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Abstract: Accurate identification and understanding of various metallic minerals are crucial for
deciphering geological formations, structures, and ages. Giving their pivotal role as essential natural
resources, a microscopic exploration of metallic minerals becomes imperative. Traditional analytical
methods, while helpful, exhibit certain limitations. However, terahertz time-domain spectroscopy,
distinguished by its high signal-to-noise ratio, expansive frequency band, and low incident wave
energy, is a promising complement to conventional techniques in characterizing metallic minerals.
This study employs terahertz time-domain spectroscopy to examine samples of Stibnite, Sphalerite,
Galena, and Pyrite originating from diverse geological conditions. The vibrations of molecules within
these metallic minerals induce discernible changes in the terahertz spectra. Our findings untiate the
extensive potential of terahertz time-domain spectroscopy in the characterization of metallic minerals,
affirming its considerable practical value in mineral resource exploration.

Keywords: metallic minerals; terahertz time-domain spectroscopy; spectral characterization; lithology;
quantitative analysis

1. Introduction

In 2023, China’s Ministry of Natural Resources presented a solid promotion of a new
round of strategic actions to find mineral breakthroughs with substantial initiatives. This
proposal highlights the significance of metallic minerals as crucial strategic resources for
the country’s scientific and technological progress and economic growth, emphasizing
their inseparable connection with China’s economic development and the populace’s
standard of living [1–4]. For example, they play a vital role in various sectors, including
the automobile industry, the electronic field, and medical devices. Furthermore, analyzing
metallic minerals allows determining an area’s tectonics, structure, and age. Against this
backdrop, the analysis and detection of metallic minerals emerge as crucial components in
understanding and harnessing these valuable resources [5,6].

Various chemical–physical methods apply to the spectral characterization of rocks and
metallic minerals, such as X-ray analysis [7], thermogravimetric analysis [8,9], scanning
electron microscope [10], Raman spectroscopy [11], mass spectrometry [12], etc. [13,14]
These methods primarily serve as qualitative or semi-quantitative research tools. They
utilize waves of various frequency bands to extract molecular vibration modes of sub-
stances, generating different data that encapsulate information about the structural compo-
nents of matter. However, these traditional methods are characterized by their high costs,
time-intensive procedures, potential safety hazards, and limitations in accurate mineral
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identification. For example, X-ray diffraction poses radiation hazards to the human body
and is unsuitable for prolonged experimental operations. Similarly, thermogravimetric
analysis does not permit sample recovery and reuse after testing.

Terahertz waves, commonly denoting frequencies ranging from 0.1 to 10 THz, inhabit
the far-infrared spectrum, positioning themselves between millimeter waves and infrared
rays. This frequency range signifies a transition zone bridging macroscopic and micro-
scopic quantum theory realms within the comprehensive electromagnetic spectrum. Due
to the specificity of the terahertz electromagnetic spectrum, its interaction with materials
has unique physical properties [15–18]. As an emerging detection method, the terahertz
time-domain spectroscopy (THz-TDS) is a non-destructive measurement device [19,20]. It
obtains real-time power of terahertz pulses at a high signal-to-noise ratio (SNR) and com-
bines numerous advantages. It possesses high efficiency and speed, low ionization damage,
strong penetration, and distinct fingerprinting characteristics [21,22]. This technique is
capable of probing crucial phase information in mineral samples and bridging gaps in
the field that traditional methods cannot address [23,24], promoting the development of
research on the classification and precise analysis of mineral lithologies. Consequently,
it holds promise for qualitative and ration evaluation of different minerals [17,21,23,25].
The “Global Mineral Resource Reserve Assessment Report 2023” shows that the level of
protection for resources such as tin, lead, zinc, nickel, cobalt, and copper is relatively low.
Therefore, in this paper, Stibnite, Sphalerite, Galena and Pyrite from the mining area of Hu-
nan are selected to be investigated using THz-TDS. The results demonstrate that THz-TDS
differentiates and identifies mineral samples with varying concentrations, porosities, and
masses [26–28]. It also offers methodological and technical support for identifying metallic
minerals [29], chemical structures, and ration analysis. Due to the high conductivity of
metallic minerals, the free electrons can move freely. When the terahertz wave interacts
with them, it leads to electrons’ vibration and acceleration, which in turn causes energy
loss. Subsequently, the terahertz wave exhibits pronounced absorption within metallic
minerals. The absorption effect becomes particularly prominent when the frequency of
the terahertz wave aligns with the resonance frequency of free electrons in these minerals,
accentuating the overall absorption phenomenon. Consequently, the intensity and config-
uration of absorption peaks at specific frequencies in the spectrum vary for each mineral
component. After that, the terahertz spectra of metallic minerals are scrutinized using a
specialized model, enabling a comprehensive study of factors such as molecular structure,
crystal composition, electronic state, and more [30,31]. In summary, THz-TDS emerges
as a convenient and non-contact method for detecting and identifying metallic minerals,
underscoring its substantial practical value in the exploration of mineral resources.

