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Abstract: Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are enzymes that break
down and reduce the level of the neurotransmitter acetylcholine (ACh). This can cause a variety of
cognitive and neurological problems, including Alzheimer’s disease. Taxifolin is a natural phyto-
chemical generally found in yew tree bark and has significant pharmacological properties, such as
being anti-cancer, anti-inflammatory, and antioxidant. The binding affinity and inhibitory potency
of taxifolin to these enzymes were evaluated through molecular docking and molecular dynamics
simulations followed by the MMPBSA approach, and the results were significant. Taxifolin’s affinity
for binding to the AChE–taxifolin complex was −8.85 kcal/mol, with an inhibition constant of
326.70 nM. It was observed to interact through hydrogen bonds. In contrast, the BChE–taxifolin
complex binding energy was observed to be −7.42 kcal/mol, and it was significantly nearly equal to
the standard inhibitor donepezil. The molecular dynamics and simulation signified the observed
interactions of taxifolin with the studied enzymes. The MMPBSA total free energy of binding for
AChE–taxifolin was −24.34 kcal/mol, while BChE–taxifolin was −16.14 kcal/mol. The present
research suggests that taxifolin has a strong ability to bind and inhibit AChE and BChE and could
be used to manage neuron-associated problems; however, further research is required to explore
taxifolin’s neurological therapeutic potential using animal models of Alzheimer’s disease.

Keywords: taxifolin; cholinesterase inhibitor; Alzheimer’s disease; neurodegenerative disorders;
molecular dynamics simulation

1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease that causes symptoms of
severe dementia, neurodegeneration, and even Parkinson’s, severely compromising a
person’s ability to perform daily activities. AD affects 50–60% of people with dementia;
furthermore, this number will increase from 55 million to 151 million [1]. Clinical evidence
indicates that AD is a complex disease characterized by inflammation, oxidative stress,
abnormal protein levels, memory impairment, behavioral disorders, cognitive impairment,
and eventual death [2]. Although the etiology of AD is not fully understood, many factors
such as acetylcholine (ACh) deficiency, β-amyloid (β) accumulation, oxidative stress,
dysregulation of bio metal homeostasis, and neuro-inflammation have been implicated in
AD, suggesting they are important in disease progression.

The cholinergic hypothesis proposes that the degeneration of cholinergic neurons
and the effects of cholinergic neurotransmission in the cerebral cortex are responsible for
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cognitive impairment in the brains of AD patients [3]. Acetylcholinesterase (AChE) and
butyrylcholinesterase (BChE) are cholinesterases (ChEs) that hydrolyze ACh in the brain.
AChE is mainly derived from synaptic junctions and regions with strong activity in the
adult cerebral cortex, whereas BChE is mainly derived from brain glial cells, which are
effectively spatially co-stored and promote BChE-mediated hydrolysis, thereby regulating
local ACh levels to maintain normal cholinergic function. However, BChE-derived products
are shown in pathological conditions [4]. Loss of cholinergic activity can be affected or
influenced by many factors such as amyloid peptide production and accumulation, stress,
and iron overloading. Surprisingly, AChE inhibitors have been shown to affect the “amyloid
cascade”, which begins with accumulating insoluble amyloid-β in the brain. However,
AChE can also produce peptide A, which speeds up this process. This activity was reported
in the peripheral anion region (PAS) [5]. The activity of these two enzymes must be
controlled to manage neuron-associated problems, with natural resources such as plants
being excellent sources for discovering and developing new active therapeutic molecules.

Various plants, such as olive, tea, blueberry, strawberry, mint, walnut, helichrysum,
and sage, have been shown to demonstrate AChE inhibitory activity due to their polyphe-
nols. In isolation, Turmeric, (-)-epigallocatechin-3-gallate (EGCG), and several flavonoids
are also potent AChE inhibitors [6]. Bisphenols have specific patterns of inhibitory activity
and can block AChE or BChE. According to Chan et al., caffeic acid and quinic acid do not
inhibit AChE or BChE; however, chlorogenic acid and 3-O-caffeoylquinic acid do [7]. The
polyphenolic compound (quercetin) that helps prevent Alzheimer’s disease is found in
apples. Curcumin, the main active phenolic compound in green tea, along with EGCG and
resveratrol, have been associated with AChE inhibition [8]. The flavanone naringenin, an
important flavonoid in citrus, has been shown to exhibit AChE inhibitory activity in vitro
and amnestic protection in vivo [9]. Although the inhibitory effect of the flavanol quercetin
has not been studied in vivo, it also appears to affect cholinergic dysfunction and cerebral
blood flow in the brain.

Next-generation AChE inhibitors have attracted interest among researchers, and
potential candidates derived from a non-alkaloid class of molecules such as flavonoids
have been identified [10]. However, they provide only temporary and incomplete relief
of symptoms. In addition, previous studies have shown that AChE can cause amyloid
plaques, and the expression of BChE is associated with A β plaques, Neurofibrillary Tangle
(NFT), and cerebral amyloid angiopathy.

