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Abstract: A rice classification method for the fast and non-destructive differentiation of different
varieties is significant in research at present. In this study, fluorescence hyperspectral technology
combined with machine learning techniques was used to distinguish five rice varieties by analyzing
the fluorescence hyperspectral features of Thai jasmine rice and four rice varieties with a similar ap-
pearance to Thai jasmine rice in the wavelength range of 475–1000 nm. The fluorescence hyperspectral
data were preprocessed by a first-order derivative (FD) to reduce the background and baseline drift
effects of the rice samples. Then, a principal component analysis (PCA) and t-distributed stochastic
neighborhood embedding (t-SNE) were used for feature reduction and 3D visualization display. A
partial least squares discriminant analysis (PLS-DA), BP neural network (BP), and random forest
(RF) were used to build the rice classification models. The RF classification model parameters were
optimized using the gray wolf algorithm (GWO). The results show that FD-t-SNE-GWO-RF is the best
model for rice classification, with accuracy values of 99.8% and 95.3% for the training and test sets,
respectively. The fluorescence hyperspectral technique combined with machine learning is feasible
for classifying rice varieties.

Keywords: rice; fluorescence hyperspectral technology; variety classification; non-destructive

1. Introduction

Rice, corn, and wheat are the world’s three major food crops [1], with rice being
one of the most dominant staple foods in many countries, especially in some Asian coun-
tries [2]. Since 1960, thousands of rice varieties have appeared in the world [3]. With the
improvement in the population’s living standards, the quality requirements for the daily
consumption of rice are also increasing [4]; rice should taste good and flavorful and be
nutritious [4]. Rice provides the necessary protein and energy and calcium, iron, zinc,
selenium, potassium, and other mineral elements for the human body [4]. Because of its
rich nutritional value and good flavor and texture, rice occupies an essential position in
the staple food market and other processed foods [5]. At present, there are many varieties
of rice available in the market [6]. However, the quality and nutritional value of differ-
ent rice varieties are different [6], and there is also a significant difference in the selling
price. Among them, Thai jasmine rice’s appearance, good quality, and fragrant smell are
loved by consumers worldwide [7]. However, due to its limited production, the mixing
of the expensive Thai jasmine rice with ordinary white rice is becoming an increasingly
problematic phenomenon [8]. The malpractice creates unfair economic interests, under-
mining the consumer’s trust in the producer [9], affecting the consumer’s consumption
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of taste, and causing severe harm to the health of the body [10]. At the same time, rice
adulteration has become an urgent problem in the food industry [9]. Therefore, research
on rice variety detection technology has become a hot research topic in the field of food
safety at present [11]. Developing an effective tool for consumers, producers, and retailers
to identify rice varieties is necessary.

In recent years, research on rice variety identification has been carried out at home
and abroad [12]. As shown in Figure 1, from 1998 to 2005 [13], people’s awareness of rice
consumption safety was relatively poor [13], and there was less research on rice variety
identification and authenticity. Since 2006, the research on variety identification and the
authenticity of rice has gradually increased [14], mostly between 2012 and 2015. Because of the
frequent occurrence of rice quality problems and safety events in this period [15], countries have
established agricultural management regulations and used the law to clarify the traceability
system of rice [15]. People’s awareness of the safety of rice consumption increased yearly, and
more and more researchers have begun to research rice varieties and their authenticity [10].
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Traditional rice variety identification methods include sensory evaluation [12], physical
and chemical testing [12], spectroscopic methods [8], and electronic tongue and nose tech-
nology [12]. The sensory evaluation method is the most frequently used rice variety testing
method, mainly including direct comparison and coloring [16]. Professionals use sensory
evaluation to score rice’s taste, color, and texture, and subjective factors easily influence it [12].
Standard chemical detection methods include GC-MS [10], LC-MS [10], and GC-IMS [10],
which can qualitatively and quantitatively detect the chemical components of rice, such as
straight-chain starch content, fatty acids, proteins, and starch [10]. However, it requires a
complicated sample pretreatment and professional operation [10]. Standard physical test-
ing methods include texture and rapid viscosity analyzers [10], which can create accurate
expressions by testing rice’s hardness, viscosity, cohesion, and resilience to evaluate its edible
quality objectively [10]. All of the above methods require sample pretreatment, sample
structure disruption, and specialized personnel. Raman and near-infrared spectroscopy
have the drawbacks of cumbersome sample preparation [8], being time-consuming, and
non-destructive detection. An electronic tongue [17] and electronic nose [18] can simulate
those of mammals to identify the characteristics of the sample through taste and smell. This
method obtains qualitative and quantitative information from the sample by making non-
specific responses to the relevant chemicals and analyzing the responses through appropriate
pattern recognition procedures [10]. However, this method also suffers from the problem
of being affected by the environment and destroying the structure of the rice sample [10].
The above traditional rice variety identification methods are time-consuming, cumbersome,
and destructive [10]. They cannot meet the growing demand for rapid, non-destructive
testing in the supervision and distribution of the rice market industry. Therefore, because
of the shortcomings of the above methods, it is urgent to develop a method for rice variety
identification that is highly accurate, rapid, efficient, and low-cost.

Spectral imaging technology [19], as a non-contact rapid detection means, has been
widely used in research related to rice detection [19]. Among them, fluorescence hyper-
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spectral [20] imaging technology combines the advantages of hyperspectral technology
and digital imaging technology, which can effectively make up for the shortcomings of
traditional rice identification methods. Moreover, fluorescence hyperspectral imaging is a
non-destructive spectral analysis technique [20], which provides a new way of thinking
for the non-destructive testing of rice. This technology excites the electrons in the material
to be measured by a laser or other light sources, causing the electrons to jump from a
low to a high energy level [21]. When the electrons are at a high energy level, they imme-
diately return to a low one, releasing energy [21]. This energy is emitted in the form of
fluorescence, from which the spectral camera captures the image information and obtains a
fluorescence hyperspectral image of the sample [21]. The principle of fluorescence hyper-
spectral imaging is similar to that of hyperspectral imaging [19]. However, the difference is
that, in fluorescence hyperspectral imaging, the spectral camera receives the fluorescence
intensity emitted by the sample’s fluorescent substance rather than the sample’s reflected
light [20]. This technique has a short detection time and does not cause damage to the
sample itself [21]. Therefore, this study combines fluorescence hyperspectral imaging with
rice variety identification, which has tremendous research potential.

