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Abstract: In this study, using the Comparative Molecular Field Analysis (CoMFA) approach, the
structure-activity relationship of 33 small quinoline-based compounds with biological anti-gastric
cancer activity in vitro was analyzed in 3D space. Once the 3D geometric and energy structure
of the target chemical library has been optimized and their steric and electrostatic molecular field
descriptions computed, the ideal 3D-QSAR model is generated and matched using the Partial Least
Squares regression (PLS) algorithm. The accuracy, statistical precision, and predictive power of the
developed 3D-QSAR model were confirmed by a range of internal and external validations, which
were interpreted by robust correlation coefficients (R2

Train = 0.931; Q2
cv = 0.625; R2

Test = 0.875). After
carefully analyzing the contour maps produced by the trained 3D-QSAR model, it was discovered
that certain structural characteristics are beneficial for enhancing the anti-gastric cancer properties
of Quinoline derivatives. Based on this information, a total of five new quinoline compounds were
developed, with their biological activity improved and their drug-like bioavailability measured using
POM calculations. To further explore the potential of these compounds, molecular docking and
molecular dynamics simulations were performed in an aqueous environment for 100 nanoseconds,
specifically targeting serine/threonine protein kinase. Overall, the new findings of this study can
serve as a starting point for further experiments with a view to the identification and design of a
potential next-generation drug for target therapy against cancer.

Keywords: quinoline; anti-gastric cancer; 3D-QSAR; CoMFA; POM; ADME-Tox; molecular docking;
molecular dynamics; MM-GBSA

1. Introduction

Cancer remains a leading cause of global mortality, as reported by the World Health
Organization [1,2]. The pharmaceutical industry continues to dedicate extensive research
efforts to anti-cancer drugs [3]. Recent advancements in medicinal and therapeutic com-
pounds have been significantly influenced by heterocyclic compounds, owing to their
diverse substituent options, low toxicity, and high efficacy. Among these, quinoline com-
pounds have garnered significant attention for their potential as anticancer agents, as they
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are widely distributed in nature and can be extracted from specific plants [4]. The therapeu-
tic applications of quinoline nuclei are extensive, and quinolone derivatives exhibit a wide
range of pharmacological effects [5]. Several novel therapeutic agents have been developed
based on the quinoline nucleus, highlighting the potential of quinoline and its derivatives in
drug discovery. The broad spectrum of biological and pharmacological activities associated
with quinoline and its derivatives has led to the exploration of numerous synthetic routes.
serine/threonine kinase STK10, also known as Aurora-C kinase, is a protein kinase that
plays a crucial role in several cellular processes [6], particularly in cell division and the
regulation of the cell cycle. Its importance lies in its ability to phosphorylate and modulate
various substrates, which in turn influences critical cellular functions [7]. Its implications
for cancer and other diseases make it a subject of significant research and drug development
efforts [8,9].

Pharmaceutical industries are employing novel techniques, such as quantitative
structure-activity relationships (QSAR), to predict the activity of compounds before synthe-
sis. The use of 3D quantitative structure-activity relationships (3D-QSAR) for the design
and development of potent drugs has proven highly advantageous [10]. This method
establishes a correlation between the 3D structural features of a chemical and its prop-
erty of interest. The ligand-based approach has been a well-established method since
the late 1980s [11] and is a well-established method for developing a predictive model.
A ligand-based drug design can be improved by evaluating the structural and electrostatic
properties of the ligands corresponding to their activity using comparative molecular
field analysis (CoMFA). This study establishes 3D-QSAR models based on 33 compounds
(Quinoline Derivatives analogues as gastric cancer cell lines) [12] and correlates their three-
dimensional structures with their biological activity through comparative molecular field
analysis (CoMFA). The results obtained from the combined computational approach have
facilitated the development of novel anticancer agents. Additionally, we conducted other
steps, including Petra-Osiris-Molinspiration (POM) studies, to identify and determine
the pharmacophore site that influences the biological activity upon chemical substitution.
Molecular docking, a commonly employed method in drug design, was utilized to predict
the interaction between small molecules and the target binding sites. In this study, docking
was employed to investigate the interaction between the target protein (6I2Y) and the
newly designed ligands, as well as the reference ligand (with a high pIC50), to validate the
results obtained from CoMFA. Furthermore, we performed molecular dynamics simula-
tions of the most active synthesized molecule and the optimally designed molecule to gain
further insights.

2. Results and Discussions
2.1. Molecular Alignment

Figure 1 depicts the alignment of the 33 ligands, specifically quinoline derivatives,
with ligand 22c serving as the reference compound.
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2.2. Comparative Molecular Field Analysis

Comparative Molecular Field Analysis (CoMFA) was conducted on a training set
consisting of 24 ligands from the total of 33 quinoline derivatives, which were reported
to exhibit Serine/threonine kinase STK10 inhibition based on 3D-QSAR modeling. The
CoMFA results revealed satisfactory coefficients of cross-validated correlation (Q2) with
a value of 0.625, indicating good predictive ability. Additionally, high coefficients of
determination (R2) were obtained, with a value of 0.913, indicating a strong correlation
between the predicted and observed values. The low standard error of estimate (SEE)
values, coupled with the optimal selection of three components, further validate the model’s
reliability and predictive power. The external predictive ability of the model was also
assessed using a test set of nine randomly selected molecules, yielding a rext

2 value of
0.875 for CoMFA.

