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Abstract: Numerous types of oligonucleotide modifications have been developed since automated
synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides.
Despite the growing number of types of oligonucleotide modifications under development, only a
few of them and, moreover, their combinations have been studied widely enough in terms of their
influence on the properties of corresponding NA constructions. In the present study, a number of
oligonucleotides with combinations of 3′-end lipophilic (a single cholesteryl or a pair of dodecyl
residues) and phosphate backbone modifications were synthesized. The influence of the combination
of used lipophilic groups with phosphate modifications of various natures and different positions on
the efficiency of cell penetration was evaluated. The obtained results indicate that even a couple of
phosphate modifications are able to affect a set of oligonucleotide properties in a complex manner and
can remarkably change cellular uptake. These data clearly show that the strategy of using different
patterns of modification combinations has great potential for the rational design of oligonucleotide
structures with desired predefined properties.

Keywords: lipophilic oligonucleotides; phosphate modifications; phosphoryl guanidine; triazinyl
phosphoramidate; conjugates; delivery

1. Introduction

At present, modified oligonucleotides are finding new applications in a wide range
of scientific and technological fields, including the creation of unique therapeutics and
diagnostics [1–12]. For example, 18 drugs based on therapeutic nucleic acids (NAs) have
already been officially approved for use in the treatment of various human diseases, and all
of them contain chemical modifications [1]. Modifications in the oligonucleotide structure
provide the enhanced therapeutic efficacy of such drugs by improving some of their most
important properties, e.g., efficiency of penetration through the cell membrane [13–18]. The
absence of a universal solution within the choice of the type of oligonucleotide modification
for various tasks has led to the intensive development of new NA modifications. Despite
the growing number of types of oligonucleotide modifications under development, only a
few of them and, moreover, their combinations have been studied widely enough in terms
of their diverse influence on the properties of corresponding NA constructions.

Various phosphate modifications could potentially be used to study the complex
impact of backbone modifications and their combinations on oligonucleotide properties.
One of the most promising approaches to obtaining NA derivatives is based on altering
the protocol of the phosphite-triester oxidation stage during solid-phase synthesis. For
instance, phosphorothioates, being the most popular type of phosphate-modified oligonu-
cleotides, can be synthesized in this way [19–23]. This modification could be applied to
the preparation of oligonucleotides with even fully modified sugar–phosphate backbones.
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Phosphorothioate derivatives possess much higher stability to different nucleases [19,20]
and improved cellular uptake as well as biodistribution due to their high affinity to proteins
compared to unmodified oligonucleotides [21,22]. Considering the chemical approach of
phosphorothioate modification synthesis, there is a crucial drawback since only one repre-
sentative of this class of altered phosphate groups could be obtained using the developed
sulfurizing reagents [23], which are not intended to vary functional groups in their structure.
Over the past decade, several chemical approaches utilizing alternative oxidation steps to
obtain novel structures of modified phosphate groups, which allow one not only to change
the nature of the phosphate backbone but also to apply the chemistry of its introduction to
varying desirable functional moieties, have been proposed [24–33]. In particular, we have
adopted the method of using electron-deficient azides in the Staudinger reaction during
the oxidation step to efficiently obtain various phosphate derivatives [34–39]. We have
also demonstrated that different representatives of the developed phosphoryl guanidine
and triazinyl phosphoramidate modifications can be applied for the synthesis of lipophilic
oligonucleotides with enhanced levels of intracellular accumulation [37].

The compatibility of newly developed methods for the incorporation of phosphate
modifications [29,38,39] with the standard protocol of automated synthesis, as well as the
possibility of combining them with many types of popular phosphoramidite monomers
and modifiers, makes them a promising tool for creating oligonucleotides with complex
sugar–phosphate backbones, which have recently come into use. For example, the improve-
ment of cell delivery and other beneficial properties of therapeutic oligonucleotides, such
as biodistribution, target binding, etc., for antisense [40–46], siRNA [47–53] and oligonu-
cleotides with other types of action [54] could be achieved with different combinations of
backbone modifications, including altered phosphate groups.

One of the recent examples where the positive effect of a combination of modifications
has been shown is the number of studies about the properties of phosphoryl guanidine
(PG) oligonucleotides. Despite early published data observing that the introduction of
1,3-dimethylimidazolidin-2-ylidene phosphoramidate (DMI) groups, the most common
representative of the PG class, into the structure of the native oligonucleotide did not lead
to a detectable increase in the level of cellular uptake [55], it was later shown that the
incorporation of such modifications into phosphorothioate oligonucleotide may result in
a more than two-fold increase in the level of intracellular accumulation [45]. This exam-
ple demonstrates that a combination of different modifications may provide synergistic
improvements in desired oligonucleotide properties.