Fluorescence hyperspectral technology combined with machine learning [22] has yet
to be used to explore rice variety identification. In this study, Thai jasmine rice that was
sold in the market and four other common rice species with a similar appearance to Thai
jasmine rice are selected. The purpose of this study is to use a novel fluorescence hyperspectral
imaging device to obtain the fluorescence hyperspectral data of the five types of rice and
then analyze and process the fluorescence hyperspectral data using algorithms in the field of
machine learning in order to establish a rice variety identification model for distinguishing
the authenticity of Thai jasmine rice. This study provides a reference method and theoretical
basis for the research of maintaining Thai jasmine rice’s market order, protecting consumers’
rights and interests, and safeguarding Thai jasmine rice’s food safety. It also provides a rapid
and non-destructive testing method for other food safety identification fields.

2. Results and Discussion
2.1. Characterization of Fluorescence Hyperspectral Imaging

A fluorescence hyperspectral imaging device was used to collect spectral data, and a
total of 550 (5 species × 110 samples) rice samples were obtained. The raw fluorescence
hyperspectral values of the rice samples are shown in Figure 2 (in the pictures in this section,
1 represents Northeast Wuchang rice, 2 represents Northeast long-grain rice, 3 represents
Thai jasmine rice, 4 represents Sichuan Meishan rice, and 5 represents Shaanxi Hanzhong
rice). The fluorescence hyperspectral curve trend, peak, and trough positions are the
same for the five different rice samples in the spectral range of 376–1000 nm [23], but the
reflectance values differ. This indicates that the internal chemical composition of the rice is
the same, but the content of each component is different [23].

According to Figure 2b, each of the five types of rice showed different fluorescence
hyperspectral waveforms in the range of 480–600 nm, and all of them exhibited a fluores-
cence characteristic peak at 509 nm, which was related to saturated fatty acids, the main
component in rice. In particular, Thai jasmine rice exhibited the highest peak at 675 nm
compared to the four ordinary Chinese rice varieties, which was related to chlorophyll in
rice. These components are factors that affect the quality of rice. These factors are influ-
enced by nitrogen fertilizer application, the production environment, and the cultivation
environment (temperature). Among them, the four ordinary Chinese rice varieties were
grown at higher latitudes than Thai jasmine rice (15–18◦ N), which was grown in the tropics.
The reason for the trend of fluorescence intensity in the above rice samples is similar to that
reported by Min-Jee Kim et al. [23]. This further validates the accuracy of the results of
this study. The internal differences between Thai jasmine rice and Chinese rice resulted in
different fluorescence intensities in the fluorescence spectra, providing a theoretical basis
for identifying pure Thai jasmine rice, which is difficult to differentiate with the naked eye,
and ordinary rice, which has a similar appearance, in the market.
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Figure 2. (a) Raw spectra of the five rice samples. (b) Raw average spectra of the five rice samples
(1—Northeast Wuchang rice, 2—Northeast long-grain rice, 3—Thai jasmine rice, 4—Sichuan Meishan
rice, 5—Shaanxi Hanzhong rice; the same below).

2.2. Fluorescence Hyperspectral Data Preprocessing

In the process of fluorescence hyperspectral data acquisition, due to the influence of
environmental factors, there is a certain amount of noise in the acquired fluorescence hy-
perspectral data, which adversely affects the performance of the final modeling. Therefore,
fluorescence hyperspectral data need to be preprocessed before modeling [22,24]. Figure 3
shows the fluorescence hyperspectral curves after MC, SG, SNV, and FD preprocessing.
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Figure 3. Spectra of the rice samples after different pretreatments.

Figures 2–4 show that all three methods, SG, SNV, and FD, performed better on the
rice sample data preprocessing than the original data, and the MC preprocessing method
produced more interference. SG and SNV performed roughly the same in eliminating the
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solid particle size and surface scattering and in highlighting helpful information [25]—the
difference between the fluorescence hyperspectral curves after SG and SNV processing is
not apparent. However, after the FD preprocessing of the original fluorescence hyperspec-
tral curves, the baseline translation changes can be corrected [26], and the differences in the
fluorescence hyperspectral curves of the different rice varieties are improved, which can
reflect the fluorescence hyperspectral characteristics of the samples in more detail.
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Figure 4. Mean spectra of the rice samples after different pretreatments.

We compared the different preprocessed data using various machine learning classifi-
cation models and obtained the classification accuracy through the ten-fold cross-validation
of the models [27]. We divided the rice fluorescence hyperspectral dataset into ten parts
and took turns using nine parts as the training dataset and one part as the test dataset, with
the average accuracy of 10 results from the test set as an estimate of the algorithm accuracy.
Table 1 shows the accuracy of the various preprocessing methods (MC, SG, SNV, and FD)
of the raw fluorescence hyperspectral data for the test set in different classification models.

Table 1. Classification results of the various preprocessing methods for different models.

Methods Models of Classification

BP PLS-DA RF
RAW 78% 79% 82%
MC 77% 78% 81%
SG 80% 79% 85%
SNV 82% 83% 88%
FD 84% 85% 91%

As shown in Table 1, the overall classification accuracy of the models with raw flu-
orescence hyperspectral data (RAW) without preprocessing was the lowest for the same
model. In contrast, the overall classification accuracy of the models with preprocessing was
improved. Among them, the FD and SNV test sets had the best accuracy for all classifica-
tion models. The test sets obtained from the RF classification model were higher than the
preprocessing methods used for the other models. Among all the preprocessing methods,
MC had the worst preprocessing of data, which affected the model’s accuracy. Nevertheless,
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RF was 81%, which had the best accuracy on the RF classification model. From Table 1 and
Figures 2–4, the preprocessed methods applied for use on the classification model were
feasible and improved the accuracy of the classification model. After comparison, two
preprocessing methods, SNV and FD, were used to conduct the subsequent research.

