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Abstract: Ginseng Radix et Rhizoma Rubra (Panax ginseng C.A. Mey, Hongshen, in Chinese) and
Ophiopogonis Radix (Ophiopogon japonicus (L.f) Ker-Gawl., Maidong, in Chinese) are traditional
Chinese herbal pairs, which were clinically employed to enhance the immune system of cancer
patients. This study employed the pharmacokinetic and pharmacodynamic (PK–PD) spectrum-effect
association model to investigate the antitumor active substances of P. ginseng and O. japonicus (PG–OJ).
The metabolic processes of 20 major bioactive components were analyzed using Ultra-Performance
Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (UPLC–MS/MS) in the lung tissue
of tumor-bearing mice treated with PG–OJ. The ELISA method was employed to detect the levels
of TGF-β1, TNF-α, and IFN-γ in the lung tissue of mice at various time points, and to analyze their
changes after drug administration. The results showed that all components presented a multiple peaks
absorption pattern within 0.083 to 24 h post-drug administration. The tumor inhibition rate of tumor
and repair rate of IFN-γ, TNF-α, and TGF-β1 all increased, indicating a positive therapeutic effect
of PG–OJ on A549 tumor-bearing mice. Finally, a PK–PD model based on the GBDT algorithm was
developed for the first time to speculate that Methylophiopogonanone A, Methylophiopogonanone
B, Ginsenoside Rb1, and Notoginsenoside R1 are the main active components in PG–OJ for lung
cancer treatment.

Keywords: Panax ginseng–Ophiopogon japonicus; UPLC–MS/MS; lung cancer; PK–PD modeling; main
active substances

1. Introduction

Among the various causes of cancer-related deaths, lung cancer globally holds a
leading position in incidence and mortality rates, posing an inevitable threat to human
health [1]. In the field of cancer treatment, a shift from relying on external interventions
like surgery, chemotherapy, or radiotherapy to activating the human immune system is cru-
cial [2]. Traditional Chinese medicine (TCM) has gained attention for its antitumor effects
and ability to restore immune responses [3,4]. TCM’s multi-component composition often
results in synergistic effects on various diseases, aligning with the principles of systemic
immunity. Nowadays, research on these drugs has gradually gained attention in a modern
context. Panax ginseng, known as Hongshen in Chinese, is a premium herb renowned
for its capacity to invigorate qi and strengthen the spleen and lungs [5,6]. Ophiopogon
japonicus, a long-used TCM plant for yin nourishment, bodily-fluid production, and lung
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disease treatment [7], has been combined with P. ginseng to develop a Shenmai Injection, a
representative herbal formulation used clinically to enhance immune function in cancer
patients [8]. Recent research focuses on the chemical composition, pharmacodynamics,
and therapeutic mechanisms of PG–OJ [9–12]. Although the antitumor effect of PG–OJ has
been preliminarily studied, a systematic investigation of its main active substances remains
inadequate. Our previous research demonstrated that the PG–OJ extract (PG:OJ = 1:1)
can effectively inhibit the proliferation and migration activity of A549 cells. Furthermore,
we explored the prototype chemical composition of PG–OJ extract, discovering a higher
content of rare saponins compared to either PG or OJ alone.

The complexity of PG–OJ components poses a significant challenge in elucidating
their functional targets and underlying mechanisms. Therefore, a systematic evaluation
of the multi-component effects is necessary to investigate the efficacy of PG–OJ. The PK–
PD-spectrum effect correlation model integrates pharmacokinetic and pharmacodynamic
blood/tissue concentration, time, and efficacy data, allowing for the interpretation of
dynamic changes and synergistic effects within the body [13,14]. A Gradient Boosting
Decision Tree (GBDT), a machine-learning algorithm suitable for “non-linear, small sample”
prediction, is particularly suitable for analyzing effective components in traditional Chinese
medicine [15,16]. The LightGBM model, derived from the GBDT algorithm, demonstrates
an efficient capability in identifying crucial antitumor-effect-related peaks. With PK–PD
correlation at its core, the LightGBM model can facilitate data analysis and relationship
description between complex effective components in traditional Chinese medicine and
biological effects. LightGBM can be employed for the correlation analysis of PK–PD
studies, aiming to unravel the intricate relationships between complex traditional Chinese
medicine’s active ingredients and their corresponding biological effects.