To date, three of the four drugs have been approved for the treatment of Alzheimer’s
disease as an AChE inhibitor. Available drugs, namely, donepezil, galantamine, and ri-
vastigmine, have limitations in efficacy and duration of action. Moreover, AD drugs only
reduce the symptoms of dementia and do not stop the development of the degenerative pro-
cess [11]. However, selective BChE inhibitors are mostly so-called irreversible carbamates
and tacrine- or donepezil-based hybrids, meaning scientists are limited to discovering
new drugs by changing simple structures [12]. Thus, the lack of a current treatment has
exacerbated the complications of AD, accelerating the current research searching for new
cholinesterase inhibitors from natural resources, including plants. AChE and BChE are still
the most important targets for discovering new cholinesterase inhibitors for use as anti-AD
drugs. Therefore, new AChE inhibitors need to be developed.

Dihydroquercetinis, a type of flavanonol compound commonly found in citrus fruits,
onions, green tea, olive oil, and plants such as milk thistle, French conch, Douglas fir bark,
and Sarsaparilla [13]. This molecule is also widely used as a food supplement and can be
found in medicinal products such as silymarin. Taxifolin is gaining increasing attention as a
treatment for various ailments, such as cancer, heart disease, viral hepatitis, dyslipidemia,
and neurodegenerative diseases [14]. It has many defensive medicinal properties, including
anti-oxidation [15], inhibition of advanced glycation end products [16], and mitochondrial
protection [17].

Thus, Taxifolin has emerged as an effective and safe therapeutic agent for preventing
and treating many diseases, including cancers, but its interaction with ChE is little explored.
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Moreover, taxifolin offers some advantages over the currently used drugs, including less
toxicity. Therefore, a computational investigation was undertaken to identify safe and
potent cholinesterase inhibitors and explore taxifolin’s therapeutic potential in the context
of neuron disease or disorders. The inhibitory or binding effect of the selected ligand,
taxifolin, was evaluated with target enzyme proteins, namely, AChE and BChE.

2. Results and Discussion

In this study, the inhibitory potential of taxifolin against cholinesterase enzymes
was evaluated through docking, dynamics and simulations in terms of binding energy,
inhibition constant, and involved bond. These observed results are discussed in the
following sections.

2.1. Molecular Docking Analysis

The docking analysis data show that the standard drug donepezil and the tested drug
taxifolin significantly interacted with AChE and BChE with different binding affinities.
Donepezil has a higher binding affinity for AChE than BChE, while taxifolin has a higher
binding affinity for BCHE than AChE (Table 1). The AChE–donepezil complex showed
a −9.33 kcal/mol binding affinity with a 144.37 nM inhibition constant and formed one
hydrogen bond, i.e., donepezil’s 4-difluorophenyl group forms a hydrogen bond with the
Asp residue at position 74 of AChE (Table 1). Amino acid residues TYR72, TYR341, LEU289,
GLU292, VAL294, PHE295, PHE338, and PHE297 formed van der Waals interactions. It was
also observed that TYR124 and TRP286 are involved in pi–pi stacking (Table 1; Figure 1A,B).

Table 1. Docking results obtained from AutoDock version 4.2 tool after performing molecular
interaction between AChE, BChE, and the control drugs donepezil and taxifolin. In hydrogen bond
column where UNK1 and UNL1 are selected ligand compounds.

Complex
Binding
Energy

(Kcal/mol)

Inhibition
Constant

(Ki)
µM: micro

molar

Hydrogen Bonds
Hydrogen Bond

Length
Å(Angstrom)

Van der Waals
Interaction

Other
Interaction

AChE–donepezil
(Control) −9.33 0.144 µM UNK1:DNP:C28–

A:ASP74:OD1 3.03318

TYR72,TYR341,
LEU289,GLU292,
VAL294,PHE295,
PHE338,PHE297

PI–PI STACKED/
PI–PI T-SHAPED
TYR124, TRP286

AChE–taxifolin
(PDB:7E3H) −8.85 0.327 µM

A:ARG296:HN–:UNL1:O1 2.25805

TYR72,TYR341,
PHE297,PHE338,
PHE295,VAL294,
GLU292,LEU289,

PI–PI
T-SHAPED/PI–PI

STACKED
TYR124, TRP286

UNL1:H11–A:GLN291:O 1.87707

UNL1:H10–A:ARG296:O 2.16795

UNL1:H8–A:ASP74:OD2 1.96554

A:SER293:HN–:UNL1 2.9256

BChE–donepezil
(Control)

−7.67 2.390 µM

A:GLY439:CA–
UNK1:E20601:O25 3.55463

SER198,PHE398,
PHE329,GLY116,
THR120,TYR128,
MET437,ASP70,
TYR332,GLY117,

VAL288

PI–ALKYL
LEU286,TRP82,

TYR440
PI–PI

T-SHAPED/PI–PI
STACKED

TRP82,TRP231

UNK1:E20601:C17–
A:PRO285:O 3.19904

UNK1:E20601:C26–
A:HIS438:O 2.85071

UNK1:E20601:C28–
A:GLU197:OE1 3.18095

BChE–taxifolin
(PDB:7AIY) −7.42 3.650 µM

A:TYR332:HH–:UNL1:O1 2.12817

ILE69,ASN68,
GLY121,SER79,

TRP430,MET437,
GLY439,TYR440

PI–ALKYL ALA328
PI–PI STACKED

TRP82

UNL1:H12–A:GLN67:OE1 1.99252

UNL1:H11–A:ASN83:OD1 1.91515

UNL1:H10–A:ASP70:OD1 1.83371

UNL1:H8–A:HIS438:O 2.22385

A:PRO84:CD–:UNL1:O7 3.47997

A:HIS438:CD2–:UNL1:O3 2.97375
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spheres; furthermore, dotted lines show the formation of bonds. (B) A 3D representation of observed 

pose of AChE–donepezil complex. AChE (shown by purple color in line ribbon pattern). Interacting 

amino acid residues are shown by stick pattern (cyan color) in the surrounding area. 