In this study, we have chosen an oligonucleotide containing lipophilic dodecyl residues
as the initial NA system with a proven significant level of cellular uptake [37] and then
introduced two adjacent DMI groups in its backbone structure. Several parameters of
the present system were varied in order to evaluate their influence on the intracellular
accumulation of corresponding oligonucleotides.

2. Results
2.1. Design and Synthesis of Lipophilic Phosphate-Modified Oligonucleotides

A 5′-fluorescein-labeled oligonucleotide with a randomized sequence, which was
previously used in an intracellular delivery study [37], was chosen as the primary system
for evaluation of the impact of DMI groups on the efficiency of intracellular accumulation.
This oligonucleotide contains two dodecyl residues introduced through 3′-end internu-
cleotide triazinyl phosphoramidate (TPA) modification (oligonucleotide A, Table 1). The
two neighboring DMI modifications were introduced opposite to the TPA part of the
sequence (oligonucleotide AX, Table 1). The resulting oligonucleotide has a gapmer-like
structure, where phosphate-modified regions of the oligonucleotide flank an unmodified
middle part.
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Table 1. A list of modified oligonucleotides used in this study. [FAM]—5′-terminal fluoresceine
moiety; [Chol]—3′-terminal cholesterol moiety. Internucleotide phosphate modifications: *—dodecyl-
containing triazinyl phosphoramidate (TPA); X—1,3-dimethylimidazolidin-2-iylidene phosphorami-
date (DMI); Y—di(pyrrolidine-1-yl)methylene phosphoramidate; M—methanesulfonyl phosphorami-
date; S—phosphorothioate. Retention time (Rt) of oligonucleotides was defined through RP HPLC
with the use of C18 column or C4 column (a). Yields of oligonucleotides determined from areas in
HPLC profiles, n.d.—not determined.

Code Sequence 5′→3′ Yields, % Rt (min) MS (Calc/Found)

A 5′-[FAM]CTGACTATGAAGTAT*T-3′ 70 9.6 5877.5/5876.5
AX 5′-[FAM]XCXTGACTATGAAGTAT*T-3′ 80 9.7 6067.8/6067.6

AX2 5′-[FAM]XCXTXGXACTATGAAGTAT*T-3′ n.d. 11.5 6254.8/6253.8
AX3 5′-[FAM]XCXTXGXAXCXTATGAAGTAT*T-3′ n.d. 11.7 6444.9/6446.0
AX4 5′-[FAM]XCXTXGXAXCXTXAXTGAAGTAT*T-3′ n.d. 11.8 6635.1/6637.0
AX5 5′-[FAM]XCXTXGXAXCXTXAXTXGXAAGTAT*T-3′ n.d. 12.1 6825.3/6827.0

H 5′-[FAM]CTGACTATGAAGTATT[Chol]-3′ 95 15.0 a 6188.7/6189.0
HX 5′-[FAM]XCXTGACTATGAAGTATT[Chol]-3′ 99 20.0 a 6375.6/6376.5
B 5′-[FAM]AGTCTCGACTTGCTAT*T-3′ 70 9.4 6130.4/6132.0

BX 5′-[FAM]XAXGTCTCGACTTGCTAT*T-3′ 50 9.6 6320.6/6321.6
BX′ 5′-[FAM]AGTCTCGXAXCTTGCTAT*T-3′ 30 9.6 6320.6/6322.0
BX′′ 5′-[FAM]AGTCTCGACTTGCTXAXT*T-3′ 40 9.9 6320.6/6322.0
BY 5′-[FAM]YAYGTCTCGACTTGCTAT*T-3′ 80 9.8 6428.7/6430.0
BM 5′-[FAM]MAMGTCTCGACTTGCTAT*T-3′ 60 9.7 6284.4/6286.0
BS 5′-[FAM]SASGTCTCGACTTGCTAT*T-3′ 60 9.7 6162.4/6163.5
C 5′-[FAM]AGTCTCGACTTGCTATT-3′ 90 5.3 5686.0/n.d.
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In order to evaluate the influence of several structure-related factors on cell penetration,
namely the type of lipophilic modification, the nucleotide sequence, the position and
number of DMI groups in the oligonucleotide structure, as well as the nature of phosphate
backbone modification, an additional set of oligonucleotides was synthesized (Table 1).

A cholesterol residue, being well known and widely used as a delivery-enhancing
agent [56–61], was selected as the alternative lipophilic group and was introduced in the 3′

end of the oligonucleotide (H) and its DMI-containing analog (HX) using the corresponding
commercially available solid support.