Our study aims to investigate the metabolic processes of major bioactive components
in the lung tissue of tumor-bearing mice treated with PG–OJ. Additionally, we will examine
PG–OJ’s pharmacological effects on tumor growth and cytokines in mouse lung tissues
during antitumor treatment. By utilizing the GBDT algorithm to establish a PK–PD model,
this study elucidates the pharmacological basis of PG–OJ for treating non-small-cell lung
cancer (NSCLC) and provides a new research foundation for future investigations into
PG–OJ’s pharmacological mechanisms.

2. Results
2.1. Method Validation
2.1.1. Specificity

In our previous study, 69 compounds were identified in PG–OJ using UPLC–Q–
Exactive–Orbitrap–MS for comprehensive chemical characterization. However, due to
varying bioavailability, not all compounds could be thoroughly detected in lung tissue
samples from tumor-bearing mice. In this study, based on UPLC–MS/MS analysis, we
successfully identified and selected 20 prototype components for further pharmacokinetic
studies. These prototype components have shown therapeutic potential in inhibiting cancer
cells [17,18].

As shown in Figure 1, we compared the chromatograms of blank lung tissues of
mice, lung tissue samples containing standard working fluid, and lung tissue samples
collected 0.083 h post-administration of PG–OJ. There was no significant interference
with endogenous substances within the analyte-retention time range, indicating that the
established method was suitably specific.

2.1.2. Linearity and Lower Limit of Quantification (LLOQ)

The calibration curves, correlation coefficients (R2), linear ranges, and lower limits of
quantification (LLOQ) for analytes in lung tissue of mice were presented in Table 1. The
correlation coefficients R2 are all greater than 0.9970, indicating a good linear relationship.
The LLOQ for each analyte was determined by calculating the signal-to-noise ratio (S/N),
which needed to be greater than 10. It is important to highlight that the lower limits of



Molecules 2024, 29, 334 3 of 19

quantification for each component ranged from 0.005 to 50 ng/g, demonstrating the high
sensitivity of the method.
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Figure 1. Extracted ion chromatogram of the 20 compounds. (A) Blank lung tissue samples; (B) lung 
tissue samples collected at 0.083 h after administration of PG–OJ; (C) blank lung tissue spiked with 
analytes. (1: Notoginsenoside R1, 2: Ginsenoside Re, 3: Ginsenoside Rg1, 4: 24(R)-pseudoginsenoside 
F11, 5: Ginsenoside Rb1, 6: Ginsenoside Rc, 7: Ginsenoside Rf, 8: Ginsenoside Rb2, 9: Ginsenoside 
Rb3, 10: Pseudoginsenoside RT5, 11: Ginsenoside Ro, 12: Ginsenoside Rg2, 13: Ginsenoside F1, 14: 
Ginsenoside Rd, 15: Ginsenoside Rh1, 16: Ginsenoside Rg5, 17: Ginsenoside Rg3, 18: Ginsenoside F2, 
19: Methylophiopogon flavanone A, 20: Methylophiopogon flavanone B). 
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Ginsenoside Rb2 y = −0.00011 + 0.000081 × x 0.9992 0.50–500 0.50 
Ginsenoside Rb3 y = 0.00016 + 0.000037 × x 0.9993 0.50–500 0.50 
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Ginsenoside Rd y = −0.00020 + 0.00016 × x 0.9997 0.25–500 0.25 

Pseudoginsenoside RT5 y = 0.0052 + 0.00017 × x 0.9990 0.50–500 0.50 
24(R)-pseudoginsenoside F11 y = 0.000044 + 0.00014 × x 0.9991 0.25–500 0.25 

