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Abstract: Cardiovascular diseases caused by blood coagulation system disorders are one of the
leading causes of morbidity and mortality in the world. Research shows that blood clotting fac-
tors are involved in these thrombotic processes. Among them, factor Xa occupies a key position
in the blood coagulation cascade. Another coagulation factor, XIa, is also a promising target be-
cause its inhibition can suppress thrombosis with a limited contribution to normal hemostasis.
In this regard, the development of dual inhibitors as new generation anticoagulants is an urgent
problem. Here we report the synthesis and evaluation of novel potential dual inhibitors of coag-
ulation factors Xa and XIa. Based on the principles of molecular design, we selected a series of
compounds that combine in their structure fragments of pyrrolo[3,2,1-ij]quinolin-2-one and thiazole,
connected through a hydrazine linker. The production of new hybrid molecules was carried out
using a two-stage method. The reaction of 5,6-dihydropyrrolo[3,2,1-ij]quinoline-1,2-diones with
thiosemicarbazide gave the corresponding hydrazinocarbothioamides. The reaction of the latter with
DMAD led to the target methyl 2-(4-oxo-2-(2-(2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-
ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates in high yields. In vitro testing of the synthesized
molecules revealed that ten of them showed high inhibition values for both the coagulation factors
Xa and XIa, and the IC50 value for some compounds was also assessed. The resulting structures were
also tested for their ability to inhibit thrombin.

Keywords: 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2-one; thiazole; anticoagulant activity; dual
activity; inhibitor; factor Xa; factor XIa; thrombin; blood coagulation; molecular docking

1. Introduction

Diseases resulting from disorders of the blood coagulation system continue to be the
leading cause of morbidity and mortality in the modern world [1]. Antithrombotic therapy is
based on the use of anticoagulants—substances that directly inhibit the coagulation factors or
disrupt their formation in the liver (vitamin K antagonists). In recent years, for the prevention
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of thromboembolic complications during general surgical and orthopedic interventions in
operative gynecology and transplantology, preference is given to direct oral anticoagulants,
since they have a number of advantages compared to vitamin K antagonists [2]. Over the past
few years, this problem has become even more acute. Thromboembolic disorders have become
one of the most serious clinical manifestations of COVID-19, leading to complications of the
disease, as well as increased mortality [3,4]. Moreover, the risk of blood clots remains high
months after the illness. Therefore, the prevention and treatment of thrombosis is currently
one of the main tasks of medical practice.

Modern anticoagulant therapy has its limitations and disadvantages, which can lead to
serious side effects, as well as increased mortality. Such disadvantages include, for example,
the risk of bleeding [2]. The presence of imperfections in existing therapy has led to the
search for new promising targets and the emergence of new approaches to the development
of highly effective and non-toxic anticoagulant drugs. One of these developing areas is the
development and use of small-molecule inhibitors of serine proteases [5].

Recent studies show that targeting multiple targets involved in blood coagulation
has advantages over the use of selective inhibitors of individual targets [6–10]. In the
development of dual inhibitors, research has focused mainly on the key enzymes in the
coagulation cascade—thrombin and factor Xa [7,11–15].

Thrombin is the most obvious target for the development of anticoagulant inhibitors.
However, studies show that it is thrombin inhibition that inevitably increases the likelihood
of hemorrhagic complications, especially when used in conjunction with thrombolytic
drugs [16–18]. Factor Xa, in turn, remains an extremely attractive target protein, inhibitors
of which are gradually being included in clinical practice as agents for the treatment of
various types of thrombosis [2]. However, the question of developing factor Xa inhibitors
that do not bind to thrombin remains open, due to the structural similarity of both enzymes.

At the same time, in recent years there has been increasing interest by the scientific
community in the internal pathway of blood coagulation, showing the importance of its
contribution to thrombosis [19–21]. Increasing evidence suggests that factor XIa, which
belongs to the intrinsic coagulation activation pathway, is an attractive target [21–24]. FXIa
is a long-lived factor, which can circulate in the bloodstream for a long time and plays an
important role in thrombosis. However, the data show that factor XIa has a limited effect
on normal hemostasis [21,25]. This is a necessary condition in the development of new
generation anticoagulant drugs with a reduced risk of internal bleeding.

Thus, obtaining effective and, at the same time, safe anticoagulant drugs for the
prevention and treatment of thrombosis may become possible through the development
of dual inhibitors of blood coagulation factors Xa and XIa, which at the same time have a
limited effect on thrombin.

Thiazole derivatives have attracted the attention of the scientific community due to their
wide spectrum of biological activities, such as antimicrobial [26,27], anti-inflammatory [28,29],
anticancer [30,31], anti-HIV [32], antidiabetic [33], carbonic anhydrase inhibitory [34,35], antituber-
cular [36], anticoagulant [37,38], and many other [39,40] activities.

Another interesting core is quinoline, derivatives which are known also to perform
a wide range of biological activities. They are reported to possess anticoagulant [41],
antibacterial [42], anti-Alzheimer [43], anticancer [44], antidiabetic [45] properties and
others [46–48]. On the other hand, pyrrole derivatives possess anticoagulant [49], antimi-
crobial [50], anti-inflammatory [51,52] and anticancer [53], anti-HIV [54] effects.

Prompted by all the above-mentioned, and our previous studies [55–60], we designed
and synthesized, based on the hybridization approach, new methyl 2-(4-oxo-2-(2-(2-oxo-5,6-
dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates
and studied their inhibitory properties against blood clotting factors Xa and XIa in vitro.
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2. Results and Discussion
2.1. Design of 5,6-Dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2(1H)-one-Based Derivatives

In the modern design of biologically active compounds with specified properties,
one of the common approaches is to obtain hybrid molecules that carry in their structure
fragments of known pharmacophores, as well as substructures whose ability to interact
with specified targets has been studied. This approach makes it possible to create complex
molecules that potentially have dual or multiple activities [61–65].

In a number of our previous publications aimed at the synthesis and study of the antico-
agulant activity of functional derivatives of pyrrolo[3,2,1-ij]quinolin-2-ones, promising results
were obtained and the promise of these structures in the synthesis of new inhibitors of factors Xa
and XIa shown [55–60]. It has been shown that 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2-ones,
and in particular 6-aryl-substituted ones, tend to exhibit higher activity compared to their
unsaturated analogues [55,56,66].

Furthermore, we also demonstrated that molecules combining in their structure frag-
ments of 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-2-one and thiazole act as both selective
and dual inhibitors of Xa factors and XIa [56,57]. High inhibition values for both factors
were also found for a compound in which pyrrolo[3,2,1-ij]quinolin-2-one is linked to a
thiazole derivative via a hydrazine linker [58].

