identification of potential individual biochemical
and biological active compounds. Their further characterization is possible by detection
methods, such as HRMS and nuclear magnetic resonance spectroscopy [22]. HPTLC–
UV/Vis/FLD–EDA is also cost-efficient (0.5–0.8 EUR/sample, depending on the enzyme
costs) and fast (5–15 min/sample, depending on the incubation time of the assay) since
up to 22 samples can be analyzed on one HPTLC plate. Recently, the open-source do-it-
yourself 2LabsToGo system was introduced as a one-of-its-kind development in system
engineering [59], which is highly sustainable regarding resources and has very low material
costs to build and install the planar assay methodology. Its functionality was proven by
various applications [60]. In contrast, the in vitro assay has to be followed by bioassay-
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guided fractionation and chromatographic analysis, which requires much more material
resources and more time for analysis.

2.5. Characterization of the Bioactive Zone 1 via HRMS

The prominent apolar bioactive compound zone 1 was selected for further characteri-
zation via recording of HPTLC−HESI-HRMS spectra. The compound zone itself was not
visible, not UV-active, and not fluorescent and thus not detectable in the initial UV/Vis/FLD
chromatogram. First, in the bioprofiles, the zone was detected due to its versatile activities,
such as DPPH• scavenging (Figure 1), AChE, BChE, α-glucosidase, and α-amylase inhibi-
tion (Figure 2) as well as activities against Bacillus subtilis and Aliivibrio fischeri (Figure 3).
After application of exemplarily Basella alba and its separation using the apolar mobile
phase system, the bioactive zone compound zone 1 was eluted from the HPTLC plate into
the HESI–HRMS system using the open-source modified auto-TLC-LC-MS interface [61]
and molecular formulae were tentatively assigned. After the zone elution, the respective
α-amylase inhibition assay was performed to confirm the proper elution zone positioning,
evident via the elution head imprint (Figure 4).
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mode of the prominent multi-potent bioactive compound zone 1 (marked in Figures 1–3) exemplarily
recorded from Basella alba (5 µL/band applied and developed on silica gel 60 F254 HPTLC plate
with toluene–ethyl acetate 7:3, V/V); post-HRMS performance of the α-amylase inhibition assay and
respective autogram under white light illumination (Vis) as proof of the proper positioning on the
active zone 1, which was originally not UV-active, not fluorescent and not visible.

In the HESI− mode, the deprotonated HRMS signal (base peak) at m/z 277.2174
[FA(18:3) − H]− (∆ ppm −0.5) tentatively indicated linolenic acid (C18H30O2), which was
confirmed by its sodium adduct at m/z 301.2137 [FA(18:3) + Na]+ (∆ ppm 0.5) and disodium
adduct at m/z 323.1956 [FA(18:3) + 2Na − H]+ (∆ ppm −3.0) in the HESI+ mode. Oxidized
linolenic acid (C18H30O3) was also evident at m/z 293.2152 [FA(18:3) + O − H]− (∆ ppm
−1.0). Although, with low signal intensity, it can be responsible for the antibacterial activity,
cytotoxicity, and genotoxicity of samples [23]. As expected for the normal phase separation
mechanism, further coeluting fatty acid signals, though much weaker, were revealed in the
same zone and tentatively assigned to palmitic acid (C16H32O2) at m/z 255.2331 [FA(16:0) −
H]– (∆ ppm −0.7), linoleic acid (C18H32O2) at m/z 279.2330 [FA(18:2) − H]− (∆ ppm −0.2),
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along with its sodium adduct at m/z 303.2293 [FA(18:2) + Na]+ (∆ ppm 0.6) and disodium
adduct at m/z 325.2113 [FA(18:2) − H + 2Na]+ (∆ ppm −0.4), and oleic acid (C18H34O2)
at m/z 281.2487 [FA(18:1) − H]– (∆ ppm −0.3), along with its disodium adduct at m/z
327.2269 [FA(18:1) − H + 2Na]+ (∆ ppm −0.4). Weak signals for lauric and myristic acid
were also observed. This preliminary assignment to fatty acids is confirmed by previous
research work which successfully proved the anti-diabetic, AChE/BChE inhibiting and
antibacterial effects for individual fatty acids [62–65]. Until now, apolar compounds such
as fatty acids and triacylglycerols have often been overlooked in the in vitro assay analysis,
as a defattening step is often carried out at the beginning of the workflow or such apolar
compounds are hardly soluble in the buffered polar assay medium. However, it was clearly
shown in this study that apolar components of a sample should not be discriminated by
analytical methodologies and protocols as these were most active [62–65].