Figure 1. Extracted ion chromatogram of the 20 compounds. (A) Blank lung tissue samples; (B) lung
tissue samples collected at 0.083 h after administration of PG–OJ; (C) blank lung tissue spiked with
analytes. (1: Notoginsenoside R1, 2: Ginsenoside Re, 3: Ginsenoside Rg1, 4: 24(R)-pseudoginsenoside
F11, 5: Ginsenoside Rb1, 6: Ginsenoside Rc, 7: Ginsenoside Rf, 8: Ginsenoside Rb2, 9: Ginsenoside
Rb3, 10: Pseudoginsenoside RT5, 11: Ginsenoside Ro, 12: Ginsenoside Rg2, 13: Ginsenoside F1, 14:
Ginsenoside Rd, 15: Ginsenoside Rh1, 16: Ginsenoside Rg5, 17: Ginsenoside Rg3, 18: Ginsenoside F2,
19: Methylophiopogon flavanone A, 20: Methylophiopogon flavanone B).

Table 1. The regression equation and linear range for 20 compounds from PG–OJ.

Compounds Regression Equation R2 Linear Range (ng/g) LLOQ (ng/g)

Ginsenoside Rg1 y = −0.000025 + 0.00015 × x 0.9996 0.10–500 0.10
Ginsenoside Re y = −0.0000039 + 0.0000078 × x 0.9995 0.10–500 0.10
Ginsenoside Ro y = −0.00015 + 0.00012 × x 0.9996 0.25–500 0.25
Ginsenoside Rh1 y = 0.000060 + 0.00011 × x 0.9996 0.25–500 0.25
Ginsenoside F1 y = 0.0000053 + 0.00015 × x 0.9974 0.25–500 0.25
Ginsenoside F2 y = 0.000012 + 0.000052 × x 0.9993 0.50–500 0.50

Notoginsenoside R1 y = 0.0000060 + 0.00000026 × x 0.9990 0.005–500 0.005
Ginsenoside Rg5 y = −0.00042 + 0.000081 × x 0.9997 50–10,000 50.00
Ginsenoside Rg2 y = −0.0021 + 0.00065 × x 0.9998 0.25–500 0.25
Ginsenoside Rg3 y = 0.000012 + 0.00014 × x 0.9992 0.25–500 0.25
Ginsenoside Rf y = −0.000062 + 0.000029 × x 0.9990 0.10–500 0.10

Ginsenoside Rb1 y = −0.000038 + 0.000068 × x 0.9997 0.10–500 0.10
Ginsenoside Rb2 y = −0.00011 + 0.000081 × x 0.9992 0.50–500 0.50
Ginsenoside Rb3 y = 0.00016 + 0.000037 × x 0.9993 0.50–500 0.50
Ginsenoside Rc y = −0.00022 + 0.00014 × x 0.9998 0.50–500 0.50
Ginsenoside Rd y = −0.00020 + 0.00016 × x 0.9997 0.25–500 0.25

Pseudoginsenoside RT5 y = 0.0052 + 0.00017 × x 0.9990 0.50–500 0.50
24(R)-pseudoginsenoside F11 y = 0.000044 + 0.00014 × x 0.9991 0.25–500 0.25

Methylophiopogon flavanone A y = −0.00034 + 0.00021 × x 0.9997 0.25–500 0.25
Methylophiopogon flavanone B y = −0.000089 + 0.00016 × x 0.9994 0.10–500 0.10

2.1.3. Precision and Accuracy

Table 2 summarizes the inter-day and intra-day accuracy and precision of 20 com-
pounds at low, medium, and high concentrations. The precision range for all analytes
ranges from 1.39% to 14.73%, and the accuracy range is from −14.86% to 13.01%. All
values are within the acceptable range for biological-sample analysis, with a relative error
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(RE) < ±15% and a relative standard deviation (RSD) < 15%. The results indicate that the
adopted method can be effectively applied to the quantification process of the 20 analytes,
with high levels of accuracy and precision.

Table 2. The precision and accuracy of 20 compounds at low, medium, and high concentrations
during inter-day and intra-day tests (n = 6).