To investigate the potential dependence of changes in cell penetration efficiency upon
DMI group introduction in the oligonucleotide backbone on the nucleotide sequence,
the oligonucleotide pair B and BX containing a lipophilic TPA modification similar to
an A and AX pair but with a different sequence was synthesized (Table 1). It should be
noted that two different, but both randomized, sequences without any known cellular
target have been chosen consciously to avoid their potential biological activity that may
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interfere with the toxicity or survival of cells and evaluate a distinct effect of oligonucleotide
delivery efficiency.

For the determination of the possible effect of the position of the DMI groups on
cellular uptake, in addition to BX with the 5′-end localization of these modifications,
oligonucleotides also containing two neighboring DMI groups in the middle part of the
sequence (BX′, Table 1) and in the 3′-end region directly adjacent to the lipophilic TPA
modification (BX′′, Table 1) were synthesized. Additionally, to evaluate the impact of
varying the number of DMI groups in the structure of oligonucleotide A, a set of derivatives
bearing 4, 6, 8, and 10 sequential DMI modifications starting from the 5′-end region was
obtained (AX2, AX3, AX4, AX5, Table 1).

Besides changing the lipophilic part of the oligonucleotides, their sequences, the po-
sition and number of DMI groups, and the type of introduced phosphate modifications
were also varied. Di(pyrrolidine-1-yl)methylene phosphoramidate, another representa-
tive of the phosphoryl guanidine modification class [35], was used as a bulkier and more
hydrophobic alternative to the DMI group and was introduced into the corresponding
oligonucleotide (BY). Methanesulfonyl phosphoramidate modification, being the simplest
representative of the alkanesulfonyl phosphoramidate modification class [62], which is
nowadays finding new applications [24,27], as well as common phosphorothioate modifica-
tion, was also used to alter the oligonucleotide backbone (BM and BS, respectively, Table 1).
It should be noted that all types of considered PN-containing modifications (TPA, DMI,
di(pyrrolidine-1-yl)methylene phosphoramidate, and methanesulfonyl phosphoramidate)
were introduced into the oligonucleotide backbone using a single approach based on the
Staudinger reaction involving electron-deficient azides during the alternative oxidation
step. Thus, the Staudinger reaction in solid-phase phosphoramidite DNA/RNA synthesis
could be considered a single platform for creating a wide range of phosphate-modified
oligonucleotides.

HPLC was used for the purification of the synthesized oligonucleotides. The molecu-
lar masses of the oligonucleotides were confirmed by ESI mass spectrometry. The HPLC
profiles of the reaction mixtures (Figure S1), purified solutions (Figure S2) of oligonu-
cleotides, data of the mass spectrometry analysis (Figure S3), and melting temperatures of
the duplexes (Table S1) are presented in the “Supplementary Materials”. To sum up, it was
shown that the applied methods for the synthesis of lipophilic phosphate-modified oligonu-
cleotides possess high efficiency, allowing different types of phosphate modifications to
be combined.

2.2. Dynamic Light Scattering (DLS) Analysis of Supramolecular Complexes of Lipophilic
Phosphate-Modified Oligonucleotides

Previously, the possibility of forming various supramolecular complexes with dodecyl-
containing oligonucleotides was demonstrated [63]. Taking this into consideration, we
decided to characterize the solution of the obtained oligonucleotides using DLS mea-
surements under conditions equal to those of transfection [37] as the most relevant for
the identification and correct interpretation of the influence of various parameters of the
oligonucleotide system on cellular uptake. It was shown that in selected conditions (serum-
free DMEM medium, 2 h, 10 measurements), oligonucleotide A containing a lipophilic TPA
modification can form stable supramolecular complexes. The obtained data reliably differ
from those for DMEM or DMEM with control unmodified oligonucleotide (Figure S4).
All synthesized lipophilic oligonucleotides were also analyzed using the DLS method in
order to evaluate the influence of introduced phosphate modifications on the possibility of
forming supramolecular complexes over the same experimental conditions (Figure 1).
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The results of the DLS experiment showed that oligonucleotides A and B both form
stable supramolecular complexes with hydrodynamic diameters of about 10 nm. Moreover,
the introduction of DMI groups in the 5′-end region (AX and BX) did not lead to any
significant changes in complex formation (Figure 1). The oligonucleotides H and HX
bearing a cholesterol moiety instead of a dodecyl-containing TPA modification were shown
to form a number of irregular or unstable complexes with a wide range of hydrodynamic
diameters, independent of the presence of DMI modifications. Consecutive changes in
the position of a pair of neighboring DMI groups from the 5′- to the 3′-end region of the
oligonucleotide structure (BX, BX′, and BX′′, respectively) led to a sequential decrease
in the efficiency of complex formation. However, a sequential increase in the number
of introduced DMI groups in the same direction (5′ → 3′-end region) did not result in
any regularities within complex formation. Thus, oligonucleotide AX2 containing four
DMI modifications forms stable complexes with hydrodynamic diameters of more than
100 nm, and at the same time, oligonucleotides AX3 (six DMI groups) and AX5 (ten DMI
groups) assemble into complexes similar to those formed by oligonucleotide AX (two DMI
groups). Oligonucleotide AX4 (eight DMI groups) is capable of forming both types of
complexes with hydrodynamic diameters of 10 and more than 100 nm. Interestingly, the
nature of even two introduced phosphate modifications (oligonucleotides BX, BY, BM, and
BS) also can influence the formation of supramolecular structures. Thus, the introduction
of DMI (BX) or phosphorothioate (BS) modifications into the oligonucleotide backbone
did not lead to significant changes in complex formation, whereas the incorporation of a
bulkier representative of the phosphoryl guanidine class (BY) as well as methanesulfonyl
phosphoramidate modifications (BM) resulted in the formation of less stable complexes. All
of the abovementioned points out the unobvious manner of the influence of modifications
and their combinations on the properties of the resulting oligonucleotide structures.
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2.3. Study of the Efficiency of Intracellular Accumulation of Phosphate-Modified Oligonucleotides
by Flow Cytometry and Confocal Microscopy