The AChE–taxifolin complex is shown at −8.85 kcal/mol with an inhibition constant 

of 326.70 nM, building five hydrogen bonds. Van der Waals interactions were created by 
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Figure 2A,B). 

Figure 1. (A) A 2D representation of AChE–donepezil (green colored ball and stick pattern in the
center) interaction. The interacting amino acid residues are in the surroundings with different color
spheres; furthermore, dotted lines show the formation of bonds. (B) A 3D representation of observed
pose of AChE–donepezil complex. AChE (shown by purple color in line ribbon pattern). Interacting
amino acid residues are shown by stick pattern (cyan color) in the surrounding area.

The AChE–taxifolin complex is shown at −8.85 kcal/mol with an inhibition constant of
326.70 nM, building five hydrogen bonds. Van der Waals interactions were created by amino
acid residues TYR72, TYR341, PHE297, PHE338, PHE295, VAL294, GLU292, and LEU289.The
pi–pi stack is shown by amino acid residues TYR124 and TRP286 (Table 1; Figure 2A,B).
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Figure 2. (A) A 2D representation of AChE–taxifolin (green colored ball and stick pattern in the
center) interaction. The interacting amino acid residues are in the surroundings with different color
spheres; furthermore, dotted lines show the formation of bonds. (B) A 3D representation of observed
pose of AChE–taxifolin complex. AChE is shown by purple color in line ribbon pattern. Interacting
amino acid residues are shown by a stick pattern (cyan color) in the surrounding area.

The BChE–donepezil interaction showed a −7.67 kcal/mol binding affinity with a
2.39 µM inhibition constant and formed a total of four hydrogen bonds. The amino acid
residue ER198, PHE398, PHE329, GLY116, THR120, TYR128, MET437, ASP70, TYR332,
GLY117, and VAL288 were involved in the van der Waals interactions. LEU286, TRP82,
andTYR440 built pi–alkyl bonds, while T-Shaped/Pi–Pi stacks were formed by TRP82 and
TRP231 (Table 1; Figure 3A,B).
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Figure 3. (A) A 2D representation of BChE–donepezil (green colored ball and stick pattern in the
center) interaction. The interacting amino acid residues are in the surrounding areas with different
color spheres; furthermore, dotted lines show the formation of bonds. (B) A 3D representation of
observed pose of BChE–donepezil complex. BChE is shown by pink colored line ribbon pattern.
Interacting amino acid residues are shown by a stick pattern (cyan color) in the surrounding area.

The BChE–taxifolin complex showed a binding energy of −7.42 kcal/mol and a
3.65 µM inhibition constant, forming seven hydrogen bonds. Taxifolin also formed van der
Waals interactions with the amino acid residues of BChE, namely, ILE69, ASN68, GLY121,
SER79, TRP430, MET437, GLY439, and TYR440. Pi–alkylALA328 and pi–pi stacks were
formed by TRP82 (Table 1; Figure 4A,B).
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of observed pose of BChE–taxifolin complex. BChE is shown by pink colored line ribbon pattern.
Interacting amino acid residues are shown by a stick pattern (cyan color) in the surrounding area.
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Donepezil was observed to bind with AChE through two hydrogen bonds: one
hydrogen bond between the carboxylate group of the Donepezil molecule and the amino
group of a lysine residue and the other between the amino group of the Donepezil moiety’s
group and an aspartic acid residue’s carbonyl group. Additionally, donepezil was observed
to create van der Waals interactions with several AChE residues, including the side chains
of the phenylalanine, tyrosine, and leucine residues. Taxifolin interacts with AChE by
forming a single hydrogen bond with AChE’s hydroxyl group and the aspartic acid’s acid
group. Taxifolin has also been reported to display varied hydrophobic bonding, mainly
viavan der Waals forces [18], which result from interactions with several AChE residues,
including tyrosine, phenylalanine side chains, and leucine residues. Not only do taxifolin
and donepezil interact with AChE and BChE via van der Waals interactions and hydrogen
bonding, but they have also interacted in other ways. For instance, donepezil interacts
with an AChE tyrosine residue via a pi–pi stacking interaction. An alanine residue in BChE
interacts with taxifolin through a pi–alkyl reaction.

It is most likely that donepezil and taxifolin have varied binding affinities for AChE
and BChE because of the various structural characteristics of these compounds. AChE can
generate more hydrogen bonds and van der Waals interactions with the bigger Donepezil
moiety in donepezil. Due to its smaller moiety, AChE generates fewer hydrogen bonds and
van der Waals interactions with taxifolin [19]. The therapeutic efficacy of donepezil and
taxifolin may be affected by their differing AChE and BChE binding affinities. Alzheimer’s
disease is an illness marked by the buildup of amyloid plaques in the brain. Donepezil, a drug
with a greater binding capacity for AChE, may be more successful in treating this condition.