3. Materials and Methods
3.1. Reagents and Chemicals

All the chemicals and solvents used were analytical grade. Solvents used for HPTLC
study were of chromatography grade. DPPH•, dimethyl sulfoxide, phosphate buffer, and
tris (hydroxymethyl)aminomethane hydrochloride (Tris-HCl) buffer, methanol, ethanol,
n-hexane, dichloromethane, ethyl acetate, n-butanol, 4-methoxybenzaldehyde, gallic acid,
quercetin, potassium ferricyanide, trichloroacetic acid, distilled water, iron(III)chloride,
Folin–Ciocalteu reagent, sodium carbonate, copper (II) chloride, neocuproin, ammonium
acetate, electric eel (Electrophorus electricus) AChE (Type-VI-S, EC 3.1.1.7), equine serum
BChE (EC 3.1.1.8), acetylthiocholine iodide and butyrylthiocholine chloride, 5,5′-dithio-
bis(2-nitrobenzoic) acid, galantamine hydrobromide, rivastigmine, mushroom tyrosinase
(EC 1.14.1.8.1; 30 U), L-DOPA, and α-kojic acid were purchased from Sigma (St. Louis,
MO, USA). Acetic acid, bovine serum albumin, Dulbecco’s phosphate-buffered saline
(DPBS), fluorescein-di-β-D-galactopyranoside (FDG), tetracycline, thiazol blue tetrazolium
bromide, acarbose, α-amylase from hog pancreas; Gram’s iodine solution, 4-nitroquinoline-
1-oxide was purchased from TCI (Eschborn, Germany). The bacteria, i.e., Aliivibrio fischeri
(NRRI–B11177, strain 7151) and Bacillus subtilis (DSM-618) were purchased from the Ger-
man Collection of Microorganisms and Cell Cultures (Leibniz Institute DSMZ, Berlin,
Germany). Salmonella enterica subspecies enterica Typhimurium strain TA1535 (Salmonella
Typhimurium), genetically modified to contain the plasmid pSK1002, was obtained from
Trinova Biochem (Giessen, Germany). HPTLC plates silica gel 60 F254 and HPTLC plates
silica gel 60, both 20 cm × 10 cm, were provided by Merck (Darmstadt, Germany), if
necessary, prewashed with methanol–water (4:1) and followed by drying at 120 ◦C for
15 min (oven or TLC Plate Heater, CAMAG, Muttenz, Switzerland).

3.2. Origin and Lyophilization of Plant Materials

Samples of Launaea taraxacifolia (herbarium number 113627, Asteraceae), Crassocephalum
rubens (herbarium number 113720, Asteraceae), Solanecio biafrae (herbarium number 113776,
Asteraceae), and Basella alba (herbarium number 113741, Basellaceae) were collected from
the forest and vegetable center of the International Institute of Tropical Agriculture (Ibadan,
Nigeria), while samples of Solanum macrocarpon (herbarium number 113641, Solanaceae)
and Gnetum africanum (herbarium number 113862, Gnetaceae) were purchased from the lo-
cal markets in Ibadan, Nigeria, in July 2021. The market plants were authenticated at Forest
Herbarium Ibadan, Nigeria, after which they were freeze-dried using a lyophilizer (Lab-
conco, Kansas, MO, USA), ground to powder, and stored in air-tight containers until use.