2.3. Feature Downscaling and Selection

After preprocessing, a large amount of information is still not related to the data [20]. If
adequate information is not further extracted, the high-dimensional data affect the accuracy
and robustness of the model [20]. In this paper, LLE, LDA, PCA, and t-SNE were selected
for feature dimensionality reduction selection, which can reduce the dimensionality of the
fluorescence hyperspectral data and eliminate the part of the information that overlaps
with each other in the data information [28]. By transforming the original fluorescence
hyperspectral data variables, a smaller number of new variables become linear combina-
tions of the original variables; moreover, the new variables can maximally characterize the
original variables’ data structure features and retain the original information data [28]. This
study projected rice samples onto a three-dimensional spatial coordinate system composed
of the score matrix’s first three feature principal components (PC1, PC2, and PC3). We
visually displayed them as three-dimensional components, as shown in Figure 5.
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As seen in Figure 5, all four feature downscaling methods can display the five types
of rice in the form of “clusters”. The rice sample points reduced to three dimensions
by the LLE method are considerably overlapped in the three-dimensional space. In the
rice samples processed by LDA, the sample points of five kinds of rice are interspersed
with each other, and the sample points of the five kinds of rice are very close to each
other in the three-dimensional space, which does not clearly distinguish the five kinds
of rice. The five clustering features in the rice samples processed using PCA are more
pronounced and can be distinguished. After using t-SNE to process the rice samples,
the five clustering characteristics are apparent, and the five clusters of data points are
farther apart; especially, the Thai jasmine rice and Sichuan Meishan rice clustering effect
is the best, and the remaining three varieties of the clusters only have a small amount of
crossover among the clusters. This is because the t-SNE dimensionality reduction method
can replace the Gaussian distribution in the low-dimensional space with a t-distribution,
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and the long-tailed nature of the t-distribution [29] (low in the center and high and long in
the tails [29]) separates the sample points of the five varieties of rice more obviously. Yan
Hu et al. [20] used t-SNE and PCA to construct a tea variety classification model through
three-dimensional visualization. The model’s classification performance based on t-SNE
was better than that of the model based on PCA, which further indicated that t-SNE had a
more substantial applicability to nonlinear high-dimensional data. From the visualization
effect of the rice samples in Figure 5, both PCA and t-SNE can retain most of the information
in the spectral curve, effectively reducing the dimensionality of the rice sample spectral
data. However, the classification boundary between the two is unclear, and it is necessary
to establish relevant rice classification models for further identification to see if the accuracy
of the model construction can be improved.

2.4. Modeling Analysis after Preprocessing and Feature Dimensionality Reduction Processing

The accuracy of the building classification prediction models after using different
preprocessing methods and feature dimensionality reduction processing methods is shown
in Table 2. The dataset for training the model in Table 2 is the dataset segmented using
the randomized segmentation method in machine learning, where the training dataset is
used for model calibration and the test dataset is used for external validation. This division
method references the division method of the training and test sets in reference [30]. The
distribution of the dataset using this method is relatively uniform; the distribution of the
training set and the test set overlap, and the samples in the test set contain the features of all
the samples in the training set, which ensures the reliability of the rice sample classification.

Table 2. Accuracy of the building classification models after using different preprocessing methods
and feature dimensionality reduction processing methods.

Models Methods Training Accuracy Test Accuracy

RF

FD-TSNE 99.7% 93.3%
FD-PCA 96.2% 90.2%
SNV-TSNE 90.7% 86.6%
SNV-PCA 90.2% 88.5%

PLS-DA

FD-TSNE 91.2% 90.6%
FD-PCA 90.5% 90.2%
SNV-TSNE 90.2% 90.1%
SNV-PCA 90.1% 90.0%

BP

FD-TSNE 95.5% 86.6%
FD-PCA 90.2% 84.5%
SNV-TSNE 90.1% 84.2%
SNV-PCA 89.5% 82.2%

The following can be seen from the comparison of Tables 1 and 2:

(a) In this study, a classification model was used to test the accuracy of the best rice
model. After preprocessing and feature dimensionality reduction, the classification
model accuracy was higher than that modeled using raw fluorescence hyperspectral
data. This is because, by preprocessing, the spectral noise can be removed from
the spectral curve as much as possible, highlighting the valuable information of the
spectrum [31]. Then, after processing by feature dimensionality reduction, the spectral
data dimensions are reduced to reduce further the influence of spectral noise, which
reduces the amount of data and the influence of useless data [32]. After preprocessing
and feature dimensionality reduction processing, the modeling accuracy is somewhat
improved, and the robustness is enhanced.

(b) Among all the feature dimensionality reduction processing methods, the accuracy
of t-SNE in the RF modeling was dramatically improved. Theoretically, PCA is a
matrix decomposition technique involving multiple conditional probabilities and
gradient descent calculations [33], while t-SNE is a probabilistic method [34]. In other
classification models, t-SNE also has a higher accuracy than PCA.
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(c) The accuracy of the experimental results showed significant differences in the effects
of the different models. The accuracy of RF was improved on t-SNE and PCA and
was not affected by its underlying evaluator. When the data were reduced to three
dimensions by FD-t-SNE-RF, the model was more accurate than the other preprocess-
ing methods. RF had a higher classification accuracy than BP and PLS-DA. RF had
a significant advantage in the classification of rice in this study. After using RF, the
accuracy of different preprocessing and feature processing methods was higher than
the other two classification models. Especially in FD-t-SNE-RF, the accuracies of the
training and test sets were 99.7% and 93.3%, respectively.