Another possible modification of the starting 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
2-ones to improve the characteristics of the final biologically active products is the introduc-
tion of substituents into the benzene ring of the quinoline ring, for example, halogen, and
also their variation. A similar approach had previously been repeatedly implemented to in-
crease the biological activity of compounds, change their physical and chemical properties,
increase the selectivity of action, and also reduce side effects [47,48,56,66–68].

In the continuation of our studies on the search for compounds with dual inhibitory
activity, in this work we also focused on combining the described fragments in the frame
of a single molecule. Thus, methyl 2-(4-oxothiazol-5(4H)-ylidene)acetate, which is easy
to prepare, was chosen as the thiazole-containing fragment. This heterocyclic fragment
is a well-known pharmacophore among the functional derivatives of which compounds
with antitumor [69–72], antimicrobial [65,73–75], antifungal [75], antiviral [76,77], antioxi-
dant [65,78], anti-inflammatory [79], as well as anticoagulant [80] activity have been found.

Thus, herein we report the design and synthesis of new methyl 2-(4-oxo-2-(2-(2-oxo-5,6-
dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetates
and study their inhibitory properties against blood clotting factors Xa and XIa in vitro.

Furthermore, computer docking was also carried out, which made it possible to
evaluate the presented molecules as inhibitors by placing them in the active center of the
target protein, with the subsequent calculation of interactions.

2.2. Synthesis

To obtain the target 1-(2-(4,5-dihydrothiazol-2-yl)hydrazinylidene)-5,6-dihydro-4H-
pyrrolo[3,2,1-ij]quinolin-2-ones 3, we used the following strategy. At the first stage,
the corresponding hydrazinocarbothioamides 2a-q were obtained by condensation of
pyrrolo[3,2,1-ij]quinoline-1,2-diones 1a-q with thiosemicarbazide. The reaction was car-
ried out by analogy with [58,81], in which the reagents were boiled in isopropyl alcohol.
However, in our case the best results were achieved by boiling the starting compounds in
methanol with the addition of catalytic amounts of HCl. The reaction carried out using this
method, according to an LCMS analysis of the reaction masses (shown using the example of
compound 2b, see Supplementary Materials, Figure S70), proceeded with high conversion,
reaching more than 90%. It was found that isolation of the obtained thiosemicarbazones
2a-q was not required for the second stage. The reaction mass was, if necessary, evaporated
using a rotary evaporator, and the resulting residue containing intermediate compounds
2 was then introduced into the next stage of the reaction.

To carry out the heterocyclization reaction of intermediate hydrazinocarbothioamides
2a-q with commercially available dimethylacetylenedicarboxylate (DMAD), the conditions
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described in the literature for similar systems were used. By carrying out the reaction
in methanol [70,71,73] or ethanol [65,82–84], it was not possible to achieve complete con-
version of the reagents. Using the MeOH/AcOH system (v/v 4:1) as a medium led to a
reduction in the reaction time and an increase in the yield of products 3a-q to almost quan-
titative ones. Thus, the reaction of hydrazinocarbothioamides 2 with DMAD by boiling
in methanol with the addition of acetic acid for 30–60 min made it possible to obtain a
series of new methyl 2-oxo-5,6-dihydropyrrolo[3,2,1-ij]quinolin-1-ylidene)hydrazineyl)-4-
oxothiazol-5-ylidene)acetates 3a-q in high yields of 67–88% (Scheme 1).
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Scheme 1. Preparation of 2-oxo-5,6-dihydropyrrolo[3,2,1-ij]quinolin-1-ylidene)hydrazineyl)-4-
oxothiazol-5-ylidene)acetates 3a-q. Reagents and conditions: (i) thiosemicarbazide, MeOH/HCl,
reflux, 1 h; (ii) DMAD, MeOH/AcOH (v/v 4:1), reflux, 30–60 min.

The presence of a C=N double bond, as well as an exocyclic C=C double bond in
the thiazole ring, leads to the possibility of the existence of structures 3 in the form of
geometric isomers. Based on the data of HPLC MS analysis and 1H and 13C NMR spec-
troscopy, it was found that most of the compounds 3a-d, f-i, k-l, n-q are a single isomer.
According to the literature data [58,81], thiosemicarbazones of type 2, as well as compounds
derived from them, have predominantly a Z-configuration of the C=N double bond due
to the possibility of forming an intramolecular hydrogen bond with the C=O group of
pyrrolo[3,2,1-ij]quinolin-2-one fragment.

We determined the configuration of the exocyclic double bond C=C at the thiazole
ring in compounds 3 to be a Z-isomer based on 1H NMR spectroscopy data. In the 1H NMR
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spectra of these structures, resonance of the proton of the methine fragment is observed,
as expected, at lower chemical shift values (6.69–6.76 ppm) than would be the case for
E-isomers [85,86]. The proposed Z-configuration is also consistent with the previously
reported mechanism of trans-addition of the SH-group to the triple bond in DMAD in
similar systems [87]. Thus, we assumed that compounds 3 exist predominantly in the form
of the Z,Z-configuration.

The compounds 3e,j,m were obtained and studied as a mixture of geometric isomers.
Based on 1H NMR spectroscopy data, we suggest that compounds 3e,m were isolated as
a mixture of Z,Z- and E,Z-isomers, as evidenced by the duplication of the characteristic
olefinic proton signals. In the case of compound 3j, the duplication of the singlet signal of
the olefin proton is not observed in the 1H NMR spectrum, in contrast to the duplication of
the signals of the methylene and aromatic protons. This may indicate the existence of 3j in
the form of a mixture of Z,Z- and Z,E-isomers.

2.3. Anticoagulant Studies

All the synthesized compounds were primary in vitro screened toward factors Xa and
XIa to determine their anticoagulant activity, and the data are presented in Table 1. As a
reference compound, Rivaroxaban was used [88].

Table 1. Results of docking and the experimental measurements of anticoagulant activity of com-
pounds 3a-q against factors Xa and XIa. The SOL score is the estimation of the protein–ligand-binding
free energy calculated by the SOL docking program.