2. Experimental Results and Discussion
2.1. Mineral Composition and Microstructural Characteristics

Pyrite, Galena, Stibnite, and Sphalerite are observed under a microscope (Figure 1).
Pyrite (Figure 1a) appears yellowish-white under the microscope, with a pockmarked
surface, and is a high-hardness mineral because the sulfide is very easy to oxidize; the
reddish-brown part is an oxidized film, and it is black because of the low reflectivity of
the cleavage. Galena (Figure 1b) is pure white under the microscope, with triangular traps
and abrasions on the surface of the mineral, which is a mineral with low hardness. Stibnite
(Figure 1c) is gray under the microscope, is an aggregate of elongated bars and grains, with
scuff marks seen on the surface, and is a low-hardness mineral. Yellowish-white minerals
are nonmetallic calcite, and blackish are Stibnite de-surfaced traps. Sphalerite (Figure 1d) is
gray under the microscope, a rare autocrystalline, medium-hardness mineral.

Pyrite, Galena, and Sphalerite exhibit complete extinction under orthogonal light, ap-
pearing as equiaxed crystalline homogeneous minerals. In contrast, Stibnite displays strong
inhomogeneity. However, it is important to note that the experiment can only provide
qualitative observations of minerals, needing more capability for quantitative analysis.
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Figure 1. Microscopic characterization of pyrite (a), galena (b), stibnite (c), and sphalerite (d) results.

2.2. Electron Microprobe Analysis

Analyzing data from electron microprobe experiments yields the elemental contents
of the four minerals (refer to Table 1). For each mineral, five distinct observation sites on
slides are chosen. The elemental averages are as follows: Pyrite: Fe average = 45.46%,
S average = 54.12%; Stibnite: Sb average = 69.3%, S average = 29.24%; Sphalerite: Zn
average = 64.66%, S average = 34.2%; Galena: Pb average = 87.71%, S average = 12.18%.

According to Table 2, S/Fe (atomic number) values are 2.039–2.115 in Pyrite. Higher
than the standard value of 1.999 for S/Fe (atomic number). Where the Co-to-Ni content ratio
is greater than one and less than one, it suggests that Pyrite has undergone hydrothermal
and sedimentary genesis; multiple origins and phases of supply may characterize the
mineralized material. The elemental content of Sb and S in Stibnite reveals a deviation
from the theoretical values (Sb = 71.38%, S = 28.62%), indicating a loss of both Sb and S.
The hypothesis posits that these elements integrate into the mineral lattice homogeneously.
Pyrite has a small amount of Sb, while Stibnite has traces of Fe, and, probably, the two
formed simultaneously. Sphalerite contains relative theoretical values of 67.10% for Zn
and 32.90% for S, with loss of Zn with respect to S. Galena has relative theoretical values
of 86.60% Pb and 13.40% S, and exhibits Pb-rich characteristics. This suggests that sulfur
fugacity changes during mineralization. Some samples contain Zn; crystallizes before
Galena, but continues after its crystallization.