The CoMFA model suggests that both steric and electrostatic fields significantly con-
tribute to the binding affinity, with steric and electrostatic contributions accounting for
51.5% and 48.5%, respectively. The quantitative results presented in Table 1 demonstrate
that the CoMFA model provides reasonable and reliable predictions for inhibitor activ-
ity. Furthermore, Figure 2 illustrates a significant correlation between the calculated and
observed pIC50 values.

Table 1. PLS statistical parameters for CoMFA model.

PLS Model
Statistical Parameters Fractions

R2 Q2 SEE N Rext
2 Ster Elec

CoMFA 0.913 0.625 0.073 3 0.875 0.515 0.485

R2: Non-cross-validated correlation coefficient; Q2: Cross-validated correlation coefficient. Rext
2: External

validation correlation coefficient; SEE: Standard error of the estimate; N: Optimal number of components; F: F-
test value.
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The values of the predicted biological activities of the compounds in the series are
represented in Table 2.
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Table 2. Experimental in vitro and predicted in silico biological inhibitory activity pIC50 data for the
investigated ligands.

Ligand
pIC50

Observed
pIC50

Predicted Residuals Ligand
pIC50

Observed
pIC50

Predicted Residuals
In Vitro In Silico In Vitro In Silico

3a 5.1 5.2 −0.1 21a 5.69 5.73 −0.04

3b 5.61 5.7 −0.09 21b * 6.64 6.76 −0.12

4a 5.58 5.64 −0.06 21c 6.38 6.49 −0.11

4b 5.06 5.2 −0.14 21d 6.3 6.46 −0.16

6a 5.36 5.46 −0,1 22a * 5.9 5.98 −0.08

6b 6.6 6.49 −0.14 22b 5.9 5.98 −0.08

7a 5.22 5.38 −0.16 22c 6.72 6.69 0.03

7b * 6.49 6.57 −0.08 22d * 6.46 6.57 −0.11

10 5.2 5.46 −0.26 24a 6.02 6.17 −0.15

12a 5.17 5.13 0.04 24b 6.08 6.19 −0.11

12b * 6.55 6.52 0.03 24c 6.1 6.34 −0.24

14 6.59 6.67 −0.08 24d 6.14 6.11 0.03

16 6.49 6.59 −0.1 24e * 6.21 6.39 −0.18

18a 6.04 6.18 −0.14 24f 6.42 6.53 −0.11

18b * 6.31 6.42 −0.11 24g 6.21 6.18 0.03

20a * 6.02 6.15 −0.13 24h 6.49 6.4 0.09

20b 6.28 6.23 0.05 - - - -

* Test set compounds.

2.3. CoMFA Contour Map Analysis

Maps of CoMFA contours were generated to provide insights into the regions sur-
rounding the ligands where changes in each field were predicted to impact the activity.
These maps visually illustrate the areas where modifications in the steric and electrostatic
fields are likely to result in increased or decreased activity. These contour maps help in
understanding the structural requirements for optimal binding and can guide the design of
new ligands with enhanced activity. In CoMFA, the steric and electrostatic field descriptors
contribute approximately 51.5% and 48.5%, respectively. This suggests that both descriptors
significantly impact the increase or decrease of cancer inhibitory activity. The steric contour
map generated by CoMFA is depicted in Figure 3. The green contours (contributing 80%)
indicate the regions where bulky clusters have a positive impact on cancer inhibitory activ-
ity, while the yellow contours (contributing 20%) suggest the areas where bulky groups
decrease inhibitory activity.

The green contour near the R1 position indicates that the presence of bulky groups at
this site is favorable and may potentially increase the activity of the ligands. On the other
hand, the yellow contour near R2 suggests that bulky groups at this position could decrease
the potency. These observations explain why ligands like 22c, with R1 = COOEt and
R2 = CN, exhibit higher activity, while ligands such as 22b, with R1 = CN and R2 = COOEt,
and 22d, with R1 = COOEt and R2 = COOEt, show lower activities with −LogIC50 values of
5.9 and −6.46, respectively. The contour maps provide valuable insights into the structural
requirements for optimal binding and help explain the varying activities of the ligands.
Figure 4 illustrates the CoMFA electrostatic contour map, where blue contours (with an
80% contribution) indicate regions where the presence of electronegative groups positively
impacts cancer inhibitory activity. In contrast, red contours (contributing 20%) delineate
areas where the presence of electronegative groups negatively affects cancer inhibitory
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activity. The presence of a red contour near the R1 position suggests that groups with
positive charges may enhance the activity of the ligands. Similarly, a large blue contour
near the R2 position indicates that groups with negative charges in these zones increase
the activity. This explains why ligands like 24c with R1 = CN and R2 = SCN and 24f with
R1 = COOEt and R2 = SCN exhibit high activity. The interaction of positive and negative
charges at these specific positions contributes to the favorable binding and increased
potency of these ligands.
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2.4. Y-Randomization Test

In order to validate the CoMFA model, Y-Randomization was used. The dependent
variable was shuffled several times, and then a 3D-QSAR was developed after each shuffle.
The results are presented in Table 3. The Q2 and R2 values were lower than those of
the initial CoMFA model, indicating the robustness of the QSAR model, which was not
obtained by random correlation.
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Table 3. The results of Y-randomization test.