№
Factor Xa,

SOL Score,
kcal/mol

Factor XIa,
SOL Score,
kcal/mol

Percent Inhibition at 30 µM IC50, µM

Xa XIa Xa XIa

3a −5.39 −4.16 −1 −11 – –
3b −5.49 −4.46 91 60 5.76 ± 1.08 8.10 ± 0.20
3c −5.76 −4.69 87 93 2.84 ± 0.04 12.20 ± 0.20
3d −5.86 −4.85 77 96 – –
3e −5.93 −4.86 99 100 4.23 ± 0.31 8.03 ± 0.68
3f −5.91 −4.78 90 87 4.02 ± 0.60 7.97 ± 0.63
3g −5.90 −4.79 24 62 – –
3h −5.98 −4.90 −1 −16 – –
3i −6.03 −4.73 87 65 – –
3j −6.10 −4.55 64 83 – –
3k −6.35 −5.00 95 79 1.17 ± 0.26 4.59 ± 0.54
3l −5.76 −5.13 92 90 1.74 ± 0.21 3.61 ± 1.70

3m −6.14 −4.43 63 16 – –
3n −5.42 −4.44 93 85 1.86 ± 0.07 11.46 ± 0.98
3o −5.86 −4.74 87 90 1.34 ± 0.16 7.21 ± 0.22
3p −5.97 −4.93 83 97 1.83 ± 0.05 3.87 ± 0.33
3q −5.78 −4.22 85 84 – –

Rivaroxaban −6.89 94 8 0.007 ±
0.001

For compounds with high inhibition values of both factors 3b-c, e-f, k-l, n-p, the
kinetics of hydrolysis of specific substrates S2765 for factor Xa and S2366 for factor XIa in a
buffer solution and in the presence of various concentrations of compounds were measured
to determine the IC50 values (Table 1). The dependence of inhibition of Factor Xa- and
XIa-induced chromogenic substrate hydrolysis on the concentration of compounds 3b-c,
e-f, k-l, n-p is presented in Supplementary Materials, Figures S52–S69.

Among the compounds studied, ten molecules exhibited high inhibition values for
both blood clotting factors Xa and XIa 3c-f, k-l, n-q (>75%). This fact shows the advantage
of the above dual molecules compared to Rivaroxaban, which is only a factor Xa inhibitor.
Along with this, two compounds showed high inhibition values selectively against FXa
3b,i (87–91%), while compound 3j showed the same against FXIa (83%). It is important
to note that compounds 3i and 3j contain a 4-chlorophenyl moiety at position 6 of the
tricyclic system.
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Diversity in this line of compounds was achieved by varying the substituents in the 6,
8, 9 positions of the pyrrolo[3,2,1-ij]quinolinone fragment. It can be noted that FXa was
more tolerant to various combinations of substituents than FXIa. In this case, an increase
in the percentage of factor Xa inhibition by compounds containing an aryl substituent in
the 6th position is clearly observed. On the other hand, the introduction of substituents,
including halogen ones, into the 8th position of the pyrrolo[3,2,1-ij]quinolin-2-one fragment
led to an increase in the inhibitory activity against FXIa.

The resulting dual inhibitors of blood clotting factors Xa and XIa can also affect
thrombin, due to the structural similarity of the active centers of thrombin and factor Xa.
As mentioned earlier, the inhibition of thrombin entails pathological processes associated
with the disruption of normal hemostasis. This effect is undesirable when searching for
new generation inhibitors.

Therefore, we conducted additional research. The results of the in vitro experiment,
shown in Table 2, indicate a fairly low percentage of thrombin inhibition for most of the
obtained compounds 3a-d, g-j, m-n, q, which is maybe an indication of a potentially
insignificant effect of these compounds on normal human hemostasis.

Table 2. Results of docking and the experimental measurements of anticoagulant activity of com-
pounds 3a-q against thrombin. The SOL score is the estimation of the protein–ligand-binding free
energy calculated by the SOL docking program.

№
Thrombin,
SOL Score,
kcal/mol

Percent Inhibition of
Thrombin at 30 µM

3a −5.53 2
3b −5.78 24
3c −6.01 29
3d −5.94 31
3e −5.72 96
3f −5.68 43
3g −5.72 20
3h −6.12 −6
3i −5.27 39
3j −5.43 28
3k −5.60 43
3l −5.70 48

3m −5.19 18
3n −5.97 27
3o −6.28 71
3p −6.55 45
3q −5.92 26

Argatroban - 99

It was found, that only one compound 3e with an iodine atom at position 8 of the
tricyclic system is a multitarget inhibitor, acting equally strongly on both factors Xa and
XIa and thrombin.

2.4. Identifying Compound-Protein Interactions

To determine the structural patterns important for binding to the target protein, the
geometries of protein–ligand complexes predicted by docking for the identified factor Xa
and factor XIa inhibitors were analyzed.

The active site of factor Xa is represented by the S1 pocket and the S4 pocket, as
well as the surrounding residues. The S1 pocket comprised Trp215-Gly216 on one side
and Ala190-Cys191-Gln192 on the other. The lower part of the S1 pocket is similar to
the S1 pocket of thrombin and is formed by two residues—Asp189 and Tyr228—as well
as residues Cys191-Cys220. Therefore, engagement to this part of the target protein can
lead to the inhibition of both thrombin and factor Xa. On the contrary, the S4 pocket is
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different from other serine proteases and is formed by the side chains of Tyr99, Phe174 and
Trp215. Because of this, one of the possible approaches to obtaining factor Xa inhibitors
selective over thrombin is specifically targeting the S4 pocket [67,89]. For the compounds
we synthesized and studied, two distinct binding modes are predicted by docking. The first
mode of interaction is observed for compounds 3a-h and is shown in Figure 1, where 3b and
3f are depicted as examples. As can be seen from the figure, the central scaffold of 3b and
3f is positioned over Gly-216 with the amide oxygen of the pyrrole moiety directed toward
Tyr-99. Such an orientation of the scaffold favors binding of the thiazolidine warhead
inside the S4 pocket. The thiazolidine ring can potentially interact via π-stacking with
the aromatic rings of Tyr-99 and Phe-174. The molecule 3b is positioned slightly closer to
Tyr-99 and can form a hydrogen bond with the phenolic hydroxyl of this residue. For both
3b and 3f, the S1 pocket is left unoccupied.
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Figure 1. Docking pose of 3b and 3f in an active site of factor Xa.

Compounds 3i-q that are substituted at C6 of the pyrroloquinolinone core with an
aryl substituent show the second binding mode to factor Xa, depicted in Figure 2 with 3k
and 3n used as examples. Compared to the first binding mode, where the amide oxygen
is directed toward Tyr-99, in factor Xa complexes with 3k and 3n the scaffold is inverted
in such a way that this oxygen points out to Gly-217. In the case of 3k, this amide oxygen
visually forms a hydrogen bond with Gly-217NH. The thiazolidine warhead 3k and 3n is
positioned near the catalytic Ser-195. In this regard, the potential formation of a covalent
bond between this residue and the reactive part of the warhead can be proposed. Also, the
presence of an aryl fragment in structures 3k and 3n provides the opportunity to occupy
the S4 pocket, in which π-stacking interactions with Tyr-99 and Phe-174 are detected.