In order to validate the modeling performance, 150 unknown rice samples were
selected as the test set by the random division method [30]. Figure 6 shows the confusion
matrix [34] of the classification model for the prediction set of 150 samples after FD-t-SNE
processing. The rightmost two columns of data represent the precision of the correct
classification and the precision [34] of the incorrect classification for each category. The two
columns of data at the bottom represent the recall [34] of classification for each category.
From Figure 6, it can be seen that the classification model of PLS-DA in the five categories
of precision from top to bottom are 92.6%, 91.4%, 80.6%, 93.3%, and 96.3%, in which the
precisions of four categories are higher than those of the BP classification model. From
Figures 6 and 7, it can be seen that, out of the 150 samples, PLS-DA correctly identifies
136 samples with an overall accuracy of 90.6%; BP can only correctly recognize 130 rice
samples with an overall accuracy of 86.6%. The overall performance of the PLS-DA
classification model is better than that of the BP classification model. Although PLS-DA has
a better precision of three out of five categories than the RF classification model, the overall
accuracy of RF is 93.3% higher than that of the PLS-DA classification model. Therefore, the
RF classification model was chosen for the rice classification modeling in this study.
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As it can be seen from Figure 6, in the RF classification model, 2 (Northeast long-grain
aromatic rice) and 3 (Thai jasmine rice) each had one error, misclassified as 1 (Northeast
Wuchang rice) and 2 (Northeast long-grain aromatic rice), respectively. The 4 (Sichuan
Meishan rice) and 5 (Shaanxi Hanzhong rice) varieties each had two errors, misclassified
as Thai jasmine rice and Sichuan Meishan rice, respectively. The Northeast Wuchang
rice showed four errors, misclassified as Northeast long-grain fragrant rice, the most
misclassifications among the five categories. This may be because Northeast Wuchang
rice and Northeast long-grain fragrant rice are produced in the Northeast Heilongjiang
region. As shown in Figure 1, the fluorescence hyperspectral information of these two types
of rice is relatively close to each other [23], which makes the model classification results
biased. The precision of the rice classification of the remaining four categories is greater
than 92%. Overall, the RF classification model can accurately classify rice varieties. Liu
Wei et al. [30] achieved the best discrimination accuracy using the RF method combined
with FD pretreatment to distinguish non-transgenic and transgenic rice seeds. This further
indicated that FD-t-SNE-RF had a more substantial generalization and robustness for
rice identification. Therefore, in this study, the best model for rice classification was
FD-t-SNE-RF.

2.5. RF Classification Model Optimization

RF is different from the traditional decision tree algorithm, which has the character-
istics of avoiding data overfitting without pruning, as well as a faster training speed and
simple parameter adjustment, and has a better classification modeling effect under the
default parameters [35]. In the RF algorithm, parameters such as the pruning threshold, the
number of decision tree trees, and the number of categorized rice samples have a particular
impact on the output of the RF classification model.

Regarding the hyperparameter optimization problem of machine learning classifi-
cation models [36], the related literature primarily focuses on finding the optimal hyper-
parameters by using forward search methods or grid search methods [36,37], which are
time-consuming or miss the optimal values due to the improper selection of the search
step size [36]. This study used the intelligent optimization algorithm GWO [38] to optimize
two hyperparameters (maximum tree growth depth and the number of hyperparameter
subtrees) in the RF classification model. The dimension was set to 2 in the optimization
process, and p and m had an optimization ranges of [1, 200] and [1, 30], respectively. These
ranges impose constraints on the GWO algorithm during the optimization process. Sub-
sequently, a cost function was developed to represent the objective function that needed
to be minimized. Minimizing this cost function determines the optimal values of p and m
that produce the maximum accuracy for rice classification. The final classification model
accuracy using the GWO-optimized FD-TSNE-RF method is 95.3%. As it can be seen from
Table 3, there is a 2% improvement in accuracy compared to the original unoptimized RF
model. This indicates that the unoptimized RF classification model is potentially difficult
to perform. The parameter optimization of GWO improves the model performance [39];
therefore, parameter optimization is necessary to build a high-accuracy rice variety clas-
sification model. This result is similar to that of Qiong Cao et al. [40], who achieved the
best performance with the GWO-optimized SVM model for the classification of oolong
tea varieties with multispectral information and the classification of the germination stage,
with similar classification results. This also further indicates that the GWO-optimized RF
rice classification and identification model can perform well.

Table 3. Accuracy of classification prediction modeling using the FD-TSNE approach.

Methods Training Accuracy Test Accuracy

RF 99.7% 93.3%
GWO-RF 99.8% 95.3%
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Figure 8 shows the classification results of the FD-TSNE-GWO-RF model test set. From
Figures 6–8, it can be observed that the unoptimized RF classification model test set of
150 samples has 10 samples that are misclassified. In comparison, the GWO-optimized
RF classification model has only seven samples that are misclassified, and the precisions
of the optimized RF classification model for the five categories are all above 93.5%. This
indicates that the established FD-TSNE-GWO-RF model has a more robust classification
performance for rice identification. In summary, GWO makes the RF classification model
advantageous for performance improvement. Therefore, this study finally determined the
FD-TSNE-GWO-RF model as the best model for rice variety identification.
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3. Materials and Methods
3.1. Sample

The rice varieties selected in this study were Thai jasmine rice, which is of good
quality, aromatic, popular among consumers in different countries, and expensive in the
market [41], and four types of comparatively cheaper Chinese domestic rice: Northeast
Wuzhang rice, Northeast long-grain fragrant rice, Shaanxi Hanzhong rice, and Sichuan
Meishan rice. These five types of rice were very similar in appearance and profile. The five
types of rice selected for this experiment were all sourced from the same rice company. In
order to ensure the representativeness of the experimental results, ten different production
batches and dates were selected for each type of rice. Each sample was randomly sampled
with 110 grains, totaling 5 × 110 single-grain rice samples. To ensure the accuracy of the
samples, a rice expert from Ya’an was invited to authenticate the types of rice. The validated
rice was sent to the laboratory for fluorescence hyperspectral data collection. JUN SUN
et al. [42] used 60 samples from each of the four different regions of China purchased from
the local Walmart supermarket in Zhenjiang, totaling 4 × 60 single-grain rice samples that
were manually collected and scanned with a VIS-NIR hyperspectral imaging system, which
ultimately yielded the highest identification accuracy (91.67%). This further demonstrates
the scientific validity of the sample selection in this study.

3.2. Fluorescence Hyperspectral Image Acquisition

The fluorescence hyperspectral data of the rice samples were obtained using the
GaiaFluo(/Pro)-VN-HR fluorescence hyperspectral test system produced by Sichuan Shuan-
glihe Spectrum Technology Co. (Chengdu, China) [20]. This fluorescence hyperspectral
camera has the advantages of high sensitivity and strong signal [20]. The fluorescence
hyperspectral resolution was 2.8 nm, and the pixel size was 2048 × 946 [43]. In this system,
a xenon lamp is used as the excitation light source for the fluorescence imaging system, and
the fluorescence hyperspectral range of the system can be detected from 250 nm to 1100 nm.
The selection of filters is crucial during fluorescence hyperspectral image acquisition. By
combining multiple excitation and fluorescence filters, it was found that, under the irradia-
tion of four different excitation light source bands, the 390 nm excitation filter can better
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truncate the light input from other bands. Under the influence of the excitation light source,
the fluorescence signal of the sample needs to be paid attention to. A 475 nm fluorescence
filter can complete the separation of the fluorescence signal and parasitic light so that the
final sample captured by the fluorescence hyperspectral camera produces the best fluores-
cence signal. Xiaohui Wang et al. [44] quantitatively predicted the non-destructive pH of
kiwifruit by using the fluorescence hyperspectral imaging technique, and the prediction
results were good. This is further evidence of the reliability of the choice of acquisition
device in this study.