Myasthenia gravis, a disorder of the nervous system that involves the weakening and
exhaustion of muscles in the skeletal system, maybe more effectively treated with taxifolin,
which has a greater binding affinity for BChE [20]. The outcomes demonstrate the efficiency
of donepezil and taxifolin as AChE and BChE inhibitors. Taxifolin was observed to have
high negative binding energy, meaning it could be more effective than donepezil. However,
donepezil is more effective at treating AChE. In general, the evidence points to donepezil
and taxifolin as potential treatments for people with Alzheimer’s disease and myasthenia
gravis. A further investigation is required to verify these results and establish the best
administration times and doses for these substances.

2.2. Absorption, Distribution, Metabolism, Elimination, and Toxicity (ADMET) Analysis

ADMET are pharmacokinetics parameters which provide kinetic information about
a drug’s molecules. In this study, computational models were used to predict a drug’s
kinetics ADMET. This knowledge can be employed to find possible alternative medication
and improve novel drug designs. A drug’s effectiveness and safety can be determined
by its ADMET characteristics. For instance, a medication that is poorly absorbed into the
bloodstream will not be able to reach its intended areas. If a medicine is digested too quickly,
it will not have the time to produce its intended therapeutic impact [21]. Additionally, a
poisonous medicine will affect the body. The success and effectiveness of drug development
can be increased by using silico ADMET analysis, which is a useful tool. However, it is
crucial to remember that these simulations are not ideal and should not be utilized in
place of animal experimentation. The prediction of pharmacological parameters from
SwissADME for taxifolin and donepezil is shown in Supplementary Table S1.

Both donepezil and taxifolin are anticipated to have good Gastrointestinal (GI) ab-
sorption. This is significant because both medications are meant to be taken orally [22].
According to predictions, P-glycoprotein (Pgp), a protein that can efflux medicines out of
cells, is not projected to be a base for either taxifolin or donepezil. P-glycoprotein (Pgp)
substrates, do not include taxifolin or donepezil. This is crucial for both medications
because Pgp might decrease the amount of medication that reaches its intended tissues.
Taxifolin and donepezil are not anticipated to inhibit CYP1A2, an enzyme that breaks down
various molecules. This is essential for both medications because CYP1A2 suppression can
raise the concentrations of other medications in the body, resulting in toxicity. Although
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donepezil is anticipated to be a CYP2C19 inhibitor, taxifolin is not. This is significant given
that CYP2C19 is the main enzyme responsible for the metabolism of donepezil. The body’s
donepezil levels may rise due to CYP2C19 inhibition, which could worsen the drug’s
negative effects. This is significant for donepezil because the main enzyme responsible
for the metabolism of many medicines is CYP2C9. In contrast to taxifolin, donepezil is
not projected to be a CYP2D6 inhibitor. This is significant for donepezil because the main
enzyme responsible for the metabolism of many medicines is CYP2D6.

Moreover, donepezil is likely to be a CYP3A4 inhibitor, while taxifolin is not. This
is significant for donepezil because the main enzyme responsible for the metabolism of
many medicines is CYP3A4. Inhibiting CYP2C9, CYP2D6, and CYP3A4 may result in
higher levels of certain medications in the blood, which could be hazardous. A molecule’s
skin permeability can be determined by its log Kp value. The molecule is more likely to
penetrate the membrane if the log Kp value is higher. Donepezil has a positive log Kp value
compared to taxifolin, which has a negative log Kp value. This indicates that donepezil is
more likely to penetrate the skin, causing sensations.

In summary, SwissADME’s ADME calculations imply that donepezil and taxifolin
have various physical characteristics. Compared to donepezil, taxifolin is less likely to
pass through the blood–brain barrier and is more likely to be absorbed from the GI tract.
Taxifolin appears less likely to inhibit CYP2C19, CYP1A2, CYP2C9, CYP3A4, and CYP2D6
than donepezil (Supplementary Table S2). Taxifolin and donepezil have a molecular
weight (MW) of 304.25 and 379.49, respectively. Both substances meet the desired range of
150 to 500 g/mol. One rotatable bond exists in taxifolin, compared to six in donepezil.
The required range is no more than nine rotatable bonds and seven H-bond acceptors.
The preferred range is 0 to 10 H-bond acceptors. Compared to donepezil, taxifolin
has five H-bond donors. The preferred range is 0–10 H-bond donors. Taxifolin has a
127.45-square-meter total polar surface area (TPSA), whereas donepezil’s 38.77 Å2. A range
of 20 to 130 is required Å2. Taxifolin has a consensus log P of 0.63, while donepezil’s is 4.00.
The preferred range does not exceed 6. In comparison to donepezil, taxifolin exhibits no
Lipinski violations, zero Veber infractions, no Muegge violations, no Egan violations and
zero Ghose infractions. Zero infractions are the target number. Taxifolin has a bioavailabil-
ity score of 0.55. A score of at least 0.25 is desired. Taxifolin has a synthetic accessibility of
3.51, while donepezil has 3.36. The target value is normal between 1 (easy synthesis) and
10 (extremely difficult synthesis). According to the SwissADME’s drug-likeness predictions,
taxifolin and donepezil are not very similar. Compared to donepezil, taxifolin is less rotat-
able, smaller, and has a greater TPSA. Additionally, compared to donepezil, taxifolin had
fewer Ghose violations, Lipinski violations, Veber violations, Muegge violations, and Egan
violations. It is crucial to remember that these are just forecasts. The real characteristics of a
medicine may differ from the estimates. Furthermore, only a few data points are used to
generate these forecasts. The precision of these forecasts will probably increase as more
data becomes accessible. The toxicity predictions from pkCSM for taxifolin and donepezil
are shown in Supplementary Table S3.