It is noteworthy that in both the binding modes, the S1 pocket remains unoccupied,
while the S4 pocket is occupied by a thiazole fragment in the first case and by an aryl
substituent at the 6th position of the pyrrolo[3,2,1-ij]quinoline core in the second case.

The active site of factor XIa is also represented by several pockets. The S1 pocket is the
only deep pocket in the binding interface. It is formed by β-strands ending in a disulfide
bridge between Cys191-Cys219 and Asp189, which is located at its base. The S2 pocket is
located adjacent to His57 and bounded by Tyr58B. The S1′ pocket is located opposite the
catalytic triad His57b, Asp102, and Ser195, and next to another disulfide bridge formed by
Cys40-Cys58. The S2′ pocket contains the β-strand which includes Arg39, His40, Leu41,
Ile151, and Tyr143.
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In the case of factor XIa, the compounds 3a-q are located in the active site of the target
protein in a similar way, irrespective of the substituent at C6. The generalized binding
mode of structures 3i-q in the active site of factor XIa is shown in Figure 3 with compound
3n depicted as an example. A docking pose of 3n reveals that this compound could occupy
two of the three pockets of an active site of factor XIa. A thiazolone moiety linked to an
ester group is extended into the S1 pocket blocking the catalytic triad of enzyme. At the
other end of the molecule, a phenyl ring attached to a pyrrolo[3,2,1-ij]quinoline scaffold
occupies the S2 pocket and forms two interactions: T-shaped pi-pi stacking with Tyr-59 and
pi-cation interaction with Arg-37. The planar aromatic part of the scaffold is placed above
His-57 and could potentially interact with His-57. The S2′ pocket is left unoccupied and in
theory could be explored via adding ring substituents of the core at C8 or C9.
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The binding mode common for compounds 3a-h in the active site of factor XIa is
shown in Figure 4 using compound 3c as an example. As can be seen from Figure 4,
according to docking, 3c binds very similarly to 3n. The main differences are the S2 pocket



Molecules 2024, 29, 373 9 of 18

occupation and the orientation of the central core. In 3c, the S2 pocket is only partly
occupied, and no specific interactions are formed with the residues of the pocket. On the
contrary, owing to the presence of a 6-phenyl substituent, 3n is predicted to engage to the
S2 pocket effectively by forming pi-pi stacking and pi-cation interaction with the pocket
residues. Besides that, the central pyrrolo[3,2,1-ij]quinoline is inverted in the case of 3c if
compared to its orientation in 3n. Irrespective of the inversion, the scaffold can interact
with His-57 via pi stacking interaction in both cases.
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3. Materials and Methods

The purity of the starting materials and the synthesized compounds, as well as the
analysis of reaction mixtures, was monitored by TLC on Silica gel 60 F254 plates (Merck,
Albany, GA, USA) using chloroform, methanol, or their mixtures as eluent. Chromatograms
were developed using UV irradiation, treatment with iodine vapor, or heating the plate.
The purity of the obtained compounds is confirmed by HPLC analysis. HPLC analysis
was performed using an Agilent 1260 Infinity liquid chromatograph equipped with a UV
detector in combination with an Agilent 6230 TOF LC/MS detector. The melting points of
the resulting compounds were determined on a Stuart SMP30 instrument. 1H NMR spectra
were recorded on spectrometers “Bruker AV400”, “Bruker DRX-500”, and “Bruker AV600”
operating frequency 400.16, 500.13, and 600.13 MHz, respectively. 13C NMR spectra were
recorded on a Bruker AV400 spectrometer with an operating frequency of 100.62 MHz.
The spectra were recorded at 20 ◦C using DMSO-d6 as a solvent. For synthetic purposes,
commercially available solvents and reagents (SigmaAldrich (St. Louis, MO, USA), Merck,
Acros Organics (Geel, Belgium) were used.

3.1. Synthesis

General procedure for the synthesis of methyl 2-(2-(2-(4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-
pyrrolo[3,2,1-ij]quinoline-1(2H)-ylidene)hydrazinyl)-4-oxothiazol-5(4H)-ylidene)acetates 3a-q.

The preparation of the target molecules 3a-q was carried out in two stages by analogy
with [58,81]. Initially, to the corresponding 5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinoline-1,2-
dione 1a-q (1 mmol) and thiosemicarbazide (1.1 mmol), methanol (10 mL) and 1–2 drops of
HCl was added. The resulting mixture was refluxed for 1 h. Upon completion of the reaction
(control by TLC, eluent CHCl3/MeOH 8:1), the volatile components were removed from the
reaction and the resulting residue containing intermediate hydrazinocarbothioamide 2 was
used in the second stage. In the second stage, hydrazinocarbothioamides 2a-q (1 mmol) in
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methanol (12 mL), DMAD (1.1 mmol), and acetic acid (3 mL) were refluxed for 30–60 min.
Upon completion of the reaction (monitored by the TLC, eluent CHCl3/MeOH 10:1) and
cooling of the reaction mixture, the precipitate that formed was filtered off, dried, and, if
necessary, recrystallized from a mixture of i-PrOH/AcOH (v/v 2:1).

Methyl (Z)-2-(4-oxo-2-(2-((Z)-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-
ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetate (3a). Orange solid; 0.33 g; yield 80%; m.p.
285–287 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 1.30–1.34 (6H, m, C6-CH3+C4-CH3);
1.56 (1H, t, J = 12.9 Hz, C5-H); 1.70 (3H, s, C4-CH3); 1.86 (1H, dd, J = 13.7 Hz, J = 4.5 Hz,
C5-H); 2.86–2.93 (1H, m, C6-H), 3.80 (3H, s, CH3O), 6.72 (1H, s, C=CH); 7.04 (1H, t, J = 7.6
Hz, CHarom); 7.37 (1H, d, J = 7.8 Hz, CHarom); 7.41 (1H, d, J = 7.4 Hz, CHarom); 13.35 (1H,
br.s, NH). 13C NMR, δ (ppm): 18.0, 24.0, 25.3, 26.6, 45.2, 52.5, 53.7, 115.3, 117.9, 119.2, 122.3,
125.3, 129.4, 139.9, 140.8, 142.1, 147.2, 156.4, 165.8. HPLC-HRMS-ESI, m/z ([M + H]+), calcd
for C20H20N4O4S + H+ 413.1279, found 413.1282.