Compounds
Nominal

Concentration (ng/g)
Intra-Day Inter-Day

Precision (RSD%) Accuracy (RE%) Precision (RSD%) Accuracy (RE%)

Ginsenoside Rg1

5 3.67% −0.58% 1.97% 2.68%
50 3.71% −0.31% 3.61% 1.03%
500 8.28% −4.01% 3.02% −0.18%

Ginsenoside Re
5 5.13% −0.10% 13.22% 10.71%

50 12.09% −14.43% 8.16% −14.86%
500 3.31% −9.34% 11.62% −4.12%

Ginsenoside Ro
5 7.50% 3.64% 12.85% 8.34%

50 7.81% 4.45% 8.31% 2.31%
500 12.85% −1.01% 7.09% −3.14%

Ginsenoside Rh1

5 4.94% 8.66% 5.90% 10.26%
50 11.78% −5.02% 8.44% −1.37%
500 11.26% 1.14% 10.67% −0.60%

Ginsenoside F1
5 3.31% 3.81% 3.51% 7.55%

50 4.44% 0.95% 3.88% 0.50%
500 10.39% −3.38% 5.70% −1.42%

Ginsenoside F2

5 1.57% 0.05% 3.18% −1.82%
50 5.54% 1.29% 4.95% 2.65%
500 10.39% −2.04% 3.84% 1.04%

Notoginsenoside
R1

5 10.28% 11.96% 6.94% 6.76%
50 14.25% 9.24% 8.37% 10.25%
500 5.78% 13.01% 4.87% −9.83%

Ginsenoside Rg5

5 9.10% −1.55% 14.73% −5.73%
50 6.14% −3.75% 7.70% −3.68%
500 11.80% −7.95% 4.94% −0.09%

Ginsenoside Rg2

5 9.57% 11.69% 11.68% 12.11%
50 8.30% −3.65% 8.81% −5.70%
500 10.55% 9.49% 10.44% 6.54%

Ginsenoside Rg3

5 3.25% 6.73% 3.57% 5.42%
50 3.24% 0.66% 4.73% 2.50%
500 8.82% −4.47% 2.50% 0.29%

Ginsenoside Rf
5 3.67% −7.00% 8.84% −4.19%

50 7.33% 5.65% 9.05% 7.85%
500 8.90% −4.17% 4.00% −3.07%

Ginsenoside Rb1

5 8.19% 5.68% 5.20% 10.27%
50 9.10% 7.12% 7.53% 5.81%
500 8.80% −4.68% 6.24% −2.28%

Ginsenoside Rb2

5 4.88% 0.84% 6.15% 8.20%
50 8.44% 4.22% 8.43% 4.30%
500 8.86% −1.16% 5.00% −2.66%

Ginsenoside Rb3

5 8.90% −7.38% 11.52% −7.37%
50 7.04% −2.91% 5.69% 0.04%
500 13.20% −5.55% 5.89% 2.28%
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Table 2. Cont.

Compounds
Nominal

Concentration (ng/g)
Intra-Day Inter-Day

Precision (RSD%) Accuracy (RE%) Precision (RSD%) Accuracy (RE%)

Ginsenoside Rc
5 4.14% 1.24% 9.36% −5.75%

50 10.62% −8.09% 7.65% −3.45%
500 13.66% −2.49% 11.64% 0.21%

Ginsenoside Rd
5 9.37% 5.41% 1.87% 11.06%

50 3.58% 1.80% 5.40% 4.06%
500 7.69% −1.63% 3.51% −0.32%

Pseudoginsenoside
RT5

5 1.93% 0.94% 1.39% 2.94%
50 3.52% 2.14% 8.05% 6.65%
500 8.09% −2.43% 3.09% 0.94%

24(R)-
pseudoginsenoside

F11

5 3.25% 4.81% 3.48% 4.74%
50 3.22% 1.09% 4.88% 3.17%
500 7.10% −4.07% 1.89% −0.19%

Methylophiopogon
flavanone A

5 4.06% 9.29% 3.58% 9.21%
50 3.60% −1.90% 6.43% 0.56%
500 8.39% −3.36% 4.25% −0.65%

Methylophiopogon
flavanone B

5 3.59% 5.19% 6.61% 2.75%
50 4.09% −3.82% 6.37% −1.21%
500 8.78% −2.83% 5.05% 0.27%

2.1.4. Extraction Recovery and Matrix Effect

The extraction recovery rates and matrix effects for 20 analytes across three different
QC concentration levels were presented (Table 3). All these values fell within an acceptable
range (87.71% to 109.20% and 86.80% to 108.68%), suggesting that the extraction process is
both stable and effective. Furthermore, no significant ion suppression was observed.