Combining with the backscattered electron (BSE) of the minerals (Figure 2), the purity
of the four minerals is high; Pyrite has a regular surface, with star-dotted, scattered resin
visible at the edge contacts of the Pyrite crystals; Galena has a nearly right-angled triangular
surface bump, with a near-curved distribution of crystal bumps; Stibnite has a large area
filled with resin (artificially formed), and the surface is clearly scuffed, suggesting a lower
hardness; a large area of resin is present in Sphalerite as well. Analyzing the elemental fan
diagrams at the respective points reveals that the primary chemical compositions of Pyrite,
Galena, Stibnite, and Sphalerite are FeS2, PbS, Sb2S3, and ZnS. However, it is worth noting
that this method proves to be time-consuming and expensive.
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Table 1. Quantitative electron microprobe results for pyrite, stibnite, sphalerite, and galena at five
different measuring points (wt %).

Pyrite

Point As Fe S Ni Co Pb Cu Ag Zn Sb Total

1 0.19 45.48 54.36 0.00 0.06 0.00 0.05 0.00 0.06 0.01 100.22
2 0.22 45.11 54.35 0.02 0.09 0.00 0.04 0.03 0.00 0.00 99.85
3 0.28 45.00 54.41 0.03 0.18 0.00 0.03 0.03 0.00 0.01 99.96
4 0.24 45.41 53.30 0.00 0.08 0.00 0.01 0.02 0.02 0.00 99.09
5 0.25 46.30 54.19 0.00 0.08 0.00 0.05 0.00 0.02 0.00 100.89

Stibnite

Point As Fe S Ni Co Pb Cu Ag Zn Sb Total

1 0.88 0.00 28.42 0.05 0.03 0.00 0.00 0.02 0.00 69.58 98.97
2 0.90 0.01 28.42 0.01 0.00 0.00 0.02 0.02 0.00 69.47 98.85
3 0.01 0.00 0.01 0.03 0.00 0.00 0.02 0.00 0.00 0.04 0.11
4 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.06 0.10
5 0.72 0.00 30.90 0.05 0.02 0.00 0.00 0.00 0.00 68.86 100.56

Sphalerite

Point As Fe S Ni Co Pb Cu Ag Zn Sb Total

1 0.00 0.66 34.26 0.00 0.02 0.00 0.00 0.00 64.68 0.01 99.62
2 0.00 0.70 34.72 0.00 0.04 0.00 0.00 0.00 65.01 0.00 100.47
3 0.00 0.66 33.63 0.00 0.00 0.00 0.00 0.05 64.29 0.03 98.64
4 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.33 0.00 0.35
5 0.00 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.78 0.00 0.83

Galena

Point As Fe S Ni Co Pb Cu Ag Zn Sb Total

1 0.00 0.02 13.18 0.07 0.00 87.32 0.00 0.00 0.04 0.02 100.64
2 0.00 0.00 10.82 0.02 0.00 88.06 0.10 0.00 0.08 0.00 99.07
3 0.00 0.03 10.82 0.00 0.00 88.01 0.03 0.00 0.00 0.01 98.89
4 0.00 0.00 13.01 0.00 0.07 87.61 0.03 0.00 0.00 0.00 100.72
5 0.00 0.00 13.08 0.06 0.00 87.58 0.00 0.00 0.00 0.00 100.71

Table 2. Molar percentage of pyrite, stibnite, sphalerite and galena (wt %).