The experiment was conducted at an ambient temperature of 26 ◦C and 50% ambient
humidity. The RGB channels of the acquired fluorescence images were 341.2, 680.7, and
524.3, and the system movement speed was 0.26 mm/s with a camera exposure time of
800 ms. The fluorescence hyperspectral acquisition system is shown in Figure 9. Affected
by the fluorescence filter, the final fluorescence hyperspectral range of the acquisition was
from 376 nm to 1000 nm, with a total of 125 fluorescence hyperspectral channels. One
hundred and ten rice samples from each variety were placed on a 10 × 11 counting plate,
and then the plate was placed on a mobile carrier for the imaging test. A total of 5 × 110
single-grain rice samples were collected for the test.
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3.3. Fluorescence Hyperspectral Data Extraction

The ENVI5.3.1 software is a widely used remote sensing image processing tool [45].
After the acquisition and imaging with the fluorescence hyperspectral device, the image
data are saved in the .raw and .hdr formats and must be imported into the ENVI5.3.1
software for subsequent processing [45]. The fluorescence hyperspectral image of the rice
imported into the ENVI5.3.1 software is shown in Figure 10a. Since each pixel point in
the image contains a fluorescence hyperspectral curve, the rice sample’s region of interest
(ROI) [45] can be selected using the ENVI5.3.1 software. Region of interest extraction is
to extract the target region in the fluorescence hyperspectral image of the rice sample.
As shown in Figure 10b, in this study, the region of interest was extracted manually
using ENVI5.3.1 in an elliptical manner according to the contour of the rice sample (the
different colored parts in the figure are the manually selected ROIs) in the software, and
the average fluorescence hyperspectral of all pixel points in the region of interest were
taken as the fluorescence hyperspectral information of the rice samples. The extracted
data represented the whole rice sample, reflecting the sample information. Deng Wei
et al. [45] utilized hyperspectral imaging technology to select ROI-extracted data using the
ENVI5.3.1 software and accurately identified cabbage seedlings and weeds using the SAM
identification method. This further illustrates the rationality of this method.

3.4. Fluorescence Hyperspectral Data Preprocessing

Fluorescence hyperspectral data contain not only the chemical information of the
sample to be measured but also random and systematic interference information (e.g.,
noise, stray light, light scattering, detector nonlinearity, and temperature variation) [46].
These interference signals complicate the fluorescence hyperspectral information and, in
some cases, even mask the information of the components to be measured, thus most likely
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affecting the performance of the classification model. Therefore, the appropriate prepro-
cessing of the fluorescence hyperspectral data before performing the analysis is significant
for building models with a good predictive performance and high robustness [43].
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Figure 10. Fluorescence hyperspectral data extraction. (a) Fluorescence hyperspectral image of rice.
(b) Data extraction of the fluorescence hyperspectral image of rice in the ENVI 5.3.1 software.

In this study, mean centering (MC) [47,48], Savitzky–Golay convolutional smoothing
(SG) [48], first-order derivative (FD), and standard normal variable (SNV) [47,48] were
selected for preprocessing. The choice of preprocessing must be based on the specific
distribution of the fluorescence hyperspectral data and the comprehensive judgment of the
modeling performance after preprocessing.

MC can increase the difference between the fluorescence hyperspectral data of the
samples and improve the robustness of the model [48]. The specific implementation of MC
in this study was as follows.

(1) For the rice sample set’s spectral matrix (N × p), the average fluorescence hyperspec-
trum x of the rice sample was calculated.

xk =

N
∑

i=1
xi,k

N
(1)

N is the number of rice samples, k = 1, 2, . . . , p, and p is the number of wavelength
points.

(2) We used spectrum x for the rice samples to obtain fluorescence hyperspectral data for
the MC-treated rice.

xMC = x − x (2)

SNV can effectively reduce the effects of baseline drift, tilt, and other noises [48]. The
specific implementation of SNV in this study was as follows.

xSNV =
x − x√
m
∑

k=1
(xk−x)2

(m−1)

(3)

x is the original fluorescence hyperspectrum of one of the rice samples, x is the average
fluorescence hyperspectrum value of all rice samples, i = 1, 2, . . . , m, and m is the number
of wavelength points.

The FD treatment can effectively process and reduce the effects of sample background
and baseline drift and improve the resolution and sensitivity of the overlapping peaks.

FD was calculated in this study by the following formula.

dFD(i) =
x(i + 1)− x(i)
λ(i + 1)− λ(i)

(4)
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where x(i), (i = 1, 2, . . . , n) is the rice fluorescence hyperspectral sequence and λ(i), (i =
1, 2, . . . , n) is the fluorescence hyperspectral wavelength.

SG smoothing can improve the signal-to-noise ratio of the spectra and reduce the
effects of random noise [48]. The formula followed for SG in this study was as follows.

xi,k(SG) =
1
H

1

∑
H

xi,k+jhj, H =
+ω

∑
j=ω

hj (5)

xi,k(SG) denotes the SG-smoothed value at the ith fluorescence hyperspectral wave-
length, xi,k+j denotes the ith fluorescence hyperspectral value at the k + j wavelength,
2ω + 1 denotes the width of the SG smoothing window, hj denotes the smoothing fac-
tor, and H denotes the normalization factor. The measurements are multiplied by the
smoothing factor hj in order to minimize the effect of smoothing on the useful information.

3.5. Feature Downscaling and Feature Selection

The collected fluorescence hyperspectral data contain a large amount of redundancy,
covariance, overlapping information, and a large amount of noise [49]. The original
fluorescence hyperspectral data are selected to choose the wavelengths with the least
covariance and redundancy and contain the primary valid information to reduce the
interference of useless information [49]. These few or dozens of wavelengths are used
to build the model instead of the original hundreds or even thousands of wavelengths
to make the built model easier, more robust, and more accurate. In this paper, feature
degradation and feature selection were performed using a principal component analysis
(PCA), t-distributed stochastic domain embedding (t-SNE), linear discriminant analysis
(LDA), and local linear embedding (LLE).