Table 3. Extraction recoveries and matrix effects for 20 compounds at high, medium, and low
concentrations (n = 6).

Compounds
Nominal

Concentration (ng/g)
Extraction Recovery Matrix Effect

Mean ± SD (%) RSD (%) Mean ± SD (%) RSD (%)

Ginsenoside Rg1

5 102.54 ± 5.35 5.22 91.20 ± 5.23 5.74
50 99.25 ± 3.72 3.74 97.24 ± 6.01 6.18
500 101.85 ± 1.70 1.67 105.54 ± 5.51 5.22

Ginsenoside Re
5 102.03 ± 4.98 4.88 105.94 ± 3.07 2.90

50 99.28 ± 4.54 4.58 99.95 ± 5.12 5.12
500 103.82 ± 3.06 2.95 101.40 ± 3.87 3.82

Ginsenoside Ro
5 109.20 ± 8.40 7.70 95.81 ± 3.90 4.07

50 92.95 ± 2.63 2.83 90.57 ± 5.89 6.50
500 105.26 ± 2.48 2.36 100.70 ± 7.99 7.93

Ginsenoside Rh1

5 100.56 ± 6.15 6.12 107.55 ± 0.68 0.63
50 98.56 ± 3.36 3.41 95.99 ± 4.47 4.65
500 104.53 ± 1.30 1.24 103.87 ± 3.29 3.17

Ginsenoside F1
5 100.83 ± 4.76 4.72 103.12 ± 0.50 0.49

50 99.35 ± 3.47 3.49 94.52 ± 4.62 4.88
500 103.32 ± 0.61 0.59 101.06 ± 5.51 5.15

Ginsenoside F2

5 101.19 ± 4.58 4.52 103.50 ± 2.67 2.58
50 99.81 ± 8.81 8.83 102.04 ± 6.75 6.61
500 102.48 ± 0.47 0.46 101.14 ± 5.17 5.11
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Table 3. Cont.

Compounds
Nominal

Concentration (ng/g)
Extraction Recovery Matrix Effect

Mean ± SD (%) RSD (%) Mean ± SD (%) RSD (%)

Notoginsenoside
R1

5 106.68 ± 5.63 5.28 108.68 ± 1.39 1.28
50 105.11 ± 6.07 5.77 104.17 ± 4.13 3.96
500 90.53 ± 4.55 5.03 104.16 ± 2.47 2.37

Ginsenoside Rg5

5 88.79 ± 9.64 10.86 94.04 ± 4.37 4.65
50 102.14 ± 9.37 9.17 91.92 ± 9.32 10.14
500 105.76 ± 4.70 4.44 88.85 ± 8.56 9.63

Ginsenoside Rg2

5 101.42 ± 6.48 6.39 87.43 ± 3.31 3.79
50 102.51 ± 2.42 2.36 96.56 ± 5.11 5.29
500 101.75 ± 6.75 6.64 100.94 ± 3.36 3.33

Ginsenoside Rg3

5 103.19 ± 5.52 5.35 100.84 ± 9.24 9.16
50 101.82 ± 1.71 1.68 99.60 ± 4.06 4.08
500 101.00 ± 2.96 2.93 105.45 ± 5.09 4.82

Ginsenoside Rf
5 101.09 ± 1.45 1.43 106.77 ± 1.76 1.65

50 96.94 ± 1.10 1.13 94.08 ± 4.43 4.71
500 93.95 ± 0.50 0.53 95.49 ± 8.33 8.73

Ginsenoside Rb1

5 97.98 ± 1.49 1.53 104.16 ± 10.06 9.66
50 94.94 ± 3.94 4.15 91.29 ± 8.92 9.78
500 94.63 ± 1.60 1.69 95.02 ± 3.24 3.41