3.3. In Vitro Biological Assays after Extraction/Fractionation
3.3.1. Extraction and Fractionation of Plant Powders

For ethanol and water extracts, the lyophilized plant powders (200 g each) were mac-
erated separately in 2 L 96% ethanol or distilled water for 72 h, filtered, and concentrated in
vacuo. The maceration was repeated 4 times until the filtrate color became light to achieve
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an exhaustive extraction. Depending on the yield, the ethanol extracts were dissolved in
methanol–water 9:1, V/V (dry extract to solvent ratio of 1:2, w/V), which was fractionated
in a separating funnel using four different solvents of increasing polarity (100 mL aliquots)
each of n-hexane, dichloromethane, ethyl acetate, and n-butanol.

3.3.2. TPC

Using the Folin–Ciocalteu method [25], the TPC was expressed as mg gallic acid
equivalent per gram of plant extract. It was calculated from the gallic acid (mg GAE/g)
calibration curve (y = 1.8829x + 0.1891, R2 = 0.9747) prepared by mixing 10 µL of gallic acid
dilution (0.016–2 mg/mL in ethanol) or 10 µL plant extract/fraction (2 mg/mL dissolved
in ethanol, 96%) with 30 µL of Folin–Ciocalteu reagent (two-fold dilution) and 150 µL of
sodium carbonate (3.5% in water) in 96-microtiter plate wells, followed by incubation at
40 ◦C for 30 min. Absorbance was measured at 765 nm (microplate reader SpectraMax®

ABS Plus, Molecular Devices, San Jose, CA, USA).

3.3.3. DPPH• Scavenging Assay

As described in [62–64], the plant extract/fraction (10 µL, 2 mg/mL) and references
(gallic acid and quercetin, 2 mg/mL), all dissolved in ethanol, were mixed with ethanolic
DPPH• solution (90 µL, 0.138 mg/mL) and incubated in the dark at room temperature for
30 min. The remaining DPPH• signal was measured at 515 nm using the microplate reader.

3.3.4. FRAP Assay

According to Deniz et al. [66], 10 µL plant extract/fraction (2 mg/mL in ethanol)
were added into 25 µL of phosphate buffer (pH 6.6) and 25 µL of potassium ferricyanide
(1%, w/v), incubated at 50 ◦C for 20 min, and then 25 µL trichloroacetic acid (10%), 85 µL
distilled water, and 17 µL iron(III)chloride (0.1%, w/v) were added. After 30 min incubation
at room temperature, absorbance was read at 700 nm using the microplate reader.

3.3.5. CUPRAC Assay

Following the method of Deniz et al. [66], 25 µL of 10 mM copper (II) chloride, 25 µL of
7.5 mM neocuproin, 25 µL of 1 M ammonium acetate (pH 7), 25 µL of plant extract/fraction
(2 mg/mL) or reference gallic acid (2 mg/mL), and 100 µL of distilled water were mixed in
a 96-well microtiter plate well. The reaction was incubated at room temperature for 30 min,
after which the absorbance was measured at 450 nm using the microplate reader.

3.3.6. AChE and BChE Inhibition Assays

Following Ellman’s spectrophotometric method [30] modified by [31], 140 µL of
0.1 mM sodium phosphate buffer (pH 8.0) was added to the 96-well microtiter plate, and
then 20 µL of plant extract/fraction (2 mg/mL) as well as solvent blank (ethanol, negative
control) was added. Afterwards, 20 µL of 0.2 M AChE/BChE solution (0.003 U/well)
was added followed by incubation at room temperature for 10 min. The reaction was
started by adding 10 µL of 0.2 M acetylthiocholine iodide/butyrylthiocholine chloride
as respective substrate and, finally, 10 µL of 5,5′-dithio-bis(2-nitrobenzoic) acid. The
formation rate and color intensity of the yellow-colored 2-nitro-5-thiobenzoate formed
were measured using the microplate reader at wavelength of 412 nm. The positive control
galantamine hydrobromide was used as the reference in both experiments. Enzyme activity
was calculated by rate of change in absorbance by kinetics measurement every 1 min
for 10 min using Softmax Pro Software for Windows 10 version 7 (San Jose, CA, USA).
Percentage inhibition was calculated based on a comparison of rates of enzyme reaction
between samples and the blank sample (ethanol in phosphate buffer, pH 8) using the
formula (1 − S/E) ×100, where E is enzyme activity without test sample and S is enzyme
activity with test sample.
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3.3.7. TYR Inhibition Assay