For quantitative assessment of the efficiency of intracellular accumulation of oligonu-
cleotides with different numbers of DMI groups, transfection was carried out for 4 h in
a serum-free DMEM medium with a 1 or 5 µM concentration of oligonucleotides in the
HEK293T cell line, which has been proved to be a convenient model to study the cellular
uptake of NA derivatives [34,36,37,64,65]. The transfected cells were analyzed using flow
cytometry (Figure 2). To evaluate the transfection efficiency, two parameters were used: the
percentage of fluorescent cells (Figure 2a) and the relative fluorescence intensity (Figure 2b).
The untreated cells served as a negative control. All of the modified oligonucleotides
accumulated in almost 100% of the cells under the experimental conditions, and hence their
mean fluorescent intensity can be compared directly.
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Figure 2. Effects of the number of DMI modifications on the cellular uptake of FAM-labeled lipophilic
phosphate-modified oligonucleotides. Analysis was performed in HEK293T cells 4 h post-transfection.
w/o—untreated cells. Percentage of fluorescent cells (a) and relative fluorescence intensity (b) were
measured using flow cytometry. Data are presented as mean ± SD.

One of the most unexpected results of the experiment is the manner of cellular uptake
of oligonucleotides bearing several DMI groups. The initial introduction of DMI groups
in the 5′-end region (Figure 2, oligonucleotides A and AX) led to a significant rise in the
intracellular accumulation level. However, the sequentially increasing number of DMI
groups resulted in a gradually decreasing uptake efficiency of the corresponding multiple
modified oligonucleotide derivatives, despite the growth of the overall hydrophobicity
(Figure 2, AX–AX5).

Taking into account significant differences in the sugar–phosphate backbone of oligonu-
cleotides with various numbers of DMI groups, as well as their different cellular uptake
levels, we decided to compare the kinetics of intracellular accumulation of oligonucleotides
with two (AX) and ten (AX5) DMI groups.

Transfection was carried out for 1, 2, 4, 8, and 24 h in a serum-free medium or
complete DMEM using a 5 µM concentration of oligonucleotides on the HEK293T cell line
(Figure 3a). It was shown that in early time points, e.g., prior to 8 h, oligonucleotide AX
accumulates more efficiently compared to AX5 in both types of medium. However, by
24 h, the intracellular accumulation levels of AX and AX5 were nearly equal in serum-free
transfection conditions, and in the presence of serum, AX5 demonstrated an even higher
level of accumulation.
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cells. Transfection was performed in serum-free (a) or serum-containing (b) medium. After 4 h
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mean ± SD. (c) Intracellular distribution of AX and AX5 oligonucleotides (5 µM) in HEK293T cells
4 h post-transfection. ODN—FAM-labeled oligodeoxynucleotides (green channel). Analysis was
performed with a Zeiss LSM710 confocal microscope using a Plan-Apochromat 63×/1.40 Oil DIC
M27 objective. Nuclei were stained with DAPI (blue channel). Scale bars 20 µm.