Pyrite Stibnite
Point 1 2 3 4 5 1 2 5

Fe (%) 32.40 32.22 32.14 32.80 32.86
Sb (%) 39.15 39.11 36.93
S (%) 67.59 67.77 67.85 67.19 67.13 60.84 60.88 63.06

Galena Sphalerite
Point 1 2 3 4 5 1 2 3

Pb (%) 50.58 55.69 55.67 50.98 50.84
Zn (%) 48.02 47.82 48.34
S (%) 51.97 52.17 51.65 49.41 44.3 44.32 49.01 49.15

2.3. THz-TDS
2.3.1. Mineral Spectral Characterization

This study uses THz-TDS to analyze different concentrations of Stibnite, Sphalerite,
Galena, and Pyrite The absorption coefficient curves of Stibnite (Figure 3a), Galena (Figure 3c)
and Pyrite (Figure 3d) at a 60% concentration exhibit significantly higher values compared
to those at a 20% concentration within the 0.2–1.5 THz range. The average absorption
coefficient values for Stibnite, Galena, and Pyrite at a 60% concentration are determined
to be 25.88, 31.28, and 43.84, respectively, while those at a 20% concentration are 10.49,
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13.16, and 16.16, respectively. This observation demonstrates that the absorption coefficients
increase with the increase in mineral concentration, aligning with Beer–Lambert law [32].
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However, the absorption coefficient curves of Sphalerite (Figure 4b) exhibit irregular
fluctuations, illustrated in Figure 4a. The time-domain signals of the three samples (20%,
40%, and 60%) contain echo signals, and their unprocessed amplitude curves obtained
directly by Fourier transform (Figure 4b) also display irregular fluctuations. Consequently,
the absorption coefficient plots (Figure 3b) and the refractive index plots (Figure 4c), ob-
tained through calculation, exhibit more pronounced irregular fluctuations. Moreover,
the average values of the absorption coefficients for concentrations of 80%, 60%, and 20%
are 5.99, 3.49, and 3.07, respectively, indicating that they still adhere to the principle that
increasing concentration enhances the absorption coefficients. However, due to the uncer-
tainty associated with the optical frequency at low and high frequencies, the concentration
size for the remaining groups of samples is ultimately determined to be 40%.
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refractive index (c) of sphalerite samples at different concentrations.

By analyzing the slow slope take, 0.3, 0.5, 0.7, and 0.9 THz are chosen as the absorption
coefficient values at the projection point. Figure 5a comprises absorption coefficients,
sample porosity, and species. At a frequency of 0.3 THz, the absorption coefficient of
Galena, Pyrite, Stibnite, and Sphalerite remain in the range of 0.99–2.49, 4.04–6.43, 0.88–1.35,
0–0.36, respectively, as the porosity increases. Similarly, conducted within a limited range,
the analysis focused on absorption coefficient values for minerals at 0.5, 0.7 and 0.9 THz.
As depicted in Figure 5, the absorption coefficient values of minerals exhibit a consistent
pattern, maintaining relative constancy across the spectrum from low to high porosity. As
the frequency rises, the mapping surface colors of Galena and Pyrite shift from blue to red,
and Stibnite transitions from blue to green. This change signifies a gradual increase in their
absorption coefficient values. In the case of Sphalerite, the color remains predominantly
bluish-purple, with a minor increment in absorption coefficients.
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The overall adsorption rate demonstrates improvement with an increase in sample
frequency. Negative absorption coefficients in Sphalerite can be attributed to the intro-
duction of noise during its measurement using THz-TDS. Additionally, the absorption
rate of Stibnite is the highest, while Sphalerite is significantly lower than the other three
minerals. When the porosity ranges from 5–8%, the maximum value of Sphalerite absorp-
tion coefficients does not exceed 5 cm−1, as analyzed in Figure 4. Sphalerite’s mineral
properties, composition, and content contribute to this behavior. Consequently, terahertz
creates favorable conditions for qualitative and quantitative detection of substances.