Inhibition of TYR was determined using L-DOPA as substrate [67], modified by
Orhan et al. [68]. Plant extract/fraction (10 µL) dissolved in dimethyl sulfoxide were added
to 80 µL of phosphate buffer (pH 6.8) in a 96-well plate and 30 µL of 5 mM L-DOPA, which
was followed by 10 min incubation at 37 ◦C. Tyrosinase (1.2 U/well, 30 µL) was then added,
the reaction was incubated at 25 ◦C for 20 min, and absorbance was measured at 492 nm
using the microplate reader. Results were compared with the positive control α-kojic acid
used as reference and the negative control dimethyl sulfoxide.

3.3.8. Statistical Analysis

Antioxidant activity and enzyme inhibition assays were performed in triplicate or
in four replicates, respectively. Values were expressed as means ± standard deviation
(S.D). Correlation analysis was performed using Excel to determine Pearson’s correlation
coefficient (r2). IC50 values were calculated for samples with minimum of 50% activity using
GraphPad Prism 6.01. Significant level used was determined at p ≤ 0.05 from one-way
ANOVA followed by Tukey’s multiple comparison test for the comparison of positive
control with the test groups using GraphPad Prism 6.01.

3.4. HPTLC–Bioactivity Profiling
3.4.1. Extraction and HPTLC Analysis

Lyophilized plant powder samples (100 mg each) were weighed accurately, and each
was dissolved in 2 mL ethyl acetate–ethanol–water 1:1:1, V/V/V, ultrasonicated for 30 min
(Sonorex Digiplus, Bandelin, Berlin, Germany), and centrifuged at 3000× g for 15 min
(Labofuge 400, Heraeus, Hanau, Germany). Each supernatant (50 mg/mL) was transferred
to an autosampler vial. The plant extracts (5 µL/band, if not stated otherwise) were applied
(ATS 4, CAMAG) on HPTLC plates silica gel 60 F254 (without F254 indicator for SOS-Umu-C
bioassay), separated with ethyl acetate–toluene–methanol–water 4:1:1:0.4, V/V/V/V, or
toluene–ethyl acetate 7:3, V/V, up to a migration distance of 70 mm (about 20 min, Twin
Trough Chamber, CAMAG) and detected under white light illumination (reflection and
transmission mode), UV 254 nm, and FLD 366 nm (TLC Visualizer, CAMAG). Immersion
(3 cm/s, 2 s, TLC Immersion Device, CAMAG) or piezoelectric spraying (blue nozzle, level
3, Derivatizer, CAMAG) was used for the effect-directed assays as follows.

3.4.2. HPTLC–DPPH• Scavenging Assay

The HPTLC chromatogram was sprayed with 4 mL DPPH• solution (0.04% in methanol),
dried, and detected instantly and after one day under white light illumination as described
by Morlock et al. [20]. Gallic acid (0.25 mg/mL in methanol; 0.2, 0.6, and 1.0 µL/band) was
used as positive control. Antioxidant compounds were directly observed as yellow zones
against a purple background. Detection was also performed a day later.