PCA [47] is a classical feature extraction algorithm. Currently, it is favored by a large
number of scholars in spectral data processing [33]. PCA can solve the problem of data
multicollinearity and extract data feature information to achieve data compression [33]. The
principal component analysis transforms multiple variables to a new coordinate system by
the null space of a linear transformation so that the first significant variance of any data
projection is in the first coordinate (called the first principal component, PC1) [50]. The
second significant variance is in the third coordinate (the second principal component,
PC2), and so on, to obtain the same number of principal components as the number of
variables [50]. These principal components are linear combinations of the original variables
that are orthogonal to each other and contain no overlapping information, thus eliminating
multicollinearity between the variables [33]. Theoretically, PCA obtains the same number
of principal components with the exact dimensions as the original variable data, but since
the contribution of the principal components is minimal and can be ignored except for the
first few principal components that contribute the most to the variance, in practice, only a
few principal components with the most significant contribution rate in the first part need
to be retained in order to retain the essential information of the original data [33]. PCA
can reduce the number of features, retain most of the efficient information, and be used
in high-dimensional datasets [50]. PCA can be used for the exploration and visualization
of high-dimensional datasets and can compress the existing features. Dimensionality
reduction uses a data measure called sample variance or explainable variance [50]. The
higher the variance, the more information the feature has [33]. The steps followed in this
study to achieve rice fluorescence hyperspectral data compression and feature extraction
were as follows.

(1) Normalize the rice fluorescence hyperspectral dataset.
(2) Calculate the covariance matrix of the standardized fluorescence hyperspectral data.
(3) Based on the covariance matrix, the principal component eigenvalues, principal

component contribution rates, and cumulative contribution rates of the rice samples
were calculated, and the principal component loadings were calculated.
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Linear discriminant analysis (LDA) [51], which needs to consider the accurate labeling
information of the training samples in the feature extraction process, is a classical supervised
feature extraction method and is one of the most commonly used methods in spectral
image feature reduction and extraction [51]. Compared with the PCA transform, the LDA
transform seeks to find the optimal discriminant vector projection space for spectral data so
that the interclass distance of the projected data is maximized and the intra-class distance
is minimized [52], thus achieving the purpose of extracting class classification information
and dimensionality reduction. The specific implementation process of LDA in this study
was as follows. The detailed derivation and presentation of the LDA algorithm can be
found in the paper [53].

(1) Input a fluorescence hyperspectral dataset D = (x1, y1), (x2, y2), . . . , (xm, ym) of rice
samples, where an arbitrary sample xm is an m-dimensional vector downscaled to
dimension d.

(2) Calculate the intra-class scatter matrix of the dataset D.
(3) Compute the interclass scatter matrix for dataset D.
(4) Compute the new matrix: multiply the inverse of (2) by (3).
(5) Calculate the eigenvalues and eigenvectors of the matrix obtained from (4) and select

the first d eigenvalues and the corresponding d eigenvectors in the order from smallest
to largest to obtain the projection matrix W.

(6) New sample zi = WTxm (i = 1, 2, . . . , m).
(7) Output the fluorescence hyperspectral dataset of the rice samples D′ = {(z1, y1),

(z2, y2), . . . , (zm, ym)}.

Local linear embedding (LLE) is a popular learning method for classical nonlinear
dimensionality reduction [54], which enables the reduced data to maintain its original
topology with translational, rotational, and telescopic invariance and has an overall optimal
solution without iteration, avoiding the problem of local extremes [54]. LLE considers
each data point to be a linearly weighted combination of its neighboring points, and
therefore, the basic steps of LLE in this study were as follows. For a detailed derivation
and presentation of the LLE algorithm, please refer to reference [55].

(1) Assume first that the expression for the neighborhood linear relationship of the high-
dimensional fluorescence hyperspectral data xi is expressed by.

xi = wihxh + wikxk + wil xl (6)

where wih, wik, and wil are the weighting coefficients. Let the weighting coefficient be
wij, which can be obtained by the following equation.

min
wij,j∈Q(i)

m
∑

i=1

∥∥∥∥∥xi − ∑
j∈Q(i)

wijxj

∥∥∥∥∥
2

2
∑

j∈Q(i)
wij = 1

(7)

where Q(i) denotes the high-dimensional fluorescence hyperspectral data set xi of
the neighborhood data points and m denotes the number of rice fluorescence hyper-
spectral samples.

(2) Keeping Equation (7) unchanged, the low-dimensional space data point A can be
obtained by Equation (8).

min
wij,j∈Q(i)

m

∑
i=1

∥∥∥∥∥∥yi − ∑
j∈Q(i)

wijyi

∥∥∥∥∥∥
2

2

(8)

T-SNE is a popular learning algorithm based on the stochastic nearest neighbor embed-
ding (SNE) algorithm for visualizing high-dimensional datasets by representing them in a
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low-dimensional space of 2 or 3 dimensions [29]. t-SNE is a distribution of t-transformed
values for individual samples, not for the overall samples, and it is an estimation of the
distribution of the standard normal distribution of the values of the u-transformed vari-
ables [29]. The t-SNE dimensionality reduction algorithm in this study projects the rice
samples in the high-dimensional space into the low-dimensional space while trying to pre-
serve the local properties of the large sample set [56]. After t-SNE transforms the rice sample
set, if it still has differentiability in the low-dimensional space, it indicates that the original
rice sample set is differentiable; if it is presented as indivisible in the low-dimensional
space, it may be because the rice sample set itself does not have differentiability, or the
sample set is not suitable for projection to the low-dimensional space although it has the
differentiability [56].The specific implementation process of t-SNE in this study was as
follows. For a detailed derivation and presentation of the t-SNE algorithm, please refer to
reference [57].

(1) Input the rice sample fluorescence hyperspectral dataset.

