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Abstract: Monitoring the level of biothiols in organisms would be beneficial for health inspections.
Recently, 3-(2′-nitro vinyl)-4-phenylselenyl coumarin as a fluorescent probe for distinguishing the
detection of the small-molecule biothiols cysteine/homocysteine (Cys/Hcy) and glutathione (GSH)
was developed. By introducing 4-phenyselenium as the active site, the probe CouSeNO2/CouSNO2

was capable of detecting Cys/Hcy and GSH in dual fluorescence channels. Theoretical insights
into the fluorescence sensing mechanism of the probe were provided in this work. The details of
the electron excitation process in the probe and sensing products under optical excitation and the
fluorescent character were analyzed using the quantum mechanical method. All these theoretical
results would provide insight and pave the way for the molecular design of fluorescent probes for
the detection of biothiols.
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1. Introduction

Biothiols are involved in many processes of transfer and detoxification, including cell
growth, redox, and so on. Small molecular biothiols, including cysteine, homocysteine, and
glutathione (Cys, Hcy, and GSH, respectively), are important sulfur compounds that could
protect parts of the body due to their reducibility [1–3]. Biothiols with structural differences
would lead to different functions; meanwhile, the biothiols are related to each other. Cys is
involved in the process of enzyme catalysis, detoxification, and protein synthesis. Hcy is a
regulatory intermediate in the Met cycle and the precursors of Cys and methionine. GSH
has a role in maintaining redox homeostasis in biological systems.

The concentration of biological biothiols will deviate from normal values under the
influence of adverse factors and directly affect their functions. In this situation, diseases
such as growth retardation, cardiovascular disease, liver damage, and rheumatism, etc.,
could be caused. Therefore, monitoring the level of biothiols in organisms would be benefi-
cial for health inspections. Nowadays, the methods of detecting biothiols are diversified
and gradually improved. Yet, different detection methods have their own advantages and
drawbacks [2,4–10].

At present, the main methods for the detection and analysis of active sulfur species
(RSS) include the high-performance liquid chromatography (HPLC) analytical method, the
colorimetric method, mass spectrometry, electrochemical analysis, capillary electrophoresis,
and fluorescence analysis [11–16].

According to the comparative analysis, the detection results of high-performance
liquid chromatography and mass spectrometry are relatively stable and sensitive but
necessitate complicated sample operations and expensive equipment. The capillary elec-
trophoresis detection method is economical and rapid, but has slightly inferior sensitivity.
Colorimetry is easy to use but usually produces a relatively big error. Although the elec-
trochemical analysis method has the advantages of convenience and high sensitivity, it is
relatively weak in terms of selectivity. In contrast, fluorescent probes have been successfully
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applied to many detection fields due to their advantages of high sensitivity, low back-
ground interference, high selectivity, and good biocompatibility. Combined with focusing
microscope instruments, fluorescent probes are applied to real-time and in situ imaging
of biological cells and tissues without causing any damage, which provides a powerful
analytical technique for disease diagnosis and is becoming a popular detection method in
biological and medical fields.

In recent years, remarkable progress has been made in the construction of biothiol flu-
orescent probes [4,17–19]. Many reported fluorescent probes can be responded to biothiols
in cells, tissues, and a variety of amino acids. However, due to the similar structure and
reactivity of biothiols, most of the fluorescent probes reported so far cannot distinguish
between the biothiols of Cys, Hcy, and GSH, which hinders the research of their roles in
corresponding physiological and pathological processes [20,21].

Recently, Chen et al. developed 3-(2′-nitro vinyl)-4-phenylselenyl coumarin as a
fluorescent probe for distinguishing between the detection of Cys/Hcy and GSH. By intro-
ducing 4-phenyselenium as the active site, the probe CouSeNO2/CouSNO2 was capable
of detecting Cys/Hcy and GSH in dual fluorescence channels [22]. For the biothiols, the
first-step sensing reaction was experimentally proven to be the nucleophilic substitution
of 4-phenylselenium with the thiol group. Furthermore, through two-channel fluorescent
imaging, the probe CouSeNO2/CouSNO2 had been successfully applied to sense the exoge-
nous and endogenous biothiols in living cells. Except for the Michael addition as a usual
sensing reaction in reported nitroolefin fluorescent probes, the nucleophilic substitution of
4-phenylselenium in the probe CouSeNO2/CouSNO2 with the thiol group of a biothiol as
the first-step sensing reaction not only accelerated the reaction to biothiols but also realized
the distinction between Cys/Hcy and GSH in dual fluorescence channels. Compared with
the experimental results, the theoretical research on the electronic structure, reaction sites,
sensing mechanism, and fluorescent properties of the probe CouSeNO2/CouSNO2 in this
work could provide insights and pave the way for the molecular design of fluorescent
probes for the detection of biothiols.