Ginsenoside Rb2

5 106.83 ± 10.37 9.71 91.96 ± 3.36 3.65
50 90.20 ± 0.95 1.06 86.80 ± 3.97 4.57
500 99.93 ± 0.21 0.21 90.85 ± 1.33 1.46

Ginsenoside Rb3

5 100.26 ± 0.12 0.12 103.25 ± 1.03 1.00
50 97.90 ± 2.76 2.82 91.06 ± 9.65 9.60
500 105.68 ± 4.45 4.21 101.07 ± 0.79 0.78

Ginsenoside Rc
5 106.00 ± 9.49 8.96 103.24 ± 2.19 2.12

50 105.32 ± 5.84 5.54 97.35 ± 2.63 2.70
500 103.82 ± 3.06 2.95 89.15 ± 3.08 3.45

Ginsenoside Rd
5 94.57 ± 2.18 2.31 101.35 ± 1.99 1.97

50 91.97 ± 9.20 10.01 90.50 ± 11.17 12.34
500 87.71 ± 1.24 1.42 103.30 ± 3.12 3.02

Pseudoginsenoside
RT5

5 105.81 ± 11.39 10.76 88.10 ± 1.22 1.38
50 99.32 ± 0.46 0.46 97.33 ± 2.49 2.56
500 105.63 ± 7.06 6.68 92.97 ± 8.64 9.29

24(R)-
pseudoginsenoside

F11

5 100.44 ± 4.78 4.66 104.37 ± 2.60 2.49
50 100.94 ± 2.78 2.75 98.85 ± 5.13 5.19
500 96.92 ± 5.55 5.72 99.30 ± 6.58 6.63

Methylophiopogon
flavanone A

5 101.56 ± 1.45 1.43 91.33 ± 1.39 1.52
50 105.05 ± 7.10 6.76 99.85 ± 1.44 1.44
500 88.99 ± 0.91 1.02 93.11 ± 3.34 3.59

Methylophiopogon
flavanone B

5 99.45 ± 3.02 3.04 98.99 ± 0.95 0.96
50 105.41 ± 22.49 2.36 103.36 ± 5.31 5.14
500 97.94 ± 3.04 3.11 87.71 ± 6.06 6.91

2.1.5. Stability

Under the following conditions, the 20 analytes in lung tissue remain stable: short-term
stability (4 ◦C for 12 h), freeze–thaw-cycle stability (−80 ◦C with three repeated freeze–thaw
cycles), and long-term stability (−20 ◦C with 20 days of freeze–thaw). The respective RSD%
values for short-term stability, freeze–thaw-cycle stability, and long-term stability are 2.11%
to 18.90%, 0.62% to 19.09%, and 1.57% to 18.75%, respectively. The details are presented in
Table 4.



Molecules 2024, 29, 334 7 of 19

Table 4. Stability of 20 compounds in lung tissue under different conditions (n = 6).

Compounds
Nominal

Concentration (ng/g)
Short Term Three Freeze–Thaw Cycles Long Term

RSD (%) RE (%) RSD (%) RE (%) RSD (%) RE (%)

Ginsenoside Rg1

5 3.74% 0.49% 10.56% 11.24% 6.12% −1.70%
50 3.94% 1.34% 7.41% 13.01% 4.32% 17.42%

500 10.80% 0.20% 5.53% 14.49% 5.64% 13.31%

Ginsenoside Re
5 11.05% 4.81% 10.92% −1.98% 7.39% −19.79%
50 12.72% −13.15% 0.62% 10.81% 2.00% 14.21%

500 11.79% 6.17% 16.02% 11.65% 18.75% 13.94%

Ginsenoside Ro
5 8.54% 8.62% 11.19% 16.33% 10.47% 8.22%
50 7.84% 6.89% 10.41% 10.39% 12.03% 13.22%