In Figure 5b, the relationship between the refractive index and porosity of the samples
reveals that cassiterite occupies the uppermost position while Sphalerite settles at the
bottom. Furthermore, the refractive index gradually increases from the higher side towards
samples with lower porosity. Additionally, it is worth noting that the refractive index of
minerals is directly proportional to frequency. To illustrate this principle and investigate the
connection between frequency and absorption coefficients while also minimizing measure-
ment systematic errors, we analyzed the average absorption coefficients for samples with
porosities of 1.95% for Stibnite, 7.8% for Sphalerite, 8.9% for Galena, and 4.2% for Pyrite.

Figure 6 shows the results of the linear fit to the frequency-absorption coefficients.
The linear relationship between the absorption coefficients and frequency is robust with
an R2 value of 0.998 at a porosity of 7.8%. Similarly, for Stibnite with a porosity of 1.95%,
Galena with 8.9%, and Pyrite with 4.2%, the frequencies and absorption coefficients show a
proportional relationship, with R2 values of 0.84, 0.903, and 0.960, respectively.

Upon fitting the refractive index versus frequency once again, it is observed from the
results depicted in Figure 7 that the correlation coefficients for Stibnite, Sphalerite, Galena,
and Pyrite all exceed 0.945. This value indicates a strong linear relationship between the
refractive index and the frequency of the samples.

2.3.2. Analysis Using THz-TDS

The absorption coefficients of the 16 different samples in Figure 8a at 0–2.5 THz fre-
quencies exhibit varying degrees of variation. These variations suggest that the mineral
samples’ unique elemental compositions and structures significantly manifest in the ter-
ahertz band. In contrast, Sphalerite exhibits the lowest absorption coefficients across the
entire band, with 96.67% of the Sphalerite absorption coefficients falling between 0 and
20 cm−1 and 3.33% between 20 and 45 cm−1. The other three minerals, on the other hand,
demonstrate relatively concentrated absorption coefficients, accounting for 19.38%, 22.42%,
and 21.46% of the total data volume, respectively. These proportions remain consistent
across various intervals, posing challenges in their rapid differentiation.
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In the terahertz band, the refractive index of the samples exhibits variations. Specif-
ically, the refractive index of Sphalerite remains constant between 1.62 and 1.78 across
the entire band. Additionally, Pyrite shows a refractive index value of 67.94%, primarily
within the interval of 2.15–3.0. On the other hand, the refractive index values of Pyrite
and Galena predominantly fall within the range of 2.00–2.15, accounting for 86.82% and
96.77%, respectively. Consequently, discerning their mineral refractive index values be-
comes challenging due to their relatively concentrated nature. In contrast, the refractive
index of Sphalerite and Stibnite stands out as the most distinctive among the other minerals.
Hence, in the rapid identification of minerals, it is advisable first to calibrate the refractive
index of Sphalerite and Stibnite using terahertz technology.

Classification studies using terahertz spectral data have employed cluster analysis
to qualitatively analyze the similarities between 16 mineral specimens and the effects
of different compositions on the terahertz parameters [32–35]. The Euclidean distance
clustering algorithm used in this paper is an unsupervised learning method; the idea is to
categorize sample points that are closer in the sample space into classes. The Euclidean
distance can reflect the absolute differences in individual numerical magnitudes and
effectively capture differences in the numerical magnitude of the dimensions. This approach
minimizes intra-class differences while maximizing inter-class differences [36]. This process
entails five step-by-step clustering procedures, resulting in a pair of clustering tree diagrams
that visually illustrate the similarities and dissimilarities among the 16 mineral samples
(refer to Figure 8b).