Iteration
CoMFA

Q2 r2

1 −0.37 0.84

2 0.23 0.68

3 0.10 0.72

4 −0.3 0.84

5 −0.03 0.59

6 −0.22 0.82

7 −0.27 0.83

8 0.16 0.72

9 0.25 0.71

10 −0.33 0.65

11 0.291 0.55

12 −0.05 0.58

13 −0.15 0.54

14 0.08 0.61

15 −0.12 0.63

2.5. ROC-AUC Analysis

Figure 5 presents the validation ROC curve, assessing the predictive accuracy of the
QSAR model for the biological activities of molecules. Referring to this figure, we observe
an ROC curve positioned near the upper-left corner, indicating a high predictive capacity.
It reveals an outstanding AUC value of 0.994, demonstrating the model’s efficiency in
accurately differentiating active from inactive compounds (p < 0.001).
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2.6. Design of New Quinoline-Based Ligands

According to the significant information obtained from the study of contour maps
(the 3D-QSAR/CoMFA model), we determined the regions of modification to enhance the
inhibitory activity. From this study, we proposed and designed seven derivative anticancer
agents by modifying the chemical structure of molecule 22c (the most active molecule in
the database), as shown in Table 4. Ligand 22c was used as a template to optimize and align
these newly designed ligands with the existing database. The aim was to create ligands
that exhibit improved activity and binding affinity, taking inspiration from the structural
features and properties of ligand 22c.
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Table 4. Ligands designed and their predicted biological inhibitory activity using 3D-QSAR/
CoMFA model.
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substrate for the synthesis of the proposed new molecular structures, as described in the
synthetic pathways in Scheme 1. The first step involves a condensation reaction in the
presence of nitrile derivatives and triethylamine in an ethanol solution. The second step is
intramolecular cyclization due to the presence of acetonitrile derivatives and ammonium
acetate in 1,4-dioxane. Subsequently, the Grignard reaction breaks the cyclic ketone, break-
ing C-O and forming C-R3, followed by iodination and elimination reactions. The next step
involves an azide reaction using sodium azide as the source of azide. In the final step, a
reduction reaction occurs in the presence of Pd/C in a methanol solution.
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2.7. POM Results

The POM program was used to calculate molecular properties essential for QSAR
analysis, bioactivity prediction, and toxicity prediction. Table 5 presents the results of Osiris
calculations, which include the assessment of various toxicities (mutagenicity, tumori-
genicity, irritation, reproduction) and physicochemical properties (cLogP, solubility, drug-
likeness, and Drug-score) for the ligands. The Osiris methodology provides a framework
for evaluating toxicities and identifying potential risks associated with specific molecular
fragments. Toxicity alerts indicate whether the drawn structure may pose a risk based on
predefined risk categories.

Table 5. Osiris calculations of the designed ligands.

Ligands MW
Toxicity Risks Osiris Calculations

MUT TUMO IRR REP c-LogP Logs DL DS

1 345.0
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ceptor ligands, these ligands are anticipated to exhibit activity similar to that of the stand-
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1 345.0     2.58 −4.7 −2.62 0.38 
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MUT: Mutagen; TUMO: Tumorigenic; IRR: Irritant; REP: Effect on reproduction; DL: Druglikness; 

DS: Drug-Score. 
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MUT: Mutagen; TUMO: Tumorigenic; IRR: Irritant; REP: Effect on reproduction; DL: Druglikness; DS: Drug-Score.

From Table 5, it is evident that the designed ligands exhibit non-mutagenic, non-
tumorigenic, non-irritant, and no reproductive effects. Furthermore, the cLogP values of
the ligands are within a reasonable range, as they do not exceed 5.0, indicating a favorable
probability for good absorption [14]. All designed ligands possessed cLogP values in the
acceptable range. So these ligands are expected to have good bioavailability. The aqueous
solubility of a ligand is a crucial factor in its absorption and distribution within the body.
Poor solubility is often correlated with inadequate absorption, so it is generally advisable
to avoid ligands with low solubility. Our estimated solubility value (S) represents the
logarithm (base 10) of a ligand’s solubility in moles per liter (mol/L). It is worth noting
that over 80% of drugs available on the market have a solubility value greater than −4.
According to our findings, the ligands 1, 3, 5, and 8 exhibit low solubility with values
below −5.

The designed ligands generally demonstrate low to moderate drug scores (DS < 0.50),
except for ligand 7 with a drug-likeness value (DL) of −4.15. Based on our stringent criteria,
which consider GPCR ligands, ion channel modulators, kinase inhibitors, and nuclear
receptor ligands, these ligands are anticipated to exhibit activity similar to that of the stan-
dard drugs employed. Table 6 presents the calculation of cLogP (octanol/water partition
coefficient) using the robust methodology developed by Molinspiration. This method
is highly reliable and capable of processing a wide range of organic and organometallic
molecules. Additionally, the Total Polar Surface Area (TPSA) is determined using the
methodology published by Ertl et al. [15]. Polar fragments containing nitrogen (N) and
oxygen (O) atoms are taken into account. The designed ligands exhibit numerous NH—O
or N—HO interactions, which contribute to their high bioavailability. The drug-likeness of
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the designed ligands appears to be appropriate and falls within the same range as standard
drugs, as indicated by their negative values.

Table 6. Molinspiration calculations of the designed ligands.