Methyl (Z)-2-(2-(2-((Z)-8-methoxy-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3b). Brown solid; 0.34 g; yield
77%; m.p. 232–234 ◦C; 1H NMR (500.13 MHz, DMSO-d6), δ (ppm): 1.29–1.32 (6H, m,
C6-CH3+C4-CH3); 1.54 (1H, t, J = 12.9 Hz, C5-H); 1.68 (3H, s, C4-CH3); 1.82–1.87 (1H, m,
C5-H); 2.82–2.91 (1H, m, C6-H), 3.79 (6H, s, 2-CH3O), 6.73 (1H, s, C=CH); 6.92–6.93 (1H,
m, CHarom); 6.95–6.96 (1H, m, CHarom); 13.47 (1H, br.s, NH). 13C NMR, δ (ppm): 18.0,
23.8, 25.5, 26.5, 45.2, 52.5, 53.6, 55.7, 104.0, 112.0, 115.3, 115.6, 116.1, 118.3, 126.6, 134.9, 142.1,
147.5, 155.5, 156.3, 165.8. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C21H22N4O5S + H+

443.1385, found 443.1389.

Methyl (Z)-2-(2-(2-((Z)-8-chloro-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3c). Red solid; 0.31 g; yield
69%; m.p. 285–287 ◦C; 1H NMR (600.13 MHz, DMSO-d6), δ (ppm): 1.31–1.33 (6H, m,
C6-CH3+C4-CH3); 1.56 (1H, t, J = 12.9 Hz, C5-H); 1.69 (3H, s, C4-CH3); 1.87 (1H, dd, J = 13.7
Hz, J = 4.5 Hz, C5-H); 2.82–2.93 (1H, m, C6-H), 3.80 (3H, s, CH3O), 6.75 (1H, s, C=CH); 7.36
(1H, s, CHarom); 7.42 (1H, s, CHarom); 13.45 (1H, br.s, NH). 13C NMR, δ (ppm): 17.8, 24.1,
25.5, 26.4, 44.9, 52.5, 53.9, 115.5, 118.5, 119.5, 126.6, 127.5, 128.8, 139.5, 141.9, 146.1, 155.9,
165.7, 166.2. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C20H19ClN4O4S + H+ 447.0889,
found 447.0884.

Methyl (Z)-2-(2-(2-((Z)-8-bromo-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3d). Orange solid; 0.35 g; yield
71%; m.p. 185–187 ◦C; 1H NMR (600.13 MHz, DMSO-d6), δ (ppm): 1.30–1.33 (6H, m, C6-
CH3+C4-CH3); 1.55 (1H, t, J = 12.9 Hz, C5-H); 1.69 (3H, s, C4-CH3); 1.85 (1H, dd, J = 13.7 Hz,
J = 4.6 Hz, C5-H); 2.88–2.93 (1H, m, C6-H), 3.80 (3H, s, CH3O), 6.73 (1H, s, C=CH); 7.46 (1H,
s, CHarom); 7.52 (1H, s, CHarom); 13.45 (1H, br.s, NH). 13C NMR, δ (ppm): 17.8, 24.1, 25.5,
26.4, 44.9, 52.5, 53.9, 114.2, 115.5, 119.9, 121.2, 127.8, 131.4, 139.9, 141.8, 145.9, 155.8, 165.7,
166.1, 167.3. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C20H19BrN4O4S + H+ 491.0384,
found 491.0381.

Methyl 2-(2-(2-(8-iodo-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1(2H)-ylidene)
hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3e). Red solid; 0.41g; yield 76%; m.p. 175–177
◦C; A mixture of isomers at the ratio of 11:1. 1H NMR (400.16 MHz, DMSO-d6), δ (ppm):
1.27–1.32 (6H, m, C6-CH3+C4-CH3); 1.33* (3H, s, C4-CH3); 1.53 (1H, t, J = 13.0 Hz, C5-H);
1.67, 1.70* (3H, s, C4-CH3); 1.82, 1.82–1.86* (1H, dd, J = 13.7 Hz, J = 4.6 Hz, C5-H); 2.84–2.91
(1H, m, C6-H), 3.79, 3.80* (3H, s, CH3O), 6.71, 6.73* (1H, s, C=CH); 7.59 (1H, s, CHarom);
7.64 (1H, s, CHarom); 13.45 (1H, br.s, NH). 13C NMR, δ (ppm): 17.8, 24.1, 24.3*, 25.4, 26.4,
26.6*, 44.8*, 44.9, 52.6, 53.9, 85.3, 115.5, 115.8*, 120.2, 126.8, 128.1, 133.7, 137.2, 137.6*, 140.3,
141.9, 145.8, 155.6, 165.7, 166.0. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C20H19IN4O4S
+ H+ 539.0246, found 539.0242.

*Hereinafter, the symbol “*” denotes signals of the minor isomer.
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Methyl (Z)-2-(4-oxo-2-(2-((Z)-4,4,6,8,9-pentamethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetate (3f). Orange solid; 0.38 g; yield 86%; m.p.
273–275 ◦C; 1H NMR (500.13 MHz, DMSO-d6), δ (ppm): 1.28–1.32 (6H, m, C6-CH3+C4-CH3);
1.51 (1H, t, J = 12.9 Hz, C5-H); 1.69 (3H, s, C4-CH3); 1.80–1.85 (1H, m, C5-H); 2.24 (3H, s, C8-CH3);
2.47 (3H, s, C9-CH3); 2.78–2.86 (1H, m, C6-H), 3.79 (3H, s, 2-CH3O), 6.71 (1H, s, C=CH); 7.14
(1H, s, CHarom); 13.37 (1H, br.s, NH). 13C NMR, δ (ppm): 15.0, 18.2, 18.8, 23.9, 25.1, 26.7,
45.6, 52.4, 53.6, 115.5, 115.6, 122.2, 130.2, 130.8, 131.5, 132.8, 138.9, 142.1, 142.5, 156.7, 165.7.
HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C22H24N4O4S + H+ 441.1592, found 441.1590.

Methyl (Z)-2-(2-(2-(8-chloro-4,4,6,9-tetramethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3g). Orange solid; 0.37 g; yield
80%; m.p. 264–266 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 1.28–1.33 (6H, m,
C6-CH3+C4-CH3); 1.53 (1H, t, J = 12.9 Hz, C5-H); 1.69 (3H, s, C4-CH3); 1.85 (1H, dd, J = 13.7
Hz, J = 4.5 Hz, C5-H); 2.56 (3H, s, C9-CH3); 2.82–2.90 (1H, m, C6-H), 3.79 (3H, s, CH3O),
6.71 (1H, s, C=CH); 7.37 (1H, s, CHarom); 13.40 (1H, br.s, NH). 13C NMR, δ (ppm): 15.5,
18.0, 23.9, 25.2, 26.6, 45.0, 52.5, 53.8, 115.5, 116.9, 124.4, 127.7, 128.9, 131.1, 139.7, 142.1, 148.1,
155.9, 165.7, 166.5, 167.5. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C21H21ClN4O4S +
H+ 461.1046, found 461.1041.