X = {x1, x2, x3, . . . , xn}, (n = 1, 2, 3, . . . , i) (9)

(2) The conditional probability distributions xi and xj between the two data points pj|i
and pi|j are calculated using Equation (9), and the location information of the rice
samples is represented by a Gaussian probability distribution.

pj|i =
exp(−

∥∥xi − xj
∥∥2/2σ2

i )

∑
k ̸=i

exp(−∥xi − xk∥2/2σ2
i )

(10)

pi|j =
exp(−

∥∥xj − xi
∥∥2/2σ2

j )

∑
k ̸=j

exp(−
∥∥xj − xk

∥∥2/2σ2
j )

(11)

In Equations (10) and (11), σi is the variance of the Gaussian distribution corresponding
to the rice sample data point xi.

(3) Setting up the joint probability substep pij, obtain a low-dimensional sample random
initial solution y(0).

pij =
pj|i + pi|j

2
(12)

y(0) = {y1, y2, y3, . . . , yn} (13)

(4) Calculate the joint distribution qij of the low-dimensional sample space points in the
t-distribution.

qij =
(1 +

∥∥yi − yj
∥∥2
)
−1

∑
k ̸=l

(1 + ∥yk − yl∥2)
−1 (14)

(5) Calculate the optimized gradient ∂C
∂yi

.

∂C
∂yi

= 4∑
j
(pij − qij)(yi − yj)(1 +

∥∥yi − yj
∥∥2
)
−1

(15)

(6) Loop iterations of (14) and (15) until the fluorescence hyperspectral low-dimensional
data of the rice samples are obtained.

y = {y1, y2, y3, . . . , yn} (16)
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3.6. Machine Learning Classification Models

Three machine-learning classification algorithms were selected for this study. These
methods have an excellent performance in classification models and high usage in other
applications. The partial least squares discriminant analysis (PLS-DA) [58] method is a
mathematical optimization technique in which the matrix refers to the category information
of the samples in the form of a code during the construction of the model, and it has a
very efficient discriminative ability by linear statistical modeling through the fluorescence
hyperspectral information and the categories. The BP neural network [59] is based on
the characteristics of the human brain’s neural network, which is mainly designed to
simulate high-level brain functions through an artificial method. It helps to enhance the
understanding of thinking and intelligence. Random forest (RF) consists of multiple indi-
vidual decision trees combined with the bagging algorithm and randomization algorithm
to construct a combination of decision makers, widely used in classification procedures [60].
Random forest (RF) is the most powerful machine learning algorithm.

3.6.1. Partial Least Squares Discriminant Analysis (PLS-DA)

Partial least squares discriminant analysis (PLS-DA) [47] is a statistical method for
classification and identification based on the PLS regression method [58]. In this study, the
numerical variables were calibrated to different rice varieties, and a correction model was
established to determine the different rice varieties by combining fluorescence hyperspectral
features, which were calculated as follows [58].

Y = Xn×pB + E (17)

Y is the response variable matrix; n is the number of rice samples; p is the number of
fluorescence hyperspectral bands; X is the matrix of the fluorescence hyperspectral variable
n × p; and B is the regression coefficients’ and residuals’ matrices of the fluorescence
hyperspectral variables.

3.6.2. BP Neural Network (BP)

The BP neural network algorithm (BP) is a multilayer forward neural network based
on the error backpropagation algorithm [8], which is an artificial intelligence method
different from the traditional methods, and its main idea is to divide the learning process
into two stages: one is forward propagation and the other is error backpropagation [59].
The error after the output is used to estimate the error of the previous layer, and then this
error is used to estimate the error of the previous layer, and so on; layer by layer, with
backpropagation, the error estimates of all layers are obtained. This creates a process in
which the error of the input layer is passed from level to level in the opposite direction [59].
Hence, the algorithm is also known as the error backpropagation algorithm, or BP for short.
The main process of BP modeling in this paper was as follows.

(1) The five rice samples were divided into a training set and a test set according to the
randomized division method; the training set was used for training the BP models,
and the test set was used to test the trained BP models.

(2) The data in the training set were normalized so as to reduce the adverse effects caused
by singular sample data in the original rice sample data.

(3) The purelin transfer function was selected, and the gradient descent method was used
for training; the network parameters, such as hidden layers, number of training times,
learning rate, learning accuracy, and weight threshold, were configured.

(4) The BP model was trained with the normalized training rice sample set until the BP
model was output when the set parameters were met (the number of training times
was reached or the learning accuracy was satisfied).

(5) The trained BP model was tested with the test set after the normalization process. If
the predicted values of rice were within the allowed error range (0.001) from the ideal
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output, it meant that this rice classification BP model was valid; then, proceed to step
(6), or otherwise return to step (3) for parameter modification and continue training.

(6) The test set was classified with the trained rice classification BP model and the results
were output.

3.6.3. Random Forest (RF)

Random forest (RF) is an integrated classification model formed by drawing different
combinations of samples from the initial samples and constructing different decision trees
for each set of samples through bagging (bootstrap aggregating) with the put-back sampling
method [35]. Since there is a put-back sampling mechanism to perturb the data that produce
the decision tree, the constructed decision trees are different and have a large variability,
which improves the generalization of the overall model [35]. In classification tasks, voting
decisions are usually made using the voting method to determine the final prediction
results of multiple base models [60]. Among them, voting methods can be classified into
three categories based on the voting method [60]:

(1) Absolute majority voting method that restricts the number of labeled votes to be
greater than half of the votes.

(2) Relative majority voting method that decides the value simply based on the number
of votes received.

(3) The weighted voting method is similar to the weighted average method. A suitable
voting mechanism can lead to more accurate prediction results.

Random forests synthesize the prediction results of multiple decision trees with sig-
nificant differences, which provides them the advantages of high prediction accuracy,
fast convergence, and few regulation parameters [60]. After the research of Amaratunga
et al. [61], the random forest method is one of the most excellent models among the current
mainstream classifiers and integrators. The main steps of RF in this study were as follows.
A detailed derivation and presentation of the RF algorithm can be found in reference [61].

(1) A subset of n–tree samples was extracted from the raw rice fluorescence hyperspectral
data.

(2) A decision tree was generated using each sample subset, and at each node of the tree,
variables were randomly selected to be split. The tree was grown continuously so that
the number of nodes at each terminal node was not lower than the size of the node.

(3) A classification was developed using a voting mechanism to count the results of the
n–tree decision tree.