The test developed by Salmonella typhimurium reverse mutation assay (AMES) can
identify possible carcinogens by using bacterial mutagenesis. Donepezil is oncogenic and
mutagenic, as determined by using the AMES test, while taxifolin is not. There is a cardiac
ion channel known as the hERG potassium channel that plays a significant role in the heart’s
electrical activity. Torsades de pointes is a life-threatening arrhythmia that can occur when
hERG channels are blocked. Contrary to donepezil, taxifolin does not block hERG I channel.
Moreover, the hERG II potassium channel is an ion channel in the heart that resembles hERG
I channel, and its blockage results in arrhythmias. Donepezilin inhibits hERG II channels,
while taxifolin does not. Oral rat acute toxicity (LD50) is the amount of a substance that
will cause the death of 50% of rats if administered orally. Donepezil’s LD50 in rats is
3.102 mg/kg, and Taxofolin’s LD50 in rats is 2.261 mg/kg. The lowest observed adverse
effect level (LOAEL) for Oral Rat Chronic Toxicity is the dose at which adverse effects
become noticeable in a chronic toxicity study. Taxifolin’s LOAEL in rats is 3.102 mg/kg,
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while donepezil’s is 0.991 mg/kg. Unlike donepezil, taxifolin is not hepatotoxic. While
donepezil is a skin sensitizer, taxifolin is not. Donepezil is poisonous to T. pyriformis,
minnows, whereas taxifolin is not. The results of pkCSM’s toxicity estimations indicate that
the toxicological characteristics of donepezil and taxifolin are distinct. Thus, in summary,
Donepezil is mutagenic, hepatotoxic, a skin sensitizer, has a smaller LD50 in rats, inhibits
hERG pathways, is toxic to T. pyriformis and minnows, and has a lower MTD in humans.
It is crucial to remember that these are forecasts. A drug’s real toxicity may differ from
estimates. Furthermore, only a few data points are used to generate these forecasts. The
precision of these forecasts will probably increase as more data becomes accessible.

2.3. Molecular Dynamics Simulation(MDS) Analyses

After completing 100 ns of the molecular dynamics simulation, analyses were extracted
from trajectory files containing Root Mean Square Deviation (RMSD), Root Mean Square
Fluctuation (RMSF), Radius of Gyration (Rg), and the formation of numbers of hydrogen
bond data—the deviation of both complexes and AChE and BChE in water during the
100 ns MDS. The average RMSD values observed for AChE in water, AChE–taxifolin, and
AChE–donepezil were between 0.12 and 0.24 nm for complexes and AChE simulations in
water (Figure 5A). Significantly, it was observed that the AChE–taxifolin complex showed
an average value near 0.2 nm, and the AChE–donepezil complex showed approximately
average values near 0.16 nm with stability, which is higher than the AChE simulation
in water, i.e., approximately 0.12 nm. An RMSF calculation per residue shows all the
overall values for the complexes, which were between 0.1–0.7 nm (Figure 5B). The observed
average value was less than 0.1 nm for all simulated molecules. Selected complexes,
including the AChE simulation in water, showed similar fluctuation patterns except for
some significant fluctuations observed at the 50–80, 150–160, 210–230, and 350–380 amino
acid regions. The radius of the gyration analysis is very important for assessing the
compactness and stability of protein structures during the simulation period because of the
presence of ligand molecules. The observed average value of Rg ranged between 2.28 and
2.31 nm for all complexes. AChE in water and AChE–taxifolin showed an average value of
2.31 nm, while the control AChE–donepezil showed an approximate value ranging near to
2 (Figure 5C). One to eight hydrogen bonds formed during selected compounds and the
AChE receptor interaction (Figure 5D). AChE–taxifolin formed eight hydrogen bonds, while
control AChE–donepezil formed only one hydrogen bond during the simulation period.

Also, BChE simulation results were analyzed to check the stability of the complex. The
average RMSD values observed for BChE in water, BChE–taxifolin, and BChE–donepezil
was between 0.15 and 0.3 nm for complexes (Figure 6A). Significantly, it was observed that
the BChE–taxifolin complex showed an average value of 0.5 nm, which is less than the
average value of 0.3 nm observed for the control BChE–donepezil complex. In comparison,
simulation in water showed a value of approximately 0.2 nm for the whole simulation
period. RMSF calculation per residue shows the overall values for all complexes, which
were between 0.1 and 0.8 nm (Figure 6B). The observed average value was 0.1 nm for all
simulated molecules. Selected complexes, including the BChE simulation in water, showed
similar fluctuation patterns except for some major fluctuations observed at the 70–85,
150–160, 280–300, and 320–370 amino acid regions. The observed average value of Rg
ranged between 2.32 and 2.34 nm for all complexes. BChE in water and control BChE–
donepezil showed an average value near 2.34 nm, while BChE–taxifolin showed an approx-
imate value less than the control, i.e., 2.32 nm (Figure 6C). Between one and four hydrogen
bonds formed during selected compounds and BChE receptor interactions (Figure 6D).
BChE–taxifolin formed one to four hydrogen bonds, while the control BChE–donepezil
formed only one to two hydrogen bonds during the simulation period.
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Figure 5. Two-dimensional graphs showing (A) RMSD plot of AChE in water (purple), AChE–
taxifolin (black), and AChE–donepezil (green) deviation during 100 ns period; (B) RMSF plot with
fluctuation per residues; (C) radius of gyration (Rg) plot showing compactness of protease molecule
during 100 ns simulation; and (D) hydrogen bond plot showing formation hydrogen bond. Where
nm = nanometer; ps = picosecond. AChE:Purple; AChE-Donzepil: green; AChE-Taxifolin: black.