Methyl (Z)-(2-(2-(2-(8-bromo-4,4,6,9-tetramethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3h). Orange solid; 0.42 g; yield
83%; m.p. 266–268 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 1.28–1.33 (6H, m,
C6-CH3+C4-CH3); 1.49–1.57 (1H, m, C5-H); 1.69 (3H, s, C4-CH3); 1.84 (1H, dd, J = 13.7
Hz, J = 4.6 Hz, C5-H); 2.57 (3H, s, C9-CH3); 2.83–2.90 (1H, m, C6-H), 3.79 (3H, s, CH3O),
6.69 (1H, s, C=CH); 7.50 (1H, s, CHarom); 13.46 (1H, br.s, NH). 13C NMR, δ (ppm): 18.0,
18.5, 23.9, 25.2, 26.5, 45.0, 52.5, 53.8, 115.5, 116.9, 118.4, 124.9, 132.0, 132.8, 140.3, 142.1,
147.8, 155.8, 165.7, 166.7. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C21H21BrN4O4S +
H+ 505.0541, found 505.0543.

Methyl (Z)-2-(2-(2-((Z)-6-(4-chlorophenyl)-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3i). Orange solid;
0.40 g; yield 76%; m.p. 165–167 ◦C; 1H NMR (600.13 MHz, DMSO-d6), δ (ppm): 0.75 (3H, s,
C6-CH3); 1.62 (3H, s, C4-CH3); 1.68 (3H, s, C4-CH3); 2.13 (1H, d, J = 14.4 Hz, C5-H); 2.47
(1H, d, J = 14.4 Hz, C5-H); 3.81 (3H, s, CH3O), 6.75 (1H, s, C=CH); 7.13 (2H, d, J = 8.4 Hz,
CHarom); 7.17 (1H, t, J = 7.6 Hz, CHarom); 7.32 (2H, d, J = 8.5 Hz, CHarom); 7.45 (1H, d,
J = 7.9 Hz, CHarom); 7.56 (1H, d, J = 7.4 Hz, CHarom); 13.43 (1H, br.s, NH). 13C NMR, δ
(ppm): 24.7, 27.6, 30.2, 39.1, 50.7, 52.5, 53.7, 115.3, 118.7, 120.0, 122.5, 125.5, 128.1, 128.5,
130.8, 131.1, 140.6, 142.1, 146.9, 147.0, 156.1, 165.8, 166.2. HPLC-HRMS-ESI, m/z ([M + H]+),
calcd for C26H23ClN4O4S + H+ 523.1203, found 523.1199.

Methyl 2-(2-(2-(6-(4-chlorophenyl)-4,4,6,8-tetramethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3j). Orange solid; 0.46 g; yield 86%;
m.p. 193–195 ◦C; a mixture of isomers at the ratio of 4:1. 1H NMR (400.16 MHz, DMSO-d6),
δ (ppm): 0.75, 0.77* (3H, s, C6-CH3); 1.59, 1.62* (3H, s, C4-CH3); 1.67 (3H, s, C4-CH3); 2.10
(1H, d, J = 14.5 Hz, C5-H); 2.33*, 2.37 (3H, s, C8-CH3); 2.43, 2.44* (1H, d, J = 14.4 Hz, C5-H);
3.81 (3H, s, CH3O), 6.73 (1H, s, C=CH); 7.10–7.14*, 7.11–7.15 (2H, m, CHarom); 7.26 (1H, s,
CHarom); 7.32 (2H, d, J = 8.7 Hz, CHarom); 7.37 (1H, s, CHarom); 13.33 (1H, br.s, NH). 13C
NMR, δ (ppm): 20.7, 20.8, 24.7, 24.7, 27.6, 27.8*, 30.2, 51.0, 52.4, 52.6, 53.5*, 53.6, 115.1, 115.4*,
118.7, 120.4, 125.2*, 125.4, 127.6*, 128.1, 128.6, 130.7, 131.3*, 131.4, 131.7, 138.5, 139.1*, 142.4,
147.0, 156.2, 162.0, 165.9, 166.5. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C27H25ClN4O4S +
H+ 537.1359, found 537.1360.

Methyl (Z)-2-(2-(2-((Z)-8-chloro-6-(4-chlorophenyl)-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3k). Orange solid; 0.44 g;
yield 79%; m.p. 210–212 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 0.75 (3H, s, C6-CH3);
1.60 (3H, s, C4-CH3); 1.69 (3H, s, C4-CH3); 2.11 (1H, d, J = 14.3 Hz, C5-H); 2.46 (1H, d, J = 14.4
Hz, C5-H); 3.81 (3H, s, CH3O), 6.75 (1H, s, C=CH); 7.14 (2H, d, J = 8.7 Hz, CHarom); 7.34 (2H,
d, J = 8.8 Hz, CHarom); 7.48–7.51 (2H, m, CHarom); 13.34 (1H, br.s, NH). 13C NMR, δ (ppm):
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24.7, 24.7, 27.5, 30.0, 50.7, 52.5, 52.6, 53.9, 115.6, 115.6, 119.4, 119.5, 120.4, 126.8, 127.6, 128.2, 128.5,
130.2, 130.2, 130.9, 139.5, 141.9, 146.0, 146.3, 155.7, 165.8, 166.2, 167.4. HPLC-HRMS-ESI, m/z ([M
+ H]+), calcd for C26H22Cl2N4O4S + H+ 557.0813, found 557.0810.

Methyl (Z)-2-(2-(2-((Z)-8-bromo-6-(4-chlorophenyl)-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3l). Orange solid; 0.49 g;
yield 81%; m.p. 208–210 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 0.75 (3H, s, C6-CH3);
1.60 (3H, s, C4-CH3); 1.69 (3H, s, C4-CH3); 2.11 (1H, d, J = 14.6 Hz, C5-H); 2.45 (1H, d, J = 14.4
Hz, C5-H); 3.81 (3H, s, CH3O), 6.75 (1H, s, C=CH); 7.14 (2H, d, J = 8.5 Hz, CHarom); 7.34 (2H,
d, J = 8.5 Hz, CHarom); 7.59–7.62 (2H, m, CHarom); 13.49 (1H, br.s, NH). 13C NMR, δ (ppm):
24.7, 24.8, 27.5, 29.9, 50.7, 52.5, 52.6, 53.9, 114.4, 115.6, 115.6, 120.8, 122.2, 128.2, 128.5, 130.9,
132.9, 139.9, 141.9, 145.8, 146.4, 155.6, 165.8, 166.2. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for
C26H22BrClN4O4S + H+ 601.0308, found 601.0303.