The samples pertain to three categories. The first category contains three samples
of Galena (0.2 g, 0.3 g, 0.5 g) and four samples of Stibnite (0.2 g, 0.3 g, 0.4 g, 0.5 g). The
Euclidean distance of 0.006 between the 0.4 g and 0.5 g Stibnite specimens in this category
indicates their highest similarity. The second category consists of four Sphalerite (0.2 g,
0.3 g, 0.4 g, 0.5 g) and one Galena (0.4 g). In this category, the smallest Euclidean distance of
0.046 is observed between the 0.4 g Galena model and 0.3 g Sphalerite sample, suggesting
their highest similarity. The third category includes four Pyrite samples (0.2 g, 0.3 g, 0.4 g,
and 0.5 g). The minimum Euclidean distance of 0.057 is found between the 0.4 g and 0.5 g
Pyrite samples. Overall, the cluster analysis results align with the mineral lithology, except
for the slight difference observed in the 0.4 g Galena sample. Galena is in the same group as
Stibnite due to its chemical composition and crystal structure, which contains elements like
lead (Pb) or antimony (Sb). These shared elements result in similarities in specific properties.
The resemblance in crystal structures or lattice types between the two minerals may lead to
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similarities in their response to electromagnetic waves in the terahertz band, including the
refractive index Therefore, the cluster analysis results generally support the lithology of the
specimens, except for the slight difference observed in the Galena 0.4 g sample.

Four mineral samples, each with a concentration of 40% and pressed at 10 MPa, have
been selected for further study. Based on the THz-TDS depicted in Figure 9a, it is evident
that the four minerals exhibit unique terahertz spectral characteristics. Furthermore, the
amplitudes of these minerals differ significantly within the effective period, indicating
variations in their absorption and transmission properties under terahertz waves. Distinct
composition and content among the samples contribute to the observed signal delay,
influencing the refractive index and terahertz waves’ absorption and propagation. Notably,
the waveforms of Sphalerite demonstrate substantial amplitude variations, underscoring its
pronounced absorption and scattering capabilities concerning terahertz waves. Conversely,
Pyrite, Galena, and Stibnite waveforms exhibit comparably smaller amplitude variations
than Sphalerite. Hence, these minerals possess discernible mineral compositions.
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After performing prior calculations, calculate the optical constants of these four min-
erals to help distinguish them. Following the organization of data and integration of
images, absorption coefficients and refractive index plots for the four minerals are derived.
The figure shows that the four minerals’ absorption coefficients gradually increase with
an increase in terahertz wave frequency. This phenomenon is attributed to the shorter
wavelength resulting from the higher frequency of terahertz waves, causing the minerals
to absorb more energy. Notably, Sphalerite shows a considerably smaller variation than
the other three minerals, with only a slight increase in absorption coefficients. This smaller
variation in Sphalerite occurs due to Sphalerite’s high transmittance, resulting in a weaker
absorption capacity for terahertz waves. Conversely, the absorption coefficients of the
other three minerals exhibit significant changes with increased terahertz wave frequency.
Specifically, Sphalerite, Galena, and Pyrite display distinct absorption curves that overlap
at 0.2–0.9 THz and 0.9–1.4 THz. The identical composition and content in the samples lead
to this overlap.

The variation in absorption coefficients allows for a relatively clear distinction between
Sphalerite and the other three minerals. When analyzing the mineral refractive index, there
are no apparent significant changes as the terahertz wave frequency varies. However,
when comparing the four minerals, there are noticeable differences in their respective
refractive indexes. Sphalerite has the lowest refractive index, followed by Galena, Pyrite,
and Stibnite in descending order. Sphalerite, composed of zinc sulfide (ZnS), exhibits a
low refractive index in the terahertz range. This low refractive index suggests the presence
of electron jumps within the molecular structure of Sphalerite, leading to absorption and
scattering at terahertz frequencies, consequently resulting in a relatively low refractive
index. Conversely, Sphalerite possesses the highest refractive index. The hypothesis is
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that the molecular structure of Sphalerite chemical composition may contain free-moving
electrons, contributing to the stronger oscillation at the corresponding terahertz wave
frequency and yielding a higher refractive index for the mineral.