To investigate the ability of the studied oligonucleotides to stay inside the cells, it
was decided to evaluate the intracellular oligonucleotide quantity level over time after
4 h of transfection with subsequent removal of the oligonucleotide solutions and medium
changing (Figure 3b). It was shown that at the point of 4 h after the end of transfection,
derivatives AX and AX5 demonstrated nearly equal levels, and at the point of 20 h, AX5
possessed a higher level of intracellular presence in both types of medium. It can be
concluded that AX5 accumulates more slowly but persists longer than AX once inside
the cells.

The presented results of confocal microscopy indicate that the intracellular distribution
for oligonucleotide AX did not significantly differ from that previously shown for the initial
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oligonucleotide system (A) [37]: FAM-labeled oligonucleotides were distributed throughout
the cytoplasm in both disassembled and aggregated forms without attaching to the inner
side of the cell membrane; no co-localization with nuclei was revealed (Figure 3c, AX). The
distribution of oligonucleotide AX5 was similar to that of AX, but with the prevalence of
the disassembled form (Figure 3c, AX5), despite both of them being capable of forming
supramolecular complexes with the same hydrodynamic diameter under the transfection
conditions (Figure 1, AX and AX5).

The efficiency of intracellular accumulation of other lipophilic derivatives was ana-
lyzed using flow cytometry in a serum-free DMEM medium for 4 h of incubation and a
5 µM concentration of oligonucleotides. Unmodified oligonucleotide (C) was analyzed
both individually as a negative control and with the commercially available delivery agent
Lipofectamine 2000 (LF) as a positive control (Figure 4).
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Figure 4. Effects of oligonucleotide sequence, hydrophobic groups, and type and location of phos-
phate modification on the cellular uptake of lipophilic phosphate-modified oligonucleotides. The
cellular accumulation of FAM-labeled lipophilic oligonucleotides (5 µM) in HEK293T cells was
measured by flow cytometry 4 h post-transfection. w/o—untreated cells; LF—Lipofectamine 2000.
(a,c)—percentage of fluorescent cells; (b,d)—relative fluorescence intensity. Data are presented as
MEAN ± SD.

The analysis of the flow cytometry data showed that the other studied factors besides
the number of DMI groups (Figure 4) are able to remarkably influence the accumulation
efficiency of the investigated lipophilic phosphate-modified oligonucleotides. Dodecyl-
and cholesterol-containing conjugates (Figure 4b, oligonucleotides A, B, and H) have an
increased cellular uptake, as shown previously [34,36,37,58]. The contribution of not only
the different nature of the lipophilic part (A vs. H) but also of the nucleotide sequence
(A vs. B) to the delivery efficiency was observed with fluorescence signal differences up to
several times (Figure 4b).

One of the important findings is a remarkable increase in intracellular accumula-
tion in all studied oligonucleotides upon introduction of phosphate modifications in the
5′-end region, regardless of the nucleotide sequence (A/AX vs. B/BX), the lipophilic
part of the conjugate (A/AX and H/HX), or the nature of the phosphate modification
(B/BX/BY/BM/BS) (Figure 4b,d). Despite the relatively small contribution of phosphate
modifications to the total hydrophobicity of oligonucleotides containing the 3′-end region
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lipophilic TPA modification, adding just two groups was shown to significantly improve
their delivery efficiency. It should be noted that the contrast in the observed effect di-
minishes with the introduction of DMI groups in a cholesterol-containing oligonucleotide
(Figure 4b, A/AX vs. H/HX,). Another important finding is that the efficiency of delivery
is also strongly influenced by the relative position of DMI modifications and the lipophilic
TPA group in the oligonucleotide sequence (oligonucleotides BX, BX′, and BX′′): as these
groups gradually converge, the level of intracellular accumulation decreases (Figure 4b).

In addition to cellular uptake studies using flow cytometry, the resulting lipophilic
derivatives containing a TPA group and different phosphate backbone modifications
(B/BX/BS/BM/BY) were analyzed with confocal microscopy in order to reliably determine
their accumulation within HEK293T cells. Transfection was carried out under incubation
conditions for 4 h in a serum-free medium (DMEM) and an oligonucleotide concentration
of 5 µM (Figure 5).
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Figure 5. Intracellular distribution of lipophilic phosphate-modified oligonucleotides (5 µM) in
HEK293T cells 4 h post-transfection. ODN—FAM-labeled oligodeoxynucleotides (green channel).
Analysis was performed on a Zeiss LSM710 confocal microscope using a Plan-Apochromat 63×/1.40
Oil DIC M27 objective. Cell nuclei were stained with DAPI (blue channel). Scale bars 20 µm.
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Confocal microscopy demonstrated that the intracellular distribution of the lipophilic
B oligonucleotide was characterized by a mostly diffuse disposition in the cytoplasm with
a small amount of aggregated forms and without co-localization with nuclei (Figure 5, B).
The introduction of two phosphate modifications of various types (BX, BY, BM, BS) at the
5′ end of the oligonucleotide resulted in a significant increase in the number of aggregated
oligonucleotide forms. Among the studied lipophilic phosphate-modified oligonucleotides,
the BM oligonucleotide was characterized by more efficient accumulation but in a more co-
localized aggregated form compared to other studied derivatives, including AX5 (Figure 5,
BM; Figure 3c, AX5).