Ligands
Molinspiration Calculations Drug-Likeness

TPSA NONH NV VOL GPCRL ICM KI NRL PI EI

1 118.99 3 1 459.83 −0.42 −0.71 −0.65 −0.71 −0.48 −0.14

2 111.19 5 1 254.94 −0.22 0.3 0.02 −0.96 −0.31 −0.42

3 59.14 3 0 303.1 0.53 0.5 0.53 −0.08 0.09 0.63

4 114.71 7 0 376.35 −0.03 −0.08 −0.00 −0.74 −0.12 −0.2

5 85.17 5 0 299.91 0.5 0.14 0.27 0.00 0.1 0.67

6 111.47 5 0 273.48 −0.06 −0.05 −0.2 −0.33 −0.12 −0.41

7 137.49 7 1 250.08 0.04 0.01 0.11 −0.94 0.03 0.45
TPSA: Total Polar Surface Area NONH: Number of OH--N or O--NH interactions. NV: No. of Lipinski’s five rules’
violations; VOL: Volume; GPCRL: GPCR ligand; ICM: Ion Channel Modulator; KI: Kinase Inhibitor; NRL: Nuclear
Receptor Ligand; PI: Protease; Protease Inhibitor; EI: Enzyme Inhibitor.

2.8. Molecular Docking Results

The Auto-Dock software (ADT) MGLTools 1.5.6 packages were used to explore the
interaction of the active ligand synthesized (22c) and the designed ligands (1 to 7) with the
Serine/threonine kinase STK10 (PDB code: 6I2Y). We used Discovery Studio 2021 software
(v21.1.0.20290) to visualize the types of interactions that were created between the most
active ligand 22c, the designed ligands, and the receptor 6I2Y (Table 7). Figure 6 shows the
2D and 3D interactions of ligands 1, 2, 3, 4, 5, 6, 7, and 22c with STK10 (PDB ID code: 6I2Y).
The binding affinity values of (1 to 7) are −6.8 kcal/mol, −5.1 kcal/mol, −7.5 kcal/mol,
−6.3 kcal/mol, −5.6 kcal/mol, −5.2 kcal/mol, and −7.9 kcal/mol, respectively.

Table 7. Protein-ligand interactions of designed ligands 1–7 and template 22c towards STK10’s
active pocket.

Ligands Binding Affinity
(Kcal/mol)

Interaction Hydrogen-
Binding Hydrophobic Interaction

22c −4.3

Carbon-Hydrogen bond: Val
A294 Arg A139

Conventional H-bond:
Glu A290

π-sigma: Leu A289
alkyl and π-alkyl: Ala A286

1 −6.8
Conventional H-bond: Cys
B206, Asp B215, Met B205,

Tyr B214

alkyl and π-alkyl: Ala B218,
Met A205

π-sulfur: Cys B206.

2 −5.1 Conventional H-bond: Gln
A140, Ile A297;

amide stackers: Ser299; Vander
wals: Asn A300.

3 −7.5 -

alkyl and π-alkyl: Lys B159,
Ala B117

π-π stacked: Phe B176
Halogen: Asp B119

4 −6.3 Conventional H-bond: Arg
A139, Tyr A92, Gln A140. alkyl and π-alkyl: Pro A91.

5 −5.6 Conventional H-bond: Glu
B280, Asn B278

alkyl and π-alkyl:
Pro B279, Ala218

6 −5.2 Conventional H-bond: Asn
A300, Tyr A92 π-anion: Asp A170

7 −7.9
Conventional H-bond: Asn

A146, Ser A150, Ala A285, Ser
A284, Gln A287.

alkyl and π-alkyl: Ala A286.
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The reference ligand 22c has a binding affinity value of −4.3 kcal/mol. This indicates
that the designed ligands are more stable in the protein pocket than the reference ligand.
The reference 22c has two conventional hydrogen bonds: a hydrogen bond Val A294 with
the nitrogen attached to the benzene ring at a distance of 3.63 Å, a hydrogen bond Arg
A139 with the nitrogen attached to the benzene ring at a distance of 2.72 Å, and a π-sigma
bond Leu A289 with the benzene ring at a distance of 5.44 Å. One carbon hydrogen bonds
GluA290 with a different benzene ring at a distance of 5.31 Å, and alkyl and π-alkyl bonds
Ala A286.

The designed ligand 1 forms critical interactions with the protein through seven active
sites. These interactions involve several residues, namely Cys A206, Asp B215, Met B205,
and Tyr B214. Hydrogen bonds are formed between these residues and the ligand’s nitrogen
and hydroxyl groups, with distances ranging from 3.23 Å to 4.95 Å. Additionally, a π sulfur
bond is observed between the Cys B206 residue and the ligand, spanning a distance of
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5.03 Å. Moreover, the residues Ala B286 and Met B205 form π-alkyl and alkyl interactions,
respectively, with the ligand’s alkene and benzene ring, with distances of 4.79 Å and 4.95 Å.

The designed ligand 2 forms crucial interactions with the protein through four active
sites. Gln A140 and Ile A297 residues establish hydrogen bonds with the nitrogen atom,
enhancing the stability of the complex. Additionally, the Ser A299 residue contributes to
the interaction through amide stacking, further reinforcing the binding. Furthermore, the
Asn A300 residue engages in van der Waals interactions with the hydroxyl group, adding
to the overall stability and specificity of the binding. These various types of interactions
are of great importance as they play key roles in facilitating the molecular recognition and
binding between the designed ligand and the protein.