Methyl 2-(2-(2-(6-(4-chlorophenyl)-8-fluoro-4,4,6-trimethyl-2-oxo-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3m). Orange solid;
0.46 g; yield 85%; m.p. 181–183 ◦C; a mixture of isomers at the ratio of 3:1. 1H NMR (400.16
MHz, DMSO-d6), δ (ppm): 0.74, 0.76* (3H, s, C6-CH3); 1.60, 1.63* (3H, s, C4-CH3); 1.68 (3H,
s, C4-CH3); 2.11, 2.12* (1H, d, J = 14.5 Hz, C5-H); 2.46, 2.47* (1H, d, J = 14.5 Hz, C5-H); 3.81
(3H, s, CH3O), 6.72, 6.74* (1H, s, C=CH); 7.13*, 7.14 (2H, d, J = 8.7 Hz, CHarom); 7.30–7.37
(4H, m, CHarom); 13.49 (1H, br.s, NH). 13C NMR, δ (ppm): 24.6, 24.9*, 27.5, 27.7*, 30.1, 50.5*,
50.7, 52.5, 52.6*, 53.7*, 53.8, 107.0, 107.3, 113.9*, 114.2*, 115.5, 115.8*, 117.3, 117.5, 117.7*,
117.9*, 119.8, 119.9, 127.0*, 127.2, 127.3, 128.1, 128.5, 130.9, 137.0, 137.7*, 142.0, 146.4, 155.9,
156.9*, 157.3, 159.3*, 159.7, 161.7. 165.7, 166.2, 167.2. HPLC-HRMS-ESI, m/z ([M + H]+),
calcd for C26H22ClFN4O4S + H+ 541.1108, found 541.1111.

Methyl (Z)-2-(4-oxo-2-(2-((Z)-4,4,6-trimethyl-2-oxo-6-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-
1(2H)-ylidene)hydrazineyl)thiazol-5(4H)-ylidene)acetate (3n). Orange solid; 0.43 g; yield 88%; m.p.
232–234 ◦C; 1H NMR (500.13 MHz, DMSO-d6), δ (ppm): 0.72 (3H, s, C6-CH3); 1.61 (3H, s,
C4-CH3); 1.70 (3H, s, C4-CH3); 2.13 (1H, d, J = 14.3 Hz, C5-H); 2.46–2.51 (m, C5-H+H2O);
3.81 (3H, s, CH3O), 6.75 (1H, s, C=CH); 7.10 (2H, d, J = 7.5 Hz, CHarom); 7.15–7.19 (2H, m,
CHarom); 7.24–7.28 (2H, m, CHarom); 7.45 (1H, d, J = 7.7 Hz, CHarom); 7.56 (1H, d, J = 7.3 Hz,
CHarom); 13.34 (1H, br.s, NH). 13C NMR, δ (ppm): 24.6, 27.7, 30.4, 51.0, 52.5, 53.8, 115.4, 119.0,
119.9, 122.4, 122.7, 126.1, 126.5, 128.1, 129.4, 131.3, 140.7, 142.1, 147.7, 147.8, 156.2, 160.2, 165.8.
HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C26H24N4O4S + H+ 489.1592, found 489.1590.

Methyl (Z)-2-(2-(2-((Z)-8-chloro-4,4,6-trimethyl-2-oxo-6-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3o). Orange solid;
0.44 g; yield 84%; m.p. 165–167 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 0.72 (3H, s,
C6-CH3); 1.60 (3H, s, C4-CH3); 1.71 (3H, s, C4-CH3); 2.11 (1H, d, J = 14.4 Hz, C5-H); 2.45–2.51
(m, C5-H+H2O); 3.82 (3H, s, CH3O), 6.76 (1H, s, C=CH); 7.10 (2H, d, J = 7.6 Hz, CHarom);
7.17–7.21 (1H, m, CHarom); 7.26–7.31 (2H, m, CHarom); 7.48–7.51 (2H, m, CHarom); 13.35
(1H, br.s, NH). 13C NMR, δ (ppm): 24.6, 27/5, 30.0, 50.8, 52.5, 53.9, 115.5, 119.3, 120.3, 126.2,
126.5, 126.7, 128.2, 128.3, 130.3, 139.5, 147.3, 155.8, 165.8. HPLC-HRMS-ESI, m/z ([M + H]+),
calcd for C26H23ClN4O4S + H+ 523.1203, found 523.1198.

Methyl (Z)-2-(2-(2-((Z)-8-bromo-4,4,6-trimethyl-2-oxo-6-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3p). Orange solid;
0.38 g; yield 67%; m.p. 208–210 ◦C; 1H NMR (500.13 MHz, DMSO-d6), δ (ppm): 0.72 (3H, s,
C6-CH3); 1.60 (3H, s, C4-CH3); 1.71 (3H, s, C4-CH3); 2.11 (1H, d, J = 14.4 Hz, C5-H); 2.46
(1H, d, J = 14.4 Hz, C5-H); 3.82 (3H, s, CH3O), 6.76 (1H, s, C=CH); 7.10 (2H, d, J = 7.7 Hz,
CHarom); 7.19 (1H, t, J = 7.3 Hz, CHarom); 7.28 (2H, d, J = 7.7 Hz, CHarom); 7.60–7.62 (2H,
m, CHarom); 13.44 (1H, br.s, NH). 13C NMR, δ (ppm): 24.5, 24.6, 27.5, 30.0, 50.9, 52.5, 54.0,
114.3, 115.6, 115.6, 120.6, 122.0, 126.2, 126.5, 128.3, 128.7, 133.0, 139.9, 141.9, 145.9, 147.3,
155.6, 165.8. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C26H23BrN4O4S + H+ 567.0697,
found 567.0699.
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Methyl (Z)-2-(2-(2-((Z)-8-fluoro-4,4,6-trimethyl-2-oxo-6-phenyl-5,6-dihydro-4H-pyrrolo[3,2,1-
ij]quinolin-1(2H)-ylidene)hydrazineyl)-4-oxothiazol-5(4H)-ylidene)acetate (3q). Orange solid;
0.39 g; yield 77%; m.p. 171–173 ◦C; 1H NMR (400.16 MHz, DMSO-d6), δ (ppm): 0.69 (3H,
s, C6-CH3); 1.60 (3H, s, C4-CH3); 1.68 (3H, s, C4-CH3); 2.10 (1H, d, J = 14.3 Hz, C5-H);
2.44–2.51 (m, C5-H+H2O); 3.80 (3H, s, CH3O), 6.72 (1H, s, C=CH); 7.11 (2H, d, J = 7.8 Hz,
CHarom); 7.18 (1H, t, J = 7.3 Hz, CHarom); 7.24–7.36 (4H, m, CHarom); 13.43 (1H, br.s, NH).
13C NMR, δ (ppm): 24.5, 27.6, 30.2, 50.8, 52.5, 53.8, 106.9, 107.1, 115.5, 117.5, 117.7, 119.6,
119.7, 126.2, 126.4, 127.8, 127.9, 128.2, 137.1, 141.9, 146.6, 147.3, 155.9, 157.3, 159.7, 165.7,
166.1, 167.1. HPLC-HRMS-ESI, m/z ([M + H]+), calcd for C26H23FN4O4S + H+ 507.1498,
found 507.1502.