The above analysis shows that the structure and composition of various minerals differ
significantly, exhibiting unique terahertz spectral characteristics. These characteristics serve
as symbols for the physical properties and disparities among minerals, highlighting the
potential of THz-TDS as a novel technology for qualitative analysis of metallic minerals.

3. Methods
3.1. Microscopy

Antimony Sphalerite and Pyrite from tin mines in Leng Shui Jiang City, Hunan
Province, and Galena and Sphalerite from Lin Wu deposits in Hunan Province were selected
for the experiments, and cut and polished into light sheets of 30 mm × 50 mm in size
and 75 µm in thickness. Then, an Olympus microscope scrutinized the sheets at 50 times
magnification. The preliminary mineral composition of the sample was determined and its
structure was observed [37,38]. The preparation process of the light sheet was as follows:

(1) Cut: partition the ore specimen for observation into pieces of a specific size on a
slicing machine.

(2) Ground: after washing the cut pieces of ore with water, the specimen and the slide
were ground on a grinder so that the cut surface of the sample became a smooth plane,
after which it was glued.

(3) Sliced: after the gel had hardened, the specimen was placed in a thin-section cutter,
which cut and ground it to a 100–150 µm thickness.

(4) Fine ground: the rock specimen was ground on a grinder to a thickness of 75 µm.
(5) Polished: put the finely ground ore on the canvas grinding disk and the tweed grinding

disk, and add the water-tuned MgO for polishing, until the surface is as smooth as
a mirror.

3.2. Electron Microprobe Analysis

In this experiment, a carbon film was sprayed on the surface of a light sheet (the
one made in Section 3.1) and five different points were selected for quantitative and
qualitative analysis of trace elements in the minerals using an electron microprobe analysis
(EMPA) model EMPA-1600 Shimadzu, Japan [39,40]. The operating conditions included an
accelerating voltage of 15 kV, a beam current of 10 nA, and an electron beam diameter of
5 µm.

3.3. THz-TDS

A transmission terahertz time-domain spectroscopy system, comprising a femtosecond
laser, a photoconductive antenna, a time-delay control system, and other corresponding
equipment, was utilized in this study. The femtosecond laser comprises a titanium sapphire
laser with a center wavelength of 800 nm, a pulse width of 100 fs, and a repetition frequency
of 80 MHz. The laser featured a spectral range of 0.1–3.5 THz and an average energy
output of 500 mW. This system facilitated the detection of ample spectral information,
enabling the analysis of materials’ physical and chemical properties [41]. The fundamental
principle involved the terahertz electric field altering the detected light’s polarization state,
modulating the detector crystal’s refractive index. The system, in turn, converted the
light into an electrical signal, providing information about the electric field strength. A
subsequent Fourier transform was applied to obtain amplitude and phase information in
the broadband frequency domain, contingent upon meeting the requirements for the phase
data. Entering the corresponding formulas yielded the absorption coefficients (α(w)) and
refractive index (n(w)) of the samples [42,43].
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n(w) =
φ(w)c

wd + 1

α(w) = 2
d ln

{
4n(w)

A(w)[n(w)+1]2

}
Here, A(w) is the amplitude ratio of the sample signal to the reference signal, φ(w)

is the phase difference between the sample and the reference signal, c is the speed of
light, and d was the total penetration thickness of the terahertz wave. THz-TDS had high
environmental requirements and was placed in an ultra-clean room, maintaining a room
temperature of 22 degrees Celsius.

Sample Preparation

Initially, these minerals (referred to in Section 3.1) were ground into a powder below
200 mesh, followed by sample preparation using the pressing method. The specific steps
for sample preparation were as follows:

(1) Ground: the bulk sample was placed into the appropriate grinding device and period-
ically operated to achieve a particle size range within 200 mesh or below.

(2) Sieved: the powdered samples were filtered through a sieve to ensure they were below
200 mesh.

(3) Dried: before sizing, the mineral powders undergo drying in an oven to eliminate any
adverse effects of moisture on the characterization results.