The designed ligand 3 and the protein are connected through four active sites, each
contributing to the binding interaction. The Phe176 residue forms a π-stacked interaction
with the designed ligand at a distance of 5.03 Å, providing stability to the complex. Ad-
ditionally, the Ala B117 and Lys B159 residues engage in π-alkyl and alkyl interactions,
respectively, with the benzene ring of the ligand at distances of 4.49 Å and 5.40 Å. These
interactions contribute to the overall binding strength. Furthermore, the Ser B299 residue
forms a halogen bond with the ligand at a distance of 3.63 Å, further enhancing the stability
of the complex. Lastly, the Phe B176 residue forms a π-π stacked bond with the ring of the
ligand, adding to the specific molecular recognition.

The designed ligand 4 forms crucial interactions with the protein through four active
sites. Firstly, there are hydrogen bonds formed between Arg A139, Tyr A92, and Gln A140
residues with the oxygen attached to the benzene ring of the ligand. These hydrogen
bonds contribute to the stability and specificity of the binding. Additionally, an alkyl bond
and a π-alkyl bond are observed with the Pro A91 residue. These interactions, involving
hydrophobic and aromatic interactions, respectively, further enhance the binding between
the designed ligand and the protein. Collectively, these various types of interactions play a
significant role in facilitating the molecular recognition and binding between the designed
ligand 4 and the protein.

The designed ligand 5 establishes important interactions with the protein through
four active sites. Two conventional hydrogen bonds are formed, with Glu B280 and Asn
B278 residues interacting with the sulfur atom attached to the benzene ring at distances
of 3.73 Å and 3.64 Å, respectively. These hydrogen bonds contribute to the stability and
specificity of the binding between the ligand and the protein. Additionally, an alkyl bond
and a π-alkyl bond are observed with the Ala B218 and Pro B279 residues, respectively.
These interactions, involving hydrophobic and aromatic interactions, further enhance the
binding between the designed ligand 5 and the protein.

The designed ligand 6 establishes vital interactions with the protein through three
active sites. Notably, two conventional hydrogen bonds are formed between the TYR A92
and Asn A300 residues and the sulfur atom attached to the benzene ring of the ligand.
These hydrogen bonds occur at distances of 3.54 Å and 2.74 Å, respectively, underscoring
their significance in stabilizing the ligand-protein interaction. In addition, there is a π-anion
bond observed with the ASN A300 residues.

The designed ligand 7 forms crucial interactions with the receptor through six conven-
tional hydrogen bonds. These hydrogen bonds involve Asn A146, Ser A150, Ala A285, Ser
A284, and Gln A287 Val A294 residues, interacting with the nitrogen attached to the benzene
ring of the ligand. The distances between the donor and acceptor atoms in these hydrogen
bonds are 2.47 Å, 2.63 Å, 2.12 Å, 2.10 Å, and 2.67 Å, respectively. Additionally, there is a
hydrogen bond formed between Arg A139 and the nitrogen attached to the benzene ring at a
distance of 2.72 Å. Furthermore, a carbon-hydrogen bond is observed between His A149 and
a different benzene ring of the ligand, with a distance of 3.32 Å. Additionally, there are alkyl
and π-alkyl bonds formed with the Ala A286 residue, with a distance of 3.75 Å.

These various types of interactions, including hydrogen bonding, carbon-hydrogen
bonding, and hydrophobic interactions, contribute to the stability and specificity of the
binding between the designed ligand 7 and the receptor. Collectively, these interactions
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play a significant role in facilitating molecular recognition and binding between the ligand
and the receptor. These interactions are the main factors having an important impact
on the affinity of a ligand to a receptor, which is in line with results from hydrophobic
and electrostatic contour maps, indicating that the proposed ligand 7 could exert a strong
inhibitory effect on Serine/threonine kinase STK10 in its chosen pose.

2.9. Molecular Dynamics Simulations

Molecular dynamics (MD) simulations were conducted to validate the results obtained
from 3D-QSAR and molecular docking. MD serves as a powerful tool to assess the dynamic
stability of a system [16]. In our study, we conducted a 100 ns MD simulation on the optimal
docking configurations (complex 7) and the co-crystallized ligand. Two parameters, namely
root mean square deviation (RMSD) and root mean square fluctuation (RMSF), were
utilized to evaluate the structural fluctuations in protein 6I2Y (Figures 7 and 8). RMSD
helps assess the similarity or deviation between different molecular structures over time.
Figures 7a and 8a illustrate the RMSD of protein 6I2Y (depicted in blue) and ligand 7 as
well as co-crystallized ligand (depicted in red). Throughout the simulation, no significant
change was observed in the RMSD for ligand 7. However, a remarkable change was noted
for the co-crystallized ligand over time. This indicates that ligand 7 is more stable than the
co-crystallized ligand.

RMSF, on the other hand, is a useful metric for characterizing local changes along the
protein chain [13]. RMSF (Root Mean Square Fluctuation) is a measure of the deviation
of the position of each atom in a protein from its average position over a simulation. The
RMSF values of the STK10-Ligand7 complex ranged from 1 to 6.5 Å (Figure 7b), while the
RMSF values of the STK10-co-crystallized complex ranged from 1 to 9.5 Å (Figure 8b). The
RMSF values of the designed ligand are lower than those of the co-crystallized compound,
indicating that it is more stable. Figures 7c and 8c display the protein-ligand interactions,
including hydrogen bonds, hydrophobic contacts, and water bridges. Notably, hydrogen
bonds (H-bonds) play a significant role in ligand binding. involving amino acids such
as Asn146, Ser150, Tyr216, Ser284, Ala285, and Pro213. Hydrophobic interactions were
observed with Tyr216 and the Leu145-Ala286 residues. During the simulation trajectory,
specific amino acids came into contact with the co-crystallized ligand, including Glu 68,
Cys 113, Asp 145, Leu 42, Ala 46, Val 50, Ile 61, and Ile 180.
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Figure 8. Molecular dynamics simulation for the complex STK10-co-crystallized ligand in terms of
(a) RMSD timeline motion; (b) RMSF timeline motion; and (c) protein-ligand timeline contacts.