MDS trajectory files were further subjected to Molecular Mechanics Poisson-Boltzmann
Surface Area (MMPBSA) analysis. The data obtained from Poisson–Boltzmann complex energy
and ligand–receptor energy component calculations are presented in Table 2 and Section 2.3.
The table shows the results of a free energy calculation for binding taxifolin to two different
enzymes, AChE and BChE. Free energy is calculated as the sum of several components,
including the van der Waals energy, electrostatic energy, polar solvation energy, disper-
sion energy, gas phase energy, and solvent energy. The results show that the binding of
taxifolin to AChE is more favorable than to BChE. The total free energy of binding for
AChE–taxifolin is −33,414.08 kcal/mol, while the total free energy for BChE–taxifolin is
−35,219.97 kcal/mol. This difference is due to several factors, including the stronger van
der Waals interactions between taxifolin and AChE, the more favorable electrostatic inter-
actions between taxifolin and AChE, and the more favorable polar solvation of taxifolin by
water. The stronger van der Waals interactions between taxifolin and AChE are likely due
to the larger surface area of taxifolin. The more favorable electrostatic interactions between
taxifolin and AChE are likely due to the positive charge on the AChE binding pocket. The
more favorable polar solvation of taxifolin by water is likely due to the former’s polar
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nature. These results suggest that taxifolin is a more effective inhibitor of AChE than BChE,
which is consistent with its known pharmacological properties. Furthermore, taxifolin is a
natural product shown to have anti-inflammatory and anti-cancer properties. The results of
this free energy calculation provide a quantitative explanation for the difference in binding
affinity between taxifolin and BChE. The stronger van der Waals interactions, the more
favorable electrostatic interactions, and the more favorable polar solvation of taxifolin all
contribute to its greater binding affinity. These results could be used to design new drugs
that are more effective inhibitors of AChE and BChE (Table 2).The total free energy of
binding for AChE–taxifolin is −24.34 kcal/mol, while the total free energy of binding for
BChE–taxifolin is −16.14 kcal/mol.
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Table 2. Representing the summarized data of Poisson–Boltzmann complex energy components calcula-
tion with ± SEM (standard deviation error of the mean) of complexes AChE–donepezil, AChE–taxifolin,
BChE–donepezil, and BChE–taxifolin. Where ∆Vdwaals = van der Waals energy; ∆EEL = electrostatic
molecular energy; ∆EPB = polar contribution to the solvation energy; ∆ENPOLAR = nonpolar contribution
of repulsive solute–solvent interactions to the solvation energy; ∆EDISPER = nonpolar contribution of
attractive solute–solvent interactions to the solvation energy; ∆GGas = total gas phase molecular energy;
∆GSolv = total solvation energy; and ∆GTotal = total binding energy.

Complex Free Energy Calculation Components (kcal/mol)

Complex ∆Vdwaals ∆EEL ∆EPB ∆ENPOLAR ∆EDISPER ∆GGas ∆GSolv ∆GTotal

AChE–donepezil −4325.87
(±5.40)

−29,859.62
(±21.16)

−4848.75
(±19.85)

102.59
(±0.23)

0.00
(±0.0)

−28,931.46
(±22.49)

−4746.16
(±19.71)

−33,677.61
(±11.03)

AChE–taxifolin −4313.25
(±5.17)

−29,618.25
(±16.14)

−5040.32
(±15.79)

104.17
(±0.24)

0.00
(±0.0)

−28,477.93
(±18.85)

−4936.15
(±15.64)

−33,414.08
(±9.20)

BChE–donepezil −4372.48
(±5.80)

−32,642.66
(±23.70)

−6031.58
(±22.45)

112.68
(±0.24)

0.00
(±0.00)

−29,327.66
(±25.01)

−5918.90
(±22.30)

−35,246.56
(±14.62)

BChE–taxifolin −4398.54
(±4.41)

−32,414.36
(±20.44)

−6199.93
(±20.18)

110.48
(±0.23)

0.00
(±0.00)

−29,130.52
(±18.68)

−6089.45
(±20.06)

−35,219.97
(±13.65)

Table 3. Representing the summarized data of MMPBSA-based free energy calculation components
with ± SEM (standard deviation error of the mean) of ligand–receptor. Where ∆Vdwaals = van der
Waals energy; ∆EEL = electrostatic molecular energy; ∆EPB = polar contribution to the solvation energy;
ENPOLAR = nonpolar contribution of repulsive solute–solvent interactions to the solvation energy;
∆EDISPER = nonpolar contribution of attractive solute–solvent interactions to the solvation energy;
∆GGas = total gas phase molecular energy; ∆GSolv = total solvation energy; and ∆GTotal = total
binding energy.