(4) Prepared: in Group I, the powder of the four metal samples was mixed with Poly-
tetrafluoroethylene (PTFE) powder in different ratios of 2:8, 4:6, and 6:4 to control
the concentration of the metal minerals and porosity. The weighed samples had a
mass of 0.3 g and were prepared using a tablet press pressure of 4 MPa, resulting
in a specimen thickness of approximately 0.8 mm. Moving on to Group II, the pow-
der of the four metal samples was mixed with PTFE powder in a 4:6 ratio. Sample
preparation involved applying press pressures of 4 MPa, 7 MPa, 10 MPa, 13 MPa,
16 MPa, and 19 MPa, while the mass of the weighed samples remained at 0.3 g. Lastly,
in Group III, the powder of the four metal samples was mixed with PTFE powder
in a 4:6 ratio, and a press pressure of 19 MPa was applied for the preparation of
Stibnite, Sphalerite, Galena, and Pyrite samples, all had the same particle size. The
mass of the samples varied at 0.2 g, 0.3 g, 0.4 g, and 0.5 g, and Table 3 presented their
corresponding thicknesses.

Table 3. The porosity and thickness of samples prepared by four metallic minerals under
different pressures.

Sample Name
4 MPa 7 MPa 10 MPa

Porosity
(%)

Thickness
(mm)

Porosity
(%)

Thickness
(mm)

Porosity
(%)

Thickness
(mm)

Galena 9.16 0.81 8.98 0.81 8.9 0.81
Pyrite 6.43 0.87 4.82 0.83 4.42 0.83

Stibnite 5.12 0.88 3.36 0.86 2.45 0.85
Sphalerite 7.8 0.91 7.62 0.91 7.21 0.91

Sample Name
13 MPa 16 MPa 19 MPa

Porosity
(%)

Thickness
(mm)

Porosity
(%)

Thickness
(mm)

Porosity
(%)

Thickness
(mm)

Galena 8.15 0.79 8.02 0.79 7.75 0.79
Pyrite 4.16 0.83 4.13 0.83 4.8 0.82

Stibnite 1.95 0.84 1.13 0.83 0.8 0.82
Sphalerite 6.8 0.9 6.07 0.88 5.22 0.88
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4. Conclusions

This paper describes the analysis of four metallic mineral samples using THz-TDS
in combination with conventional means. The simple qualitative observations of the
composition and structure of the samples under a microscope did not allow for their
quantitative analysis. In the EMPA experiment, the analysis of the elements’ content
determined the minerals’ composition and the genesis of their deposits. However, the
method is costly and it is time-consuming to prepare samples. Analyzed using THz-TDS,
the terahertz spectra of the samples are obtained through the interaction of terahertz
light with the molecular vibrations in the metallic minerals. The calculation of absorption
coefficients and refractive index for terahertz waves under varying conditions (porosity,
concentration, and mass) is conducted, followed by a qualitative analysis of the specimens.
The findings demonstrate that THz-TDS is an effective method for analyzing mineral
properties. By employing absorption coefficients and refractive index plots, specific to
the four minerals, in conjunction with the cluster analysis method, the results highlight
discernible differences in terahertz optical parameter spectra for minerals with distinct
compositional contents. Thus, THz-TDS can capture subtle changes in molecular type and
structure, enabling the modeling of mineral material composition and the content of lead,
zinc, and other metal elements. This study established the effectiveness of THz-TDS for the
identification and quantitative analysis of metallic minerals, offering a new technology for
mineral resource exploration. In conclusion, THz-TDS provides a convenient, non-contact
method for detecting and identifying metallic minerals; it is of great value in the search
for mineral resources of great economic value and the analysis and processing of mineral
resources, determining the geological age and type of minerals, etc. This novel technique
for analyzing deposit patterns and mineralization mechanisms introduces new analytical
approaches to geological exploration.
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