These molecular dynamics simulations offer valuable insights into the dynamic be-
havior of the complex STK10-Ligand7 and the complex STK10-co-crystallized ligand,
confirming the stability of ligand 7.

2.10. MM/GBSA Free Energy Calculation

Table 8 presents the obtained results of the energies associated with the interaction
between the STK10 protein, ligand7, and compound 22c, respectively. The value of ∆Gbind
(−20.9293 kcal/mol and −13.6075 kcal/mol) indicates the overall binding free energy. This
negative value implies a favorable binding interaction between the STK10 protein and
ligand7. The value of ∆Gbind Hbond (−2.9044 kcal/mol and −1.1743 kcal/mol) specifies
the contribution of hydrogen bonding to the binding free energy. It suggests that hydrogen
bonding significantly contributes to the stability of the protein-ligand interaction. And
the value of ∆Gbind VdW (−0.3727 kcal/mol and 0.48926 kcal/mol) represents the van
der Waals contribution to the binding free energy. This indicates the role of van der Waals
forces in stabilizing the STK10-ligand7 complex, although to a lesser extent compared to
hydrogen bonding. These results indicate a favorable binding affinity between STK10 and
ligand 7, primarily driven by hydrogen bonding interactions, followed by van der Waals
forces, demonstrating the stability of ligand 7.

Table 8. MM-GBSA-free binding energy for STK10-ligand7 and 22c systems.

Complex ∆Gbind (MM-GBSA) ∆Gbind Hbond ∆Gbind VdW

STK10-7 −20.9293 −2.9044 −0.3727

STK10-22c −13.6075 −1.1743 0.48926
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3. Materials and Methods
3.1. Focused Chemical Library

The dataset comprised 33 analogues of quinoline derivatives synthesized as anti-cancer
agents by Mohareb et al. [17]. The dataset was divided into two sets, with 24 compounds
selected as the training set and 9 compounds selected as the test set to assess the effective-
ness of the obtained model. Table 9 displays the structures and biological activities of all
the compounds in the training and test sets. A 3D-QSAR model was constructed, and their
physicochemical properties were analyzed using this dataset.

Table 9. Structure-activity dataset of targeted Quinoline derivatives.
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* Test set compounds. 

3.2. Molecular Modelling 

A molecular structure was drawn in SYBYL-X 2.0 software using the sketch module 

and then subjected to minimization using the Tripos force field [18]. Gasteiger-Hückel 

charges were assigned to the ligands, and the conjugate gradient method was employed 

with a gradient convergence criterion of 0.01 kcal/mol/Å. Molecular alignment is considered 

a crucial parameter in 3D-QSAR analysis because it is highly sensitive to the results. We 

conducted molecular alignment for the database, where molecules are superimposed on the 

common core using compound number 22c (the most active compound) as the model. 

3.3. 3D-QSAR Modeling 

One of the computational methods utilized in drug design is the three-dimensional 

quantitative structure-activity relationship (3D-QSAR) [19]. To construct predictive 3D-

QSAR models based on molecular alignment, CoMFA studies were performed to investi-

gate and analyze the electrostatic and steric contributions of the dataset [20]. Previous 

literature has described the use of 3D-QSAR in various studies [21]. In CoMFA, steric and 

electrostatic properties are computed based on Lennard-Jones and Coulomb potentials, 

respectively. The CoMFA analysis employed the Tripos force field, utilizing a spatial grid 

reference of 2 Å across all Cartesian axes. To compute steric and electrostatic energies, a 

sp3 hybridized carbon atom carrying a net charge of +1.0 was utilized. Default settings 

were applied for parameters such as the correction factor, set at 0.3 to regulate the Gauss-

ian function slope, and the cutoff energy, defaulted to 30 kcal/mol [22]. 

3.4. PLS Analysis and Validations 

To assess the linear correlation between the 3D-QSAR descriptors and the activity 

values of the biological variables, the partial least squares (PLS) regression method (Wold, 

1991) was applied to the extensive variables obtained from the field calculations [22,23]. 

Cross-validation (Q2) was performed by excluding one compound from the training set 

and predicting its activity using the developed model with the remaining (N-1) com-

pounds. This process was repeated for each compound until all were excluded once. Mod-

els with higher Q2 values, fewer components, and a low standard error of estimate (Scv) 

were chosen. Column filtering was set to 2.0 kcal/mol to reduce noise and expedite the 

analytical process [24]. Once the optimal number of components was determined, the final 

PLS model was deduced without validation [25] to calculate the maximum determination 

coefficient (R2). 
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3.2. Molecular Modelling

A molecular structure was drawn in SYBYL-X 2.0 software using the sketch module
and then subjected to minimization using the Tripos force field [18]. Gasteiger-Hückel
charges were assigned to the ligands, and the conjugate gradient method was employed
with a gradient convergence criterion of 0.01 kcal/mol/Å. Molecular alignment is consid-
ered a crucial parameter in 3D-QSAR analysis because it is highly sensitive to the results.
We conducted molecular alignment for the database, where molecules are superimposed on
the common core using compound number 22c (the most active compound) as the model.
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3.3. 3D-QSAR Modeling