3.4.3. HPTLC–AChE/BChE Inhibition Assays

Enzyme solution (3.0 mL, 6.66 U/mL AChE or 3.34 U/mL BChE in Tris–HCl buffer
plus 1 mg bovine serum albumin) was sprayed on the HPTLC chromatogram, followed by
incubation at 37 ◦C for 25 min, and then 0.5 mL substrate (3 mg/mL 1-naphthyl acetate
solution in ethanol and Fast Blue B salt solution in water) was sprayed. The plates were
dried and detected under white light illumination [21]. Rivastigmine (0.1 mg/mL in
methanol; 2, 4, and 8 µL/band) was used as positive control. For both assays, inhibition
zones were detected as colorless (white) zones on a purple background under white
light illumination.

3.4.4. HPTLC–α-Amylase/α-Glucosidase Inhibition Assays

According to Schreiner et al. [21], α-amylase solution (62.5 U/mL in sodium acetate
buffer, pH 7) was sprayed on the HPTLC chromatogram, followed by incubation at 37 ◦C
for 30 min and spraying of the substrate solution (2% starch in water), which was followed
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by another incubation at 37 ◦C for 20 min and spraying of Gram’s iodine solution (0.5 mL).
For the α-glucosidase inhibition assay, 2-naphthyl-α-D-glucopyranoside substrate solution
(2 mL, 12 mg in 10 mL ethanol with 10% 10 mM sodium chloride solution) was sprayed,
and after drying for 2 min, α-glucosidase solution (2.5 mL, 10 U/mL in sodium acetate
buffer, pH 7.5) was sprayed, followed by incubation at 37 ◦C for 15 min and spraying of Fast
Blue B salt solution (0.75 mL, 2 mg/mL in water). Acarbose (0.01 mg/mL in methanol; 0.3,
0.6, and 0.9 µL/band) was used as positive control. For both assays, inhibition zones were
detected as colorless (white) zones on a purple background under white light illumination.

3.4.5. HPTLC–Aliivibrio fischeri Bioassay, Followed by Derivatization with p-Anisaldehyde
Sulfuric Acid Reagent

The bioluminescent Aliivibrio fischeri suspension (evaluated upon shaking in a dark
room) was sprayed on the HPTLC chromatogram, and the humid plate was transferred to
the BioLuminizer (CAMAG) as described by Jamshidi-Aidji and Morlock [69]. Ten images
of the bioluminescence were recorded over 30 min (exposure time 60 s, trigger interval
3.0 min), depicted as greyscale image. Dark zones revealed lower energetic metabolism of
the bacteria, whereas bright zones indicated a higher energetic metabolism. As positive
control, caffeine was used (1 mg/mL in methanol; 0.5, 1.5, and 3 µL/band).

The dried bioautogram was additionally derivatized by immersion in p-anisaldehyde
sulfuric acid reagent (0.25 mL 4-methoxybenzaldehyde, 2 mL sulfuric acid, 4 mL glacial
acetic acid, and 35 mL methanol) at 3 cm/s immersion speed for 2 s (TLC Immersion
Device, CAMAG), followed by plate heating at 110 ◦C for 3 to 5 min (TLC Plate Heater,
CAMAG) and detections under white light illumination and FLD 366 nm.

3.4.6. HPTLC–Bacillus subtilis Bioassay

The bacterial Bacillus subtilis suspension, i.e., 100 µL cryostock in 20 mL 2.3% Müller–
Hinton broth incubated overnight at 37 ◦C and adjusted to an optical density at 600 nm
(OD600) of 1.0, was sprayed on the HPTLC chromatogram, followed by incubation at 37 ◦C
for 2 h. Then, thiazol blue tetrazolium bromide substrate solution (0.2% in DPBS buffer)
was sprayed on it, followed by incubation at 37 ◦C for 1.5 h, plate drying (50 ◦C, 10 min),
and detection of colorless (white) antibacterial zones on a purple background under white
light illumination [21]. As positive control, tetracycline (0.005 mg/mL in ethanol; 0.5, 1.5,
and 3 µL/band) was used.