3. Discussion

The use of different combinations of modifications in the design of synthetic oligonu-
cleotide structures has become a popular trend in recent years. Modern oligonucleotide
therapeutic candidates contain not only multiple modifications of the same type but also
various combinations of modifications. The design principles of such complex modified
oligonucleotides are becoming the basis for the creation of a new generation of antisense
and siRNA agents.

Phosphate modifications represent a versatile tool for creating modified oligonu-
cleotides. One of the most convenient approaches for obtaining phosphate-modified
oligonucleotides is based on the alternative oxidation step in the protocol of the standard
solid-phase phosphoramidite method of synthesis. For example, phosphorothioate mod-
ifications, which can be obtained by this approach, are widely used in creating various
NA constructions, including complex oligonucleotide structures with combinations of
different modifications [1,2,4,7,45]. Previously, we developed another way of carrying out
the alternative oxidation step, based on the application of the Staudinger reaction involving
electron-deficient azides. It allows one to introduce a wide range of representatives of
different classes of phosphate modifications into the obtained sequences without significant
changes in the protocols of oligonucleotide synthesis. Moreover, the approach is suitable
for introducing various combinations of phosphate modifications using a single platform
to obtain complex modified structures, which was demonstrated in the current study.

In the present work, dodecyl-containing triazinyl phosphoramidate was used as a
lipophilic modification providing enhanced cellular accumulation and was combined with
other types of phosphate modifications in a backbone of synthesized oligonucleotides
by applying the developed single platform based on the Staudinger reaction. One of the
important findings was a two-fold increase in cellular uptake upon the introduction of
two DMI groups at the 5′-end region of the oligonucleotide structure (A to AX), despite
only a slight increase in overall hydrophobicity. Subsequently, additional parameters of the
studied system were examined for their influence on intracellular accumulation.

The introduction of DMI groups was found to have a positive effect regardless of
the oligonucleotide sequence (A to AX and B to BX). At the same time, replacing the
lipophilic part with a cholesterol residue led to the preservation of the positive effect upon
the introduction of the DMI group; however, it became less pronounced (A to AX and H to
HX). Changing the position of DMI groups in the oligonucleotide structure had a major
impact on the studied properties: a gradual convergence of the DMI and lipophilic moiety
positions led to decreased cellular uptake as well as lowered supramolecular complex
stability (BX, BX′, and BX′′).

The influence of the nature and number of phosphate modifications on the properties
of NA constructions turned out to be the least predictable. For example, oligonucleotide
BY was shown to have a lower transfection efficiency than BX, even though the phosphoryl
guanidine modification in the BY structure possesses more hydrophobicity than BX. The
gradual increase in the number of introduced DMI groups in dodecyl-containing oligonu-
cleotides (AX to AX5) has also resulted in lowered levels of cellular uptake, despite the
growth of overall hydrophobicity, but an enhanced retention rate of oligonucleotides inside
the cells. The possibility of forming supramolecular complexes also differs for oligonu-
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cleotides BX and BY in a non-obvious manner, as well as for derivatives with the other
types of altered phosphate (BM, BS) or different numbers of introduced DMI groups (AX to
AX5).

It is worth noting that all studied phosphate-modified oligonucleotides represent
the mixtures of all possible diastereomers. In works [43,44,53,54], it was clearly shown
that the use of stereopure instead of stereorandom oligonucleotides can enhance the pos-
itive effect of introducing different combinations of phosphate modifications even more.
Therefore, not only the chemistry but also the stereochemistry of the backbone structure
should be considered as an important factor that influences the properties of designed
oligonucleotides.

The obtained results demonstrate the complex and unobvious influence of phos-
phate modifications in the oligonucleotide backbone on the properties of the synthesized
lipophilic derivatives. Revealing such effects and their systematization is important from
the viewpoint of rational design of oligonucleotides containing combinations of modifica-
tions and indicates the relevance of the search for various effective modification patterns.

4. Materials and Methods
4.1. Oligonucleotide Synthesis

The standard phosphoramidite solid-phase synthesis of all modified and unmodi-
fied oligonucleotides containing phosphodiester linkages was carried out on an ASM-800
DNA/RNA synthesizer (Biosset, Novosibirsk, Russia). Oligonucleotides were synthe-
sized at the 0.4 µmol scale, using standard commercial 2-cyanoethyl deoxynucleoside
phosphoramidites and CPG solid supports (Glen Research, San Diego, CA, USA).