One of the computational methods utilized in drug design is the three-dimensional
quantitative structure-activity relationship (3D-QSAR) [19]. To construct predictive 3D-
QSAR models based on molecular alignment, CoMFA studies were performed to investigate
and analyze the electrostatic and steric contributions of the dataset [20]. Previous literature
has described the use of 3D-QSAR in various studies [21]. In CoMFA, steric and electrostatic
properties are computed based on Lennard-Jones and Coulomb potentials, respectively.
The CoMFA analysis employed the Tripos force field, utilizing a spatial grid reference of
2 Å across all Cartesian axes. To compute steric and electrostatic energies, a sp3 hybridized
carbon atom carrying a net charge of +1.0 was utilized. Default settings were applied for
parameters such as the correction factor, set at 0.3 to regulate the Gaussian function slope,
and the cutoff energy, defaulted to 30 kcal/mol [22].

3.4. PLS Analysis and Validations

To assess the linear correlation between the 3D-QSAR descriptors and the activity
values of the biological variables, the partial least squares (PLS) regression method (Wold,
1991) was applied to the extensive variables obtained from the field calculations [22,23].
Cross-validation (Q2) was performed by excluding one compound from the training set
and predicting its activity using the developed model with the remaining (N-1) compounds.
This process was repeated for each compound until all were excluded once. Models with
higher Q2 values, fewer components, and a low standard error of estimate (Scv) were
chosen. Column filtering was set to 2.0 kcal/mol to reduce noise and expedite the analytical
process [24]. Once the optimal number of components was determined, the final PLS
model was deduced without validation [25] to calculate the maximum determination
coefficient (R2).

3.5. Validation and Predictive Power of 3D-QSAR Model

Every QSAR study strives to develop a model that exhibits the highest level of pre-
dictive ability and generalizability. In order to evaluate the predictive capability of the
3D-QSAR models, nine compounds from a testing set were utilized. The 3D-QSAR model,
constructed using the training set, was employed to predict the inhibitory activities of these
ligands after aligning them using the same methods described earlier.

3.6. Y-Randomization Test

To assess the significance of the model, Y-randomization was employed to eliminate
the potential presence of a chance association between specific descriptors and their cor-
responding activities [26]. The Y-randomization test ensures that the random correlation
coefficient (Rr2) of randomly generated models is lower than the correlation coefficient of
the original non-random model (R2) [27]. This procedure helps confirm the reliability and
validity of the original model.

3.7. ROC-AUC Analysis

The ROC (Receiver Operating Characteristic) curve is a crucial tool to evaluate the
performance of binary classification models [14]. It graphically represents sensitivity against
specificity at various prediction thresholds. This visual display assesses a model’s ability to
differentiate true positives from false positives. We typically generate the ROC curve using
the MedCalc statistical software (http://www.medcalc.org (accessed on 27 December 2023)).

3.8. POM Analysis

Petra/Osiris/Molinspiration Analysis (POM) is a widely utilized approach for gener-
ating two-dimensional models that aid in identifying and characterizing pharmacophore
sites responsible for changes in biological activity due to chemical substitutions. POM
offers several advantages, including the ability to predict molecular biological activity
and represent steric/electrostatic properties, as well as biological activities, using pharma-

http://www.medcalc.org
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cophore sites. This analysis provides valuable insights into ligand-receptor interactions and
receptor topology [27]. In addition, we utilized Osiris, Petra, and Molinspiration to analyze
the pharmacokinetic profiles of the proposed compounds. These tools were validated using
a database of approximately 7000 drug molecules [28].

3.8.1. Petra

The PETRA program package includes an empirical method for calculating the physic-
ochemical properties of organic molecules [29]. These methods have been developed by
Prof. J. Gasteiger’s research group over the course of 20 years. The program allows for the
quantification of various chemical properties, including heats of formation, bond dissocia-
tion energies, inductive effect, π-charge distribution, sigma charge distribution, resonance
effect, delocalization energies, and polarizability effect.

3.8.2. Osiris

Structure-based design is widely used in drug discovery, but many potential drugs fail
to progress to the clinic due to ADME-Tox (absorption, distribution, metabolism, excretion,
and toxicity) liabilities. Among the enzyme classes implicated in ADMET issues, the
cytochrome P450 enzyme family holds significant importance. Inhibition of these enzymes
or the production of undesired metabolites can lead to adverse drug reactions. To address
this, an online version of the crucial program “Osiris” is already available [30].

3.8.3. Molinspiration

We utilized the (https://molinspiration.com/) [31] to obtain parameters such as
MiLogP, TPSA, and drug likeness. The MiLogP parameter, calculated by the Molinspiration
methodology, is determined by summing fragment-based contributions and correction
factors. It serves as an indicator of good permeability across the cell membrane. The volume
of a molecule is calculated by considering its contributing groups. TPSA, on the other hand,
refers to the hydrogen bonding potential of compounds. The number of rotatable bonds
in a molecule is a measure of its molecular flexibility and is indicative of drug absorption
and bioavailability. Drug likeness data compares the structure and properties of a molecule
with those of known drugs, providing insights into its molecular properties.