Ligand–Receptor Free Energy Calculation Components

Complex ∆Vdwaals ∆EEL ∆EPB ∆ENPOLAR ∆EDISPER ∆GGas ∆GSolv ∆GTotal

AChE–donepezil −56.23
(±0.46)

−256.40
(±1.50)

282.05
(±2.05)

−5.09
(±0.02)

0.00
(±0.00)

−312.62
(±1.70)

276.96
(±2.04)

−35.66
(±0.93)

AChE–taxifolin −35.49
(±0.37)

−10.23
(±0.71)

24.44
(±0.73)

−3.06
(±0.02)

0.00
(±0.00)

−45.72
(±0.80)

21.38
(±0.80)

−24.34
(±0.56)

BChE–donepezil −44.72
(±0.47)

−166.47
(±2.63)

182.10
(±2.34)

−4.80
(±0.02)

0.00
(±0.00)

−211.19
(±2.77)

177.30
(±2.33)

−33.90
(±0.73)

BChE–taxifolin −34.75
(±0.37)

−8.99
(±0.53)

31.02
(±0.59)

−3.42
(±0.02)

0.00
(±0.00)

−43.74
(±0.64)

27.60
(±0.58)

−16.14
(±0.52)

3. Methodology
3.1. Ligand Preparation

We obtained the 2D structures and SMILES IDs of taxifolin (https://pubchem.ncbi.
nlm.nih.gov/compound/439533) (accessed on 22 May 2023) and the control drug donepezil
(https://pubchem.ncbi.nlm.nih.gov/compound/3152) (accessed on 22 May 2023) from the
PubChem database [23,24].

We then used the Novoprolab server (https://www.novoprolabs.com/tools/smiles2
pdb) (accessed on 22 May 2023) to convert the SMILES IDs into 3D Protein Data Bank
(PDB) files [25,26] for subsequent molecular docking and simulation studies. Next, we
submitted the ligand files to the Discovery Studio visualize version 21.1.0.20298 to perform
energy minimization [26–28]. Using empirical energy functions, we applied the CHARMm
forcefield to model the macromolecular systems [29].

3.2. Receptor Preparation

AChE and BChE are enzymes that hydrolyze choline esters. AChE is the most abun-
dant cholinesterase in the body and is responsible for the hydrolysis of the neurotransmitter

https://pubchem.ncbi.nlm.nih.gov/compound/439533
https://pubchem.ncbi.nlm.nih.gov/compound/439533
https://pubchem.ncbi.nlm.nih.gov/compound/3152
https://www.novoprolabs.com/tools/smiles2pdb
https://www.novoprolabs.com/tools/smiles2pdb
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acetylcholine. BChE is less abundant than AChE and is responsible for the hydrolysis of
butyrylcholine and other choline esters. AChE and BChE are important enzymes that play
a role in nerve signaling. AChE is found in the nervous system, red blood cells, and the pla-
centa [30]. BChE is found in the liver, intestine, and plasma. Inhibitors of AChE and BChE
are used to treat various conditions, including Alzheimer’s disease, myasthenia gravis, and
glaucoma [31].Therefore, we have chosen both enzymes as receptors for investigation. PDB
ID: 7E3H is the PDB identifier for the crystal structure of human AChE in complex with
donepezil, a drug used to treat Alzheimer’s disease. X-ray crystallography determined the
structure with a resolution of 2.45 Å [32].

PDB ID: 7AIY is the crystal structure of human BChE in complex with 2-{1-[4-(12-Amino-
3-chloro-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinolin-9-yl) butyl]-1H-1,2,3-triazol-
4-yl}-N-[4-hydroxy-3-methoxybenzyl] acetamide. The structure was determined with X-ray
crystallography and has a resolution of 2.94 Å [33]. The next step involves removing any
water molecules, cofactors, or other unwanted molecules from the receptor structure, adding
hydrogen atoms, assigning charges and atom types, and optimizing the geometry produced
by Discovery Studio Visualizer version 21.1.0.20298. This step involves finding the receptor
region, where the ligand can bind and interact with its amino acid residues. We analyzed the
binding site of both PDB structures by using Discovery Studio Visualizer version 21.1.0.20298
described by Biovia, 2021 [26]. The key amino acids were identified and considered for the
active site docking of selected natural compounds.

3.3. AutoDock 4.2 Tool Receptor-Ligand Docking

In AutoDock version 4.2, water molecules, cofactors, or other unwanted molecules
from the receptor structure were removed, and we added hydrogen atoms, assigned charges
and atom types, and optimized the geometry. Different conformations and tautomers must
be generated for the ligand so that it can fit into the receptor binding site. Furthermore, we
set up the grid box that covers the region of interest where the docking is performed. For
AChE, the grid point in x, y, and z was 60 × 60 × 60, with spacing 0.375, and the grid center
x, y, and z co-ordinates were −40.919, 35.841, and −29.382, respectively, while the grid
center x, y, and z co-ordinates for BChE were −21.246, −11.966, and 44.337. The grid box
defines the size and resolution of the grid points used to calculate the interaction energies
between the receptor and the ligand [34,35]. The Lamarckian Genetic Algorithm (LGA)
determines how the ligand is placed and rotated in the receptor binding site. The scoring
function evaluates how well the ligand fits into the receptor and estimates its binding
affinity(∆G), as per the following formula:

∆Gbinding = ∆Ggauss + ∆Grepulsion + ∆Ghbond + ∆Ghydrophobic + ∆Gtors,

where ∆Ggauss is an attractive term for the dispersion of two Gaussian functions; ∆Grepulsion
is the square of the distance if it is closer than a threshold value; ∆Ghbond is a ramp function
that is also used for interactions with metal ions; ∆Ghydrophobic is a ramp function; and
∆Gtors is proportional to the number of rotatable bonds. The parameters for population
size (ga_pop_size) 150; energy evaluations (ga_num_evals) 2,500,000; maximum number
of generations (ga_num_generations) 27,000; mutation rate 0.02; crossover rate 0.8; beta
parameter Cauchy distribution (ga_cauchy_beta) 1.0; probability of performing local search
on individual (ls_search_freq) 0.6; and the LGA executions were maximized to 10 runs.