3.7. Model Optimization Algorithm

The gray wolf optimization (GWO) algorithm is a bionic meta-heuristic fast search al-
gorithm inspired by the prey-hunting behavior of gray wolves and proposed by Australian
scholars Mirjalili et al. [39] for solving the practical engineering optimization problem
of traditional non-convex surfaces [39]. The GWO algorithm simulates the hierarchical
division of the gray wolf animals and the allocation of hunting tasks in the biosphere layer,
which mainly includes the division of the leadership into a hierarchy and the allocation
of the hunting process [38]. The algorithm divides gray wolves into α-wolves, β-wolves,
δ-wolves, and w-wolves according to their leadership position in the hierarchy, arranged
from top to bottom like a pyramid [38]. The predation task phase generally consists of
three main hunting steps: dispersal to find prey, active encirclement of the prey, and active
prey attack [39]. In this study, α-wolf, as the leader, must constantly communicate with the
other three wolf species to find the minimum objective function of the RF model through
information exchange and updates. In the GWO-optimized RF model in this paper, the
main process was as follows. The detailed optimization principles of the GWO intelligent
optimization algorithm can be found in reference [39].

(1) Input the rice sample data and normalize the data.
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(2) Set the optimization range of rice classification RF model parameters and initialize
the wolf pack and GWO parameters.

(3) Calculate the fitness value of the gray wolves and classify the wolves into four tiers,
α, β, δ, and ω, by taking the root-mean-square error of the classification result as the
fitness value.

(4) Update the positions of the wolves, recalculate the fitness values at the new positions,
and re-elect the new α, β, and δ.

(5) When the number of iterations reaches the set maximum number of iterations, it
indicates the end of training, and the optimal m (the maximum growth in depth of the
tree) and p (the number of over-parameter subtrees) are output; otherwise, continue
the parameter optimization.

(6) Use the optimal m and p to establish a rice classification model, test the test set, and
output the results of the inverse normalization process.

3.8. Confusion Matrix

Confusion matrix, or error matrix, measures how accurately a classifier classifies [34].
In calculating the multi-label confusion matrix, the multi-classification problem can be
transformed into a binary classification, i.e., [62] a particular class has positive samples,
and the rest are negative samples. From Figure 11 and Equations (18)–(20), it can be
seen that Accuracy is the ratio of the number of correctly classified samples to the total
number of samples, which measures the model’s ability to classify the samples, and the
model accuracy is calculated from the confusion matrix. Precision is the ratio of the actual
samples to the predicted positive samples. Recall is the ratio of true samples to the actual
positive samples.

Accuracy =
TP + TN

TP + FP + FN + TN
× 100% (18)

Precision =
TP

TP + FP
(19)

Recall =
TP

TP + FN
(20)

In the formula, TP is the true case, that is, it is judged as a positive sample and is
actually a positive sample; TN is the true counter-example, that is, it is judged as a negative
sample and is actually a negative sample; FP is the false positive case, that is, it is judged
as a positive sample but is actually a negative sample; and FN is the false counter-example,
that is, it is judged as a negative sample but is actually a positive sample.
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3.9. Evaluation Indicators

Accuracy is an essential metric in evaluating the performance of classification models
in machine learning [63]. Equation (21) is the ratio of correct classifications to the total
samples. The higher the model’s accuracy, the better the model’s classification. All machine
learning algorithms in this paper were run on a CPU (Intel(R) Core (TM) i7-4510U CPU@2.60
GHz) and were implemented on MATLAB 2018b.
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Accuracy =
“Number o f correct classi f ications”

“Total samples”
× 100% (21)

4. Conclusions

The results of this study show that fluorescence hyperspectral techniques and machine
learning can achieve the non-destructive detection and classification of rice varieties.

(1) FD preprocessing can effectively reduce the effects of sample background and baseline
drift, improve the resolution and sensitivity of overlapping peaks, and improve the
accuracy of the rice classification model.

(2) Feature dimensionality reduction and feature selection can reduce data redundancy
and improve the prediction accuracy and robustness of the model. In comparing the
four feature dimensionality reduction methods, selecting t-SNE had the best effect.
t-SNE can retain most of the information in the rice spectral curve, effectively reduce
the dimensionality of the spectral data of rice samples, and improve the robustness
and generalization of the rice classification model.

(3) Among the three classification models, RF provided the best results. Combining RF
with preprocessing and feature dimensionality reduction processing provided the
best performance. Among them, the FD-t-SNE-RF method achieved 99.7% and 93.3%
accuracy values for the training and test sets, respectively, and the classification model
accuracy was higher than that of other spectroscopic and chemical methods. The RF
classification model effectively identifies rice varieties accurately and has a superior
reliability compared to other classification models.

(4) After the classification modeling of the data after preprocessing and feature dimension-
ality reduction, the parameters of the RF classification model were optimization-seeking
after the introduction of the GWO optimization algorithm, and the optimal model for
rice classification and identification was finally determined. Comparing the modeling
results, it can be seen that the GWO optimization algorithm played a positive role in
the classification of the RF model and improved the classification accuracy. The optimal
classification model was FD-t-SNE-GWO-RF, and the training set accuracy and test set
accuracy were 99.8% and 95.3%, respectively. This study demonstrates the superiority of
the GWO optimization algorithm in rice classification model identification.

(5) The confusion matrix of the classification model shows that rice varieties with similar
fluorescence hyperspectral information have specific errors in identification. Further
machine-learning data processing is needed for rice variety identification analysis.

The experimental results show that fluorescence hyperspectral technology can achieve
the identification of common rice varieties that are similar in appearance to Thai jasmine
rice. As a new technology, fluorescence hyperspectral technology has the advantages of
being non-destructive, efficient, and highly sensitive and providing real-time monitoring.
Firstly, this study provided a simple and non-destructive detection method to identify
whether Thai jasmine rice is adulterated in the market. It will help to improve the efficiency
of rice detection in the Thai jasmine rice industry, enhance the Thai jasmine rice industry
in areas where Thai jasmine rice is grown, and promote local economic development.
Secondly, the model proposed in this study is of great significance for rapidly detecting rice
adulteration in production lines, saving labor and testing costs, ensuring the authenticity
of rice sales, standardizing the order of the rice market, and protecting the legitimate rights
and interests of consumers. Finally, it provides a rapid and non-destructive detection
method for other food safety identification fields.
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