2. Results and Discussion

The stable molecular structures of the probes CouClNO2, CouSNO2, and CouSeNO2
are shown in Figure 1a–c. Due to no apparent spectral response with biothiols, the probe
CouClNO2 was only presented for structural comparison here but not for consideration in
the following theoretical research.

From the surface map of average local ionization energy (ALIE) [23] on three probes
in Figure 1d–f, it could be deduced that the C=C bond in CouClNO2 is the potential
electrophilic reaction site (with an ALIE value of 0.33 a.u.); otherwise, the S(Se) atom and
C=C bond in the CouSNO2 and CouSeNO2 probes are the potential electrophilic reaction
sites (with the ALIE values of 0.32 a.u. and 0.30 a.u. for the S and Se atoms in the CouSNO2
and CouSeNO2 probes, respectively).

Fukui function and dual descriptor, known as the important concepts in density func-
tional reactivity theory, which was initially developed by Parr, are very popular methods
for predicting reaction sites defined under the conceptual density functional theory frame-
work [24–26]. The dual descriptors of the CouClNO2, CouSNO2, and CouSeNO2 probes
were obtained through Multiwfn 3.8(dev) analysis based on the ORCA output results and
are illustrated in Figure 1g–i. The S and Se atoms in the CouSNO2 and CouSeNO2 probes
(indicated by the red circle in Figure 1h,i) were indicated to be the potential electrophilic
reaction sites with biothiols, which were in agreement with the corresponding experimental
results [22]. The lower ALIE value of the Se atom compared to the S atom indicated the
higher sensitivity of the CouSeNO2 probe to biothiols than the CouSNO2 probe, which was
also testified within the experiment work.
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S and Se atoms when the CouSNO2 and CouSNO2 probes encountered the biothiols. The 
2D localized orbital locator (lol) on the molecular planes of the CouSNO2 and CouSeNO2 
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molecules were potential reaction sites. The sensing mechanism of CouSeNO2 towards 
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Figure 1. (a–c) The stable molecular structures of the CouClNO2, CouSNO2, and CouSeNO2 probes;
(d–f) the surface map of ALIE on the CouClNO2, CouSNO2, and CouSeNO2 probes; and (g–i) the
dual descriptors of the CouClNO2, CouSNO2, and CouSeNO2 probes. (the red circle indicate S and
Se atom in the CouSNO2 and CouSeNO2 probes respectively).

From the 2D plots of dual descriptors on the main molecular planes of the CouSNO2
and CouSeNO2 probes, as shown in Figure 2a,b, the dual descriptor absolute values of
the S and Se atoms are obviously larger than the values at other places within the probe
molecule. This result indicated that a substitution reaction would likely occur within the S
and Se atoms when the CouSNO2 and CouSNO2 probes encountered the biothiols. The
2D localized orbital locator (lol) on the molecular planes of the CouSNO2 and CouSeNO2
probes, as shown in Figure 2c,d, also indicated that the S and Se atoms in the probe
molecules were potential reaction sites. The sensing mechanism of CouSeNO2 towards
biothiols is shown in Scheme 1.

The most stable geometric structures of the ground state S0 and first excited state S1 of
the CouSNO2 and CouSeNO2 probes are shown in Figure 3. It indicated a similar difference
between the S0 and S1 structures of the CouSNO2 and CouSeNO2 probes, in which the
benzene ring showed an obvious flip from the ground state to the first excited state. The
dihedral angle, α, between the benzene ring and the main molecular plane of the CouSNO2
probe variated from 59◦ to 108◦ when the molecule was excited from S0 to S1; this change
in α was from 56◦ to 108◦ in the CouSeNO2 probe. This large structural difference between
S0 and S1 within the CouSNO2 and CouSeNO2 probes would lead to large reorganization
energy and Huang–Rhys factors [27,28] for some normal vibration modes, as shown in
Figure 4 (CouSNO2 was only shown for clarity consideration). It could be seen that the
vibration mode with large Huang–Rhys factors were just corresponding with the swing
of the benzene ring in the probe molecule. The reorganization energy and Huang–Rhys
factors between S0 and S1 of the CouSNO2 and CouSeNO2 probes were calculated through
the Dushin program [29].
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Figure 4. The Huang–Rhys factors of the CouSNO2 probe.

To illustrate the electron excitation process from S0 to S1 within the CouSNO2 and
CouSeNO2 probes, the hole–electron (brown and green colors, respectively, in Figure 5)
analyses were performed based on the TDDFT results. It could be informed that the electron
was mainly excited from the benzene ring part to the main planar part of the probes. The
excitation energy from S0 to S1 in CouSeNO2 (3.940 eV) was a little larger than that in
CouSNO2 (3.917 eV).
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Figure 5. Hole–electron (brown and green colors, respectively) analysis for the electron excitation
process from S0 to S1 within the (a) CouSNO2 and (b) CouSeNO2 probes.