The insertion of triazinyl phosphoramidate (TPA) modification bearing two dodecyl
residues in appropriate oligonucleotide structures using a triazine modifier during the
modified protocol of the oxidation step was performed as described in [34].

The insertion of DMI modification in appropriate oligonucleotide structures during the
modified oxidation step was performed using commercial 2-azido-1,3-dimethylimidazolidinium
hexafluorophosphate (TCI, Tokyo, Japan) to obtain the 1,3-dimethylimidazolidin-2-iylidene
phosphoramidate structure (DMI) as described in [38].

The synthesis of a pyrrolidine phosphoryl guanidine modifier (azidodipyrrolidinocar-
benium hexafluorophosphate) was performed as described in [35].

The synthesis of methanesulfonyl azide was performed as described in [66].
For the introduction of methanesulfonyl phosphoramidate (oligonucleotide BM) and

pyrrolidine-containing phosphoryl guanidine (oligonucleotide BY) modifications, the fol-
lowing procedure was performed. The corresponding monomer was coupled according to
a special protocol including a standard coupling step followed by an oxidation step. At
this step, the Staudinger reaction was performed. A solution of the corresponding azide in
acetonitrile was pumped through a column portion-wise. Next, the capping and deblocking
stages were performed, and all the following procedures were performed according to the
standard protocol of automatic solid-phase phosphoramidite synthesis.

Conditions of the Staudinger reaction were as follows: To obtain the methanesulfonyl
phosphoramidate group (oligonucleotide BM), a 0.25 M solution of methanesulfonyl azide
in acetonitrile was used, and the reaction proceeded for 1 h; to obtain the pyrrolidine-
containing phosphoryl guanidine group (oligonucleotide BY), a 0.25 M solution of azi-
dodipyrrolidinocarbenium hexafluorophosphate in acetonitrile was used, and the reaction
proceeded for 1 h.

The insertion of a phosphorothioate modification (PS) in appropriate oligonucleotide
structures was performed using 3-((dimethylaminomethylidene)amino)-3H-1,2,4-dithiazole-
3-thione (DDTT, Sulfurizing Reagent II) from Glen Research (San Diego, CA, USA) accord-
ing to the manufacturer’s protocol.

The synthesis of cholesterol-containing oligonucleotides was performed using modi-
fied CPG (Primetech, Minsk, Belarus) according to the manufacturer’s protocol.
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The introduction of 6-carboxyfluoresceine (FAM) was performed using the correspond-
ing phosphoramidite (Lumiprobe, Moscow, Russia) as described in [37].

4.2. Oligonucleotide Purification and Identification

Analytical RP HPLC was performed using a Millichrom A02 system equipped with a
ProntoSIL-120-5-C18 column 2 × 75 mm (Econova, Novosibirsk, Russia) in a linear gradient
of acetonitrile 0–50% or 0–90% in 20 mM triethylammonium acetate, pH 7.0, at a flow rate
of 200 µL/min, and with detection at 260, 280, and 300 nm wavelengths. Analysis of the
derivatives bearing cholesterol moieties (H, HX) was performed through reverse-phase
HPLC analysis on an Agilent 1200 HPLC system using a Symmetry300 C4 5 µm column
4.6 × 150 mm (Waters, Milford, MA, USA) under the same conditions.

For oligonucleotide purification, RP HPLC was used on an Agilent 1200 HPLC system
equipped with a Zorbax SB-C18 5 µm column 4.6 × 150 mm (Santa Clara, CA, USA) or a
Symmetry300 C4 5 µm column 4.6 × 150 mm (Waters, MA, USA) in a linear gradient of
acetonitrile 0–50% or 0–90% in 20 mM triethylammonium acetate, pH 7.0, at a flow rate
of 1.5 mL/min, and with detection at 260, 280, 300, and 500 nm wavelengths. Desired
fractions were collected and concentrated, and the oligonucleotides were precipitated with
2% LiClO4 in acetone. The precipitates were separated via centrifugation, washed with
acetone, dried in air, and dissolved in deionized water.

The molecular weights of oligonucleotides were determined via ESI-MS on an Agilent
G6410A mass spectrometer (Santa Clara, CA, USA) in negative ion mode. The oligonu-
cleotide samples were dissolved in 20 mM triethylammonium acetate in 60% aq. acetonitrile
at a concentration of 0.1 mM. The analysis was performed in 80% aq. acetonitrile with a
flow rate of 0.1 mL/min. Standard settings of the mass spectrometer were used. Molecular
masses were calculated from the experimental m/z values obtained for each sample.