3.2. In Vitro Assays

The inhibition of the blood clotting factors Xa and XIa and thrombin by the synthe-
sized compounds 3a-q was studied by measuring the kinetics of hydrolysis of substrates
specific for each of these enzymes in the presence of the compounds. A specific low-
molecular-weight chromogenic substrate S2765 (Z-D-Arg-Gly-Arg-pNA·2HCl) was used in
the case of factor Xa, substrate S2366 (pyroGlu-Pro-ArgpNA·HCl) (both from Chromogenix,
West Chester, PA, USA) was used for factor XIa, and Tos-Gly-Pro-Arg-pNa was used for
thrombin.

A buffer containing 140 mM NaCl, 20 mM HEPES, and 0.1% PEG 6000 (pH 8.0) was
placed in the wells of a 96-well plate, followed by the addition of factor Xa or XIa (final
concentration 5 nmol·L−1), or thrombin (final concentration 2.5 nmol·L−1) the substrate S2765
or S2366 (final concentration 200 µmol·L−1), or Tos-Gly-Pro-Arg-pNa (final concentration
100 µmol·L−1) and a solution of the test compound in DMSO (final concentration 30 µmol·L−1,
the DMSO content in the well was no more than 2%). The kinetics of the formation of
p-nitroaniline was measured using an Eppendorf PlateReader AF2200 microplate reader
(Eppendorf, Hamburg, Germany) by the absorption of light with a wavelength of 405 nm. The
initial rate of substrate degradation was determined from the initial slope of the 4-nitroaniline
formation curve. The rate of substrate degradation by the enzyme in the presence of the
inhibitor was expressed as a percentage relative to the rate of substrate degradation in the
absence of the inhibitor. The results are presented in Tables 1 and 2. The data obtained were
processed using the GraphPad Prism 8.0.1 (244) and OriginPro 8 software.

3.3. Molecular Docking Studies

To obtain insights about the binding modes, we executed docking for some of identified
inhibitors into an active site of FXa and FXIa using an in-house SOL docking program [90].
It applies a genetic algorithm for exploring the conformational space of a ligand in the frame
of the rigid protein approximation. The SOL conducts grid-based docking, where a series
of grids is generated through the assistance of an auxiliary program known as a SOLGRID.
To be consistent with the SOLGRID, the input protein structure should contain atom types
parametrized in MMFF94 [91] (in-house version slightly reduced to types relevant for a
drug-like space). This is mainly since the SOL scoring function is based on this force field.
The function represents a linear combination of weighted terms that account for different
types of interactions occurring between a ligand and a protein. They include electrostatic
and van der Waals interactions inferred from MMFF94 force field, as well as the desolvation
energy term calculated using a simplified generalized Born implicit solvent model [92] and
the entropy term that is estimated as the reduction in torsional degrees of freedom for the
ligand. Similar to other widely used docking programs with stochastic sampling methods,
upon completion of the docking process the SOL performs ranking and clustering of the
docking solutions to organize the identified ligand poses based on their respective scores
and conformations. This analysis helps to evaluate the reliability of the conformational
space exploration under the specific genetic algorithm parameters chosen for the ligand.
The use of the SOL for virtual screening for identification of active molecules for different
targets can be found in [58,93–96].
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All compounds subjected to docking were prepared using Marvin pKa protonation
plugin [97] (to generate protomers relevant for pH 7.4) and Open Babel [98] (to generate
conformers). The protein structure of FXa was taken from the 3CEN complex and the 4CRC
complex was used to prepare FXIa protein. The protonation of both protein structures
as well as atom parametrization was carried out in the in-house preparation program,
Aplite. Validation of the prepared protein models implied docking of the corresponding
co-crystalized ligand. For both FXa and FXIa, the reproduction of co-crystallized ligand
conformation with an RMSD value less than 1.5 Å was obtained.

4. Conclusions

Seventeen new hybrid molecules—methyl 2-(2-(2-(4,4,6-trimethyl-2-oxo-5,6-dihydro-
4H-pyrrolo[3,2,1-ij]quinoline-1(2H)-ylidene)hydrazinyl)-4-oxothiazol-5(4H)-ylidene)acetates
were synthesized and evaluated for their inhibitory activity toward FXa and FXIa. The
synthesis was performed by a two-step approach, where the corresponding hydrazinocar-
bothioamides were obtained by condensation of pyrrolo[3,2,1-ij]quinoline-1,2-diones with
thiosemicarbazide, followed by a heterocyclization reaction with DMAD, which led to the
target structures. The in vitro experimental data on inhibitory activity against factors Xa
and XIa demonstrate the high potential of these compounds to be dual inhibitors. The
rather low values of the inhibitory activity of the described compounds against thrombin
determine wide possibilities for their targeted optimization for the further search for new
generation anticoagulants with a reduced risk of possible bleeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29020373/s1. The copies of 1H- and 13C-NMR spectra
and data of HPLC-MS-ESI analysis for all new synthesized compounds have been submitted along
with the manuscript. The dependence of inhibition of Factor Xa- and XIa-induced chromogenic
substrate hydrolysis on the concentration of compounds 3b-c, e-f, k-l, n-p is also presented. Supple-
mentary Materials containing 1H and 13C NMR, data of HPLC-MS-ESI analysis for new synthesized
compounds (Figures S1–S51), the dependence of inhibition of Factor Xa- and XIa-induced chro-
mogenic substrate hydrolysis on the concentration of compounds (Figures S52–S69) and LCMS
analysis of the reaction mass (Figure S70).
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