3.4.7. HPTLC–SOS-Umu-C Genotoxicity Bioassay

The bioassay was performed on HPTLC plates without F254 according to [56,70]. The
Salmonella Typhimurium suspension (OD600 of 0.2) was sprayed (2.8 mL) on the HPTLC
chromatogram, followed by incubation at 37 ◦C for 3 h. In the case of S9 metabolization,
S9-mix (500 µL) and the solutions of NADP (166 µL), G6P (42 µL), and buffer salts (953 µL)
were added to the Salmonella Typhimurium suspension (3334 µL) as described [24]. FDG
substrate solution (25 µL of 0.5% FDG in dimethyl sulfoxide in 2.5 mL phosphate buffer)
was sprayed (2.5 mL), followed by incubation at 37 ◦C for 15 min, plate drying, and
detection at 254 nm. As positive control, 4-nitroquinoline-1-oxide (1 ng/mL in methanol;
0.2, 0.5, and 1 µL/band) and aflatoxin B1 (1 ng/µL in methanol; 1, 2.5, and 5 µL/band) were
used without and with S9 metabolization, respectively. Genotoxic substances appeared as
bright green fluorescent fluorescein zones (released from FDG via β-galactosidase produced
by the bacteria in the presence of DNA-damaging compounds) on a less green fluorescent
background at FLD 254 nm.

3.4.8. HPTLC–Cytotoxicity Bioassay

The Salmonella Typhimurium suspension (OD600 of 0.2) was sprayed (2.8 mL) on the
HPTLC chromatogram. Thiazol blue tetrazolium bromide substrate solution (0.2% in
phosphate buffer) was sprayed (800 µL) onto the still-wet HPTLC chromatogram. The
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plate was then incubated (37 ◦C, 18 h), followed by plate drying in a stream of cold air and
detection under white light illumination [23].

3.4.9. HPTLC–UV/Vis/FLD–HESI–HRMS

Basella alba (5 µL/band) was applied exemplarily. After separation using the apolar
mobile phase system (toluene–ethyl acetate 7:3, V/V), the bioactive zone 1 was eluted
with methanol containing 0.1% formic acid at a flow rate of 100 µL/s via the open-source
modified auto-TLC-LC-MS interface [61] from the HPTLC plate into the HESI–HRMS
system (QExactive Plus, Thermo Fisher Scientific, Dreieich, Germany) with the following
settings: +3.5 kV and −3.5 kV spray voltage, 270 ◦C capillary and 200 ◦C probe heater
temperature, resolution 280,000, m/z 100–1500, and automatic maximum injection time
10/200 ms for positive/negative ionization. The MZMine3 peak picking software was
used [71]. After the zone elution, the respective α-amylase inhibition assay (3.4.4.) was
performed to confirm the proper positioning on the active zone.

4. Conclusions

The bioactivity data for the six African under-utilized medicinal leafy vegetables
B. alba, C. rubens, G. africanum, L. taraxacifolia, S. biafrae, and S. macrocarpon obtained by
two different effect-directed analysis techniques, i.e., in vitro microtiter plate assays and
HPTLC–bioactivity profiling, were consistent and in accordance with the sparse literature.
Among the six leafy vegetables, C. rubens, S. biafrae, and S. macrocarpon in particular showed
pronounced compounds that were antioxidative, antibacterial against Gram-positive Bacil-
lus subtilis and Gram-negative Aliivibrio fischeri, and inhibited AChE, BChE, α-amylase,
and α-glucosidase. However, cytotoxic and genotoxic compounds were also observed.
Altogether, the antioxidant, antimicrobial, antidiabetic, anticholinesterase, cytotoxic, and
genotoxic activities may explain the traditional use of the plant material and validate some
of their ethnomedicinal uses in the treatment of diabetes and in wound healing. Such leafy
vegetables with health promoting benefits can serve for the development of important
local functional foods. Further work is ongoing to isolate and characterize the bioactive
compounds from C. rubens, S. biafrae, and S. macrocarpon.
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