3.9. Molecular Docking

In recent years, molecular docking has emerged as a crucial tool in computer-assisted
drug design for predicting binding affinity and analyzing the interaction mode of drugs.
It offers improved efficiency and cost reduction in research. In this study, molecular
docking was conducted using Discovery Studio 2016 software [32] and AutoDock software
(ADT) MGLTools 1.5.6 packages [33]. We performed molecular docking on newly designed
quinoline derivatives and the most active synthetic molecule to bind with the protein.
Throughout this process, each compound produced nine distinct poses. These poses were
meticulously exported to allow for a comprehensive examination of their various binding
orientations and interaction affinities [34–36]. Our objective was to identify and select the
most stable pose for each compound, considering both binding affinity and interaction
types. The receptor of interest in our study is Serine/threonine-protein kinase 10 (STK10),
which was obtained from the RCSB protein database to assess the ligand-protein interaction.
The ligand and protein structures were both prepared. For the protein, the water molecules
were removed, Kollman charges were added, Gasteiger charges were computed, and
hydrogen atoms (only polar) were added. The prepared protein structure was saved as
a PDBQT file. Regarding the ligands, the root was detected, torsions were selected, and
the structures were saved as PDBQT files [37,38]. The Autodock system utilizes a three-
dimensional grid that encompasses the active site of the 6I2Y protein, enabling rotational
exploration of ligands within the site to expedite energy evaluation [39,40]. The coordinates
of the grid box were set as X = 9.412 Å, Y = 20.328 Å, and Z = 24.168 Å, with dimensions of
72 * 78 * 92 Å3. We performed docking of the ligands with the Serine/threonine-protein

https://molinspiration.com/
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kinase 10 (STK10) protein using Lamarckian Genetic Algorithms. We used the Protein
Preparation Wizard (Protein Preparation Wizard) and Prime in Maestro to fill in the missing
side chains for protein 6I2Y.

3.10. Molecular Dynamic

Molecular dynamics simulations have become a widely used method for investigating
biomolecules, allowing for increased sampling time and more realistic boundary conditions.
These simulations can now be performed on larger and more complex systems, including
transmembrane channels. Simulations provide valuable insights into biochemical processes
and add a dynamic perspective to structural data. In our study, a molecular dynamics
(MD) simulation was conducted using Desmond software to validate the binding modes of
ligands and gain a general understanding of protein-ligand complexes. An orthorhombic
simulation box was prepared using the SPC water model, ensuring a minimum distance of
10 times between the protein’s surface and the box boundary [15,41,42]. To neutralize the
charge of the solvated systems, Na+ and Cl− counterions were added, adjusting the salt
concentration to 0.15 M, which mimics physiological conditions. The system was gradually
heated from zero to 300 K (at 1 bar pressure) using the Nose-Hoover thermal algorithm
and the Martina–Tobias–Klein method. Isothermal-isobaric ensemble simulations were
conducted for 100 ns. Analysis of the protein’s structure and dynamic behavior was
performed using RMSD and RMSF plots.

3.11. Molecular Mechanics-Generalized Born Surface Area (MM-GBSA)

In this study, we employed the MM-GBSA (Molecular Mechanics-Generalized Born
Surface Area) approach to recalibrate docking patterns derived from molecular docking
simulations [16,43]. This procedure was conducted to evaluate the free binding energies of
ligands binding to the active pocket of Serine/threonine-protein kinase 10 (STK10) protein. The
objective was to gauge the binding efficacy of promising drug candidates with the target receptor
(PDB code: 6I2Y) and anticipate the most favorable interactions that lead to the lowest free
binding energy (∆Gbind= Ecomplexe(minimized) +Eligand(minimized)−Ereceptor(minimized)).
The Prime MM-GBSA simulation involved minimizing the energies of complexes utilizing
the OPLS3e force field and VSGB solvate model at pH 7 ± 2, facilitated through the MM-
GBSA Prime package in Schrodinger 2020-3 73 [13]. During this setup, both the protein-ligand
complexes and the ligands themselves underwent energy minimization. Consequently, the free
binding energy (∆Gbind) of the analyzed systems could be determined.

4. Conclusions

In this study, we utilized 3D-QSAR to investigate the structure-activity relationship
of quinoline derivative analogues as potential anticancer agents. The developed models
demonstrated excellent predictive ability for a test set of ligands, indicating their reliability
in predicting pIC50 values. By analyzing the CoMFA contour maps, we gained valuable
insights into the structure-activity relationship and identified key structural features in-
fluencing the ligands’ activity. The robust performance of the external validation further
validated the reliability of our models, providing confidence in the predicted activities of
the newly designed ligands. Building upon the structure-activity relationships derived
from this study, we designed new derivatives. To evaluate their potential, we employed
the POM method to calculate molecular properties, predict bioactivity, and assess toxic-
ity. The results of the POM method indicated that all designed ligands exhibited activity
within the range of standard drugs, demonstrating their promise as potential candidates.
Subsequently, molecular docking was employed to explore the interactions between the
designed ligands and the protein (PDB: 6I2Y). The results revealed favorable binding and
indicated good stability of the designed ligands within the active sites of the protein.

To further investigate their dynamic behavior, we performed MD simulations on the
best docking configurations, specifically focusing on ligand 7, for a duration of 100 ns.
These simulations confirmed the stability of the ligands within the protein’s active sites
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over the simulation time. In general, this comprehensive approach combining 3D-QSAR,
molecular design, POM analysis, molecular docking, MD simulations, and MM-GBSA free
Energy calculations provides valuable insights into the structure-activity relationship and
stability of the designed ligands within the protein’s active sites. These findings support
the potential of the newly designed ligands as promising anticancer agents.
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