4.3. Characterization of Modified Oligonucleotides by DLS

The size distributions of supramolecular complexes of modified oligonucleotides were
determined with a dynamic light scattering technique using a Zetasizer Nano-ZS (Malvern
Panalytical Ltd., Malvern, UK) at 25 ◦C. The oligonucleotides were dissolved in DMEM
medium (Sigma Aldrich, St. Louis, MO, USA) to a 5 µM concentration and then analysis of
the size was conducted for 2 h with a period of 10 min between measurements.

4.4. Analysis of Intracellular Accumulation of Oligonucleotides

HEK293T cells were pre-seeded at a density of 75,000–150,000 cells/well in DMEM
medium (Sigma-Aldrich, St. Louis, MO, USA) containing 10% fetal bovine serum (HyClone,
GE Healthcare, Chicago, IL, USA) and 1% antibiotics (MP Biomedicals, Santa Ana, CA,
USA) (hereafter, complete medium) in 24-well plates. The cells were then incubated for
18 h at 37 ◦C in a humidified atmosphere with 5% CO2 (hereafter, standard conditions) to
allow for adhesion. The serum- and antibiotic-free DMEM supplemented with 1 or 5 µM
of the lipophilic phosphate-modified oligonucleotides replaced the culture medium. The
cells were then transfected for 4 h under standard conditions. Afterward, the cells were
washed with PBS, trypsinized, quenched with complete DMEM medium, pelleted, washed
in PBS, and fixed in 2% formaldehyde in PBS. Cellular uptake of oligonucleotides was
assessed using a NovoCyte flow cytometer (ACEA Biosciences, Santa Clara, CA, USA).
The NovoExpress software v. 1.1.0 (ACEA Biosciences, Santa Clara, CA, USA) was used
to analyze the flow cytometry data. The experiments were conducted in triplicate for
statistical analysis.

In the kinetics experiment, HEK293T cells were transfected with 5 µM of oligonu-
cleotides in the absence (−FBS) or the presence (+FBS) of 10% FBS in the culture medium.
Analysis of cell uptake of oligonucleotides was performed 1, 2, 4, 8, and 24 h after the
start of transfection. In the wash-out regimen, transfection of HEK293T cells with oligonu-
cleotides was performed in −FBS or +FBS conditions for 4 h followed by refreshing with
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complete DMEM medium and incubated under standard conditions until analysis (8 and
24 h after start of transfection).

4.5. Confocal Microscopy

HEK293T cells were pre-seeded on glass coverslips (Marienfeld, Lauda-Königshofen,
Germany) in 24-well plates (150,000 cells/well) in complete DMEM medium and incubated
for 18 h under standard conditions to allow for adhesion. The cells attached to the cover-
slips were incubated in serum- and antibiotic-free DMEM medium in the presence of 5 µM
of the respective lipophilic phosphate-modified oligonucleotides for 4 h under standard
conditions. After transfection, the coverslips with cells were washed twice with PBS. Then,
the cells were fixed with 4% formaldehyde in PBS for 15 min at 37 ◦C and washed twice
with PBS. The cells were stained with DAPI solution (1:100 in PBS, Thermo Fisher Scien-
tific, Waltham, MA, USA) at room temperature in the dark for 10 min. After staining the
nuclei, the cells were washed twice with PBS and placed on glass slides in Fluoromount-G®

(SouthernBiotech, Birmingham, AL, USA). The mounted samples were left to cure for 24 h
at room temperature in the absence of light. The intracellular localization of lipophilic
phosphate-modified oligonucleotides was evaluated using a confocal laser scanning micro-
scope LSM710 (Zeiss, Oberkochen, Germany) equipped with a Plan-Apochromat 63×/1.40
Oil DIC M27 objective. The confocal microscopic images were captured using ZEN Black
Edition software v. 8.1 (Zeiss, Oberkochen, Germany).

4.6. Statistical Analysis

All statistical analyses were performed using GraphPad Prism v. 8.0.1 software (Graph-
Pad Software Inc., San Diego, CA, USA). Differences among the means were processed
using a one-way ANOVA followed by Tukey’s post hoc test (a p-value less than 0.05 was
considered statistically significant).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29020452/s1, Figure S1: Analytical RP HPCL profiles
of reaction mixture of synthesis of oligonucleotides; Figure S2: Analytical RP HPCL profiles of
purified oligonucleotides; Figure S3: Results of ESI mass spectrometry; Figure S4: Correlogram,
intensity and number graphs of DLS experiment; Table S1: Melting temperatures.
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