The simulated UV–Vis absorption spectrum of the CouSeNO2 probe, as shown in
Figure 6a, indicated that the absorption wavelength from S0 to S1 was about 473 nm, which
was near the experimental value of 480 nm and testified to the reasonable choice of the
functional and basis set for electron excitation calculation on this kind of organic molecular
probe. After the reaction with Cys and Hcy, the absorption wavelengths from S0 to S1 of the
sensing products Cou-Cys and Cou-Hcy were changed by a blue shift to be about 360 nm
and 357 nm, respectively, which were consistent with the experimental results.

Molecules 2024, 29, x FOR PEER REVIEW 7 of 11 
 

 

  
(a) (b) 

 
(c) (d) 

Figure 6. The simulated UV–Vis absorption spectrum of the probe and sensing products. (a) 
CouSeNO2. (b) Cou-Cys. (c) Cou-Hcy. (d) Cou-GSH. 

Unlike the charge transfer characteristic of electron excitation in the process from S0 
to S1 within the original CouSeNO2 probe, it was shown the local excitation character for 
the electron excitation process from S0 to S1 within the sensing products Cou-Cys and Cou-
Hcy, and this local excitation character led to a significant increase in the fluorescent 
intensity at about 460 nm and 451 nm, respectively, which were testified within both the 
theoretical and experimental results. A similar reaction between the CouSeNO2 probe and 
GSH occurred, which also led to the variation in the UV–Vis absorption spectrum and 
fluorescent intensity of the sensing product Cou-GSH. Without the seven- or eight-
membered ring like in sensing products Cou-Cys and Cou-Hcy, due to the Michael 
addition reaction of the thiol group to the unsaturated C=C double bond, there was a red 
shift within the UV–Vis absorption and fluorescent spectrum of sensing product Cou-GSH 
compared with the original probe CouSeNO2. The theoretical absorption and emission 
wavelength between S0 and S1 was about 500 nm and 550 nm, respectively, which were 
well agreed with the experimental values of 515 nm and 562 nm, respectively. The 
theoretical and experimental fluorescent-related absorption and emission wavelengths 
are summarized in Tables 1 and 2. 

  

Figure 6. The simulated UV–Vis absorption spectrum of the probe and sensing products.
(a) CouSeNO2. (b) Cou-Cys. (c) Cou-Hcy. (d) Cou-GSH.



Molecules 2024, 29, 554 7 of 11

Unlike the charge transfer characteristic of electron excitation in the process from S0
to S1 within the original CouSeNO2 probe, it was shown the local excitation character for
the electron excitation process from S0 to S1 within the sensing products Cou-Cys and
Cou-Hcy, and this local excitation character led to a significant increase in the fluorescent
intensity at about 460 nm and 451 nm, respectively, which were testified within both the
theoretical and experimental results. A similar reaction between the CouSeNO2 probe
and GSH occurred, which also led to the variation in the UV–Vis absorption spectrum
and fluorescent intensity of the sensing product Cou-GSH. Without the seven- or eight-
membered ring like in sensing products Cou-Cys and Cou-Hcy, due to the Michael addition
reaction of the thiol group to the unsaturated C=C double bond, there was a red shift within
the UV–Vis absorption and fluorescent spectrum of sensing product Cou-GSH compared
with the original probe CouSeNO2. The theoretical absorption and emission wavelength
between S0 and S1 was about 500 nm and 550 nm, respectively, which were well agreed
with the experimental values of 515 nm and 562 nm, respectively. The theoretical and
experimental fluorescent-related absorption and emission wavelengths are summarized in
Tables 1 and 2.

Table 1. The main electron excitation processes in the probe and sensing product molecule.

Probe/Sensing
Product

Electronic
Transition a

Excitation
Energy Theoreti-
cal/Experimental

(nm)

Oscillator
Strength Composition b CI c

CouSeNO2 S0 → S1 473/480 0.1063 H → L 0.6815
Cou-Cys S0 → S1 360/370 0.7921 H → L 0.6908
Cou-Hcy S0 → S1 357/365 0.8014 H → L 0.7014
Cou-GSH S0 → S1 500/515 0.7318 H → L 0.7219

a Only the excited states with an oscillator strength larger than 0.1 were considered. b H stands for HOMO and L
stands for LUMO. c Coefficient of the wave function for each excitation was in absolute value.

Table 2. The main electron emission processes in the probe and sensing product molecule.

Probe/Sensing
Product

Electronic
Transition a

Emission
Energy

Theoretical/
Experimental (nm)

Oscillator
Strength Composition b CI c

CouSeNO2 S1 → S0 498/N.A. 0.0245 H → L 0.6726
Cou-Cys S1 → S0 460/465 0.7146 H → L 0.7017
Cou-Hcy S1 → S0 451/457 0.7219 H → L 0.7102
Cou-GSH S1 → S0 550/562 0.6849 H → L 0.7115

a,b,c same indication as in Table 1.