Finally, the AutoDock version 4.2 program executed the provided parameter after
the successful run, and prepared receptor and ligand files, as well as the defined docking
grid and parameters, depending on the size and complexity of the receptor and the ligand.
In the last examination of the docking poses, we ranked them according to their scores,
visualized them using molecular graphics software, and compared them with control data
using Discover Studio Visualizer version 21.1.0.20298 [26].
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3.4. Drug-Likeness and ADMET

We used the SwissADME online tool (http://www.swissadme.ch) (accessed on
12 October 2023) from the Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland [36]
to computationally predict the ADME, drug-likeness, and pharmacokinetics properties
of the selected natural compounds. This tool calculated parameters for physicochemical
properties like molecular weight, hydrogen bond donors/acceptors, number of rotatable
bonds, and topological polar surface area (TPSA). For lipophilicity, it can calculate parame-
ters like Consensus logP. Pharmacokinetic parameters calculations include gastrointestinal
absorption, blood–brain barrier (BBB) permeability, P-glycoprotein (P-gp) substrate, cy-
tochrome P450 (CYP) inhibition, and bioavailability. Drug-likeness parameters include
Lipinski’s rule of five (Ro5), Veber’s rule, and bioavailability score. We also analyzed
additional toxicity using the pkCSM online server (http://biosig.unimelb.edu.au/pkcsm/)
(accessed on 15 October 2023). pkCSM calculates several toxicity parameters, such as AMES
mutagenicity, and predicts whether a molecule is likely to cause mutations in bacteria.
Carcinogenicity predicts the potential for a molecule to cause cancer in rodents. The human
ether-a-go-go-related gene (hERG) inhibition parameter predicts whether a molecule is
likely to block the hERG potassium channel, which can lead to cardiac arrhythmias. Oral
rat acute toxicity (LD50) calculation estimates the dose of a drug that is lethal to 50% of rats.

3.5. Molecular Dynamics Simulations (MDS)

We performed 100 ns MDS for the selected complexes of AChE–donepezil, AChE–
taxifolin, BChE–donepezil, and BChE–taxifolin using the GROMACS tool 2018 version [37]
from the University of Groningen, The Netherlands. We also simulated AChE and BChE in
water for comparison. We used the pdb2gmx module to generate the topology files of each
corresponding protein in complex while employing the CHARMM27 all-atom force field. In
parallel, the topology file of each corresponding ligand was generated using the SwissParam
server (http://www.swissparam.ch/) (accessed on 18 October 2023). We created a triclinic
box unit cell filled with TIP3P water model for solvation and added Na+ and Cl− ions to
stabilize the system. We minimized energy by employing a maximum force constraint of 10
kJ/mol to prevent potential steric hindrance. The equilibration of each system was obtained by
using two-step ensembles. We applied the NVT (constant number of particles, pressure, and
temperature) ensemble at 300 K for 100 ps using V-rescale thermostat to achieve temperature
equilibration. The NPT (constant number of particles, pressure, and temperature) of each of
system was equilibrated by using a Parrinello-Rahman barostat [38,39]. During simulation,
particle mesh ewald (PME) was used to estimate long-range electrostatic interactions. Bond
lengths were restrained by LINear Constraint Solver (LINCS) algorithm [40].

4. Conclusions

Numerous plants have been found to exhibit cholinesterase inhibitory activity, in-
dicating they can protect nerve cells by delaying the depletion of the neurotransmitter
acetylcholine, which is crucial for memory and cognition. Taxifolin’s significant binding
energy with both tested enzymes indicated its potentiality to inhibit AChE and BChE. The
dynamics and simulation study results indicated that taxifolin could be safer and more
strongly bind and inhibit AChE and BChE than standard drugs. The inhibition of AChE
and BChE by taxifolin is likely due to its ability to bind to their active sites, which could
have therapeutic implications for the treatment of Alzheimer’s disease and other neurode-
generative disorders. However, more in vitro and in vivo investigations are required to
verify these results to determine the safety and effectiveness of taxifolin so that it may one
day be used to treat neuron-associated diseases and disorders.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules29030674/s1, Table S1: ADME prediction from
SwissADME (GI = Gastro intestinal, BBB = Blood Brain Barrier, Pgp = P glycoprotein, CYP = Cy-
tochrome, log Kp = skin permeation); Table S2: Drug-likeness prediction from SwissADME server

http://www.swissadme.ch
http://biosig.unimelb.edu.au/pkcsm/
http://www.swissparam.ch/
https://www.mdpi.com/article/10.3390/molecules29030674/s1
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(MW = Molecular Weight, TPSA = total polar surface area, Consensus Log P = average of all predicted
Log Po/w; Table S3: toxicity prediction. Data obtained from pkCSM server.
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