To illustrate the electronic structures of the CouSeNO2 probe and its sensing product
with biothoils in more depth, the density of electronic states (DOSs) were calculated
and are illustrated in Figure 7. The main orbital transition contribution to the electron
excitation between S0 and S1 in the probes and sensing products was the highest occupied
molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO), as shown in
Tables 1 and 2. The fluorescence of the probes and sensing products were decided through
the electron radiation process from S1 to S0.
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The total DOS (TDOS) of the probe and sensing product molecules and the partial
DOS of two individual parts in the molecules (coumarin part and benzene ring in the probe
and biothoils in the sensing product) are all depicted within Figure 7. It could be seen
that the obvious charge transfer characteristic in the electron excitation process between
S0 and S1 in the CouSeNO2 probe, in which the HOMO was mainly contributed by the
benzene ring part and the LUMO was mainly contributed by the coumarin part. This
charge transfer character indicated that the ICT process led to the small oscillation strength
between the S0 and S1 states and a weak fluorescent intensity in the original CouSeNO2
probe. Otherwise, the local excitation characteristic was shown in the electron excitation
process between S0 and S1 in the sensing products through the probe reaction with the
biothiols, which led to the corresponding significant oscillation strength and fluorescent
intensity. Due to the different molecular structures of the biothoils, the sensing product
Cou-GSH without its 7–8-membered rings showed a wavelength red shift in maximum
absorption peak and fluorescence compared with the original CouSeNO2 probe. Contrarily,
the Michael addition reaction between the thiol groups (Cys and Hcy) and the unsaturated
C=C double bond in the CouSeNO2 probe led to the formation of the 7–8-membered
rings in the sensing products Cou-Cys and Cou-Hcy, which made the different electronic
structure variation compared with the original probe CouSeNO2. Both the wavelength of
the maximum absorption peak and fluorescence took a blue shift relative to the CouSeNO2
probe. The blue and red absorption shifts of CouSeNO2 with Cys, Hcy, and GSH were
clearly related to the HOMO/LUMO energy gaps of the corresponding sensing products.
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So, the different wavelengths and colors of the fluorescence from the sensing product with
the biothiols (Cys, Hcy, and GSH) allowed for the CouSeNO2 probe to be successfully
applied in distinguishing the detection of the small-molecule biothiols.

3. Theoretical Methods

The theoretical methods of the research for the fluorescent probe CouSeNO2/CouSNO2
sensing biothiols were as follows:

1. The functional and basis set combination CAM-B3LYP/def2-TZVPD was used in
structure optimization, corresponding vibrational frequency analysis on the probe,
and sensing product conformations with ORCA program 5.1 [30–33]. Non-imaginary
frequency was found in the vibrational analysis on the stable geometric structure,
which confirmed the stability of the structure optimization results. The wB2GP-
PLYP/def2-TZVPD combination was used in single-point energy to obtain free energy
with high precision, according to benchmark research [34]. Similar calculated results
were obtained in the gas phase and in several solvents with different polarities, which
indicated that this fluorescent probe was insensitive to the solvent effect.

2. The electronic structure and fluorescent properties of the probe and its sensing prod-
ucts were obtained through the Multiwfn 3.8(dev) code [35] based on the DFT and
TDDFT results through the ORCA program.

3. The reorganization energy and Huang–Rhys factors between the S0 and S1 states of
the probe and sensing products were obtained through the Dushin program.

4. Most of the figures in this work were rendered by means of VMD 1.9.3 software [36].

4. Conclusions

The electron structure and fluorescent theoretical analysis indicated a local excitation
character for the electron excitation process from S0 to S1 within the sensing product of
the CouSeNO2 probe’s reaction with small-molecule biothiols, including Cys/Hcy and
GSH. Due to the different molecular structures of the biothoils, the sensing product Cou-
GSH without its 7–8-membered rings showed a wavelength red shift in its maximum
absorption peak and fluorescence compared with the original CouSeNO2 probe. Contrarily,
the Michael addition reaction between the thiol groups (Cys and Hcy) and the unsaturated
C=C double bond in the CouSeNO2 probe led to both the wavelengths of the maximum
absorption peak and fluorescence taking a blue shift relative to the CouSeNO2 probe. So,
the different wavelengths and colors of the fluorescence from the sensing product with
the biothiols (Cys, Hcy, and GSH) allowed for the CouSeNO2 probe to be successfully
applied in distinguishing the detection of the exogenous and endogenous biothiols in
living cells. The theoretical investigation of the mechanism of fluorescent probe molecular
design would provide insights into building highly efficient fluorescent probes for biothiol
detection in the future.
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