500 12.82% 0.28% 11.66% 15.72% 10.51% 11.59%

Ginsenoside Rh1

5 5.55% 11.68% 6.01% 15.36% 4.53% −1.41%
50 12.06% −3.24% 11.28% 18.32% 15.41% 18.76%

500 8.80% −0.38% 2.83% 10.57% 5.48% 17.88%

Ginsenoside F1
5 4.17% 6.91% 9.85% 18.33% 10.67% −4.70%
50 3.83% 2.39% 9.37% 16.72% 7.36% 19.31%

500 11.39% 0.31% 6.12% 9.29% 9.18% 12.65%

Ginsenoside F2
5 2.23% −1.67% 7.94% 7.15% 4.74% −2.19%
50 5.94% 4.33% 6.64% 13.85% 7.13% 15.28%

500 10.74% 0.36% 3.29% −1.50% 9.81% 3.40%

Notoginsenoside
R1

5 10.26% 11.06% 8.95% 14.20% 2.96% 4.89%
50 8.53% 6.89% 2.12% 6.22% 2.71% 8.60%

500 11.57% −3.93% 16.60% −5.12% 13.87% −7.16%

Ginsenoside Rg5

5 12.61% −9.35% 19.09% 19.21% 7.46% 15.87%
50 8.07% −7.55% 9.95% 9.55% 10.76% −6.36%

500 10.82% 5.42% 5.80% 16.06% 6.71% 14.05%

Ginsenoside Rg2

5 3.25% 11.46% 16.98% −18.16% 5.66% −2.28%
50 7.42% 0.76% 16.66% 2.30% 16.66% 2.30%

500 14.04% 2.58% 4.29% −3.34% 18.65% −17.08%

Ginsenoside Rg3

5 2.48% 5.07% 11.40% 17.95% 4.71% 15.74%
50 3.60% 2.96% 3.46% 0.71% 3.46% 0.71%

500 11.75% −0.04% 2.95% 17.81% 3.75% 18.93%

Ginsenoside Rf
5 3.27% −7.44% 19.17% 17.80% 13.23% −1.25%
50 6.34% 11.93% 9.94% 18.33% 9.94% 18.33%

500 11.26% 2.59% 5.47% 9.47% 5.14% 7.20%

Ginsenoside Rb1

5 7.45% 3.93% 17.12% 3.07% 5.97% −14.73%
50 7.74% 12.32% 7.54% 17.02% 7.43% 16.77%

500 11.36% 2.98% 16.29% 13.24% 2.37% 19.79%

Ginsenoside Rb2

5 7.03% 5.17% 17.85% 12.19% 2.61% 19.17%
50 8.15% 8.58% 7.01% 18.46% 6.44% 18.92%

500 10.19% 0.07% 4.70% 17.45% 7.06% 19.95%

Ginsenoside Rb3

5 7.80% −10.06% 5.93% 12.30% 2.66% −6.18%
50 8.50% −1.19% 6.94% −7.33% 5.26% −5.61%

500 10.68% 4.01% 2.62% 14.85% 8.13% 18.86%

Ginsenoside Rc
5 7.90% −5.12% 14.41% −9.09% 4.15% −13.72%
50 11.44% −9.49% 7.40% 1.40% 7.40% 1.40%

500 18.90% −0.11% 9.88% −1.45% 8.64% 0.82%

Ginsenoside Rd
5 7.45% 7.45% 8.21% 12.09% 4.08% 4.40%
50 4.68% 5.45% 7.52% −12.02% 8.34% −10.53%

500 8.84% −0.73% 2.55% 14.57% 1.57% 15.40%
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Table 4. Cont.

Compounds
Nominal

Concentration (ng/g)
Short Term Three Freeze–Thaw Cycles Long Term

RSD (%) RE (%) RSD (%) RE (%) RSD (%) RE (%)

Pseudogin
senoside RT5

5 2.11% 1.84% 13.25% 8.07% 2.11% 2.57%
50 6.97% 8.24% 5.46% 2.66% 17.16% 19.04%

500 8.85% −1.16% 2.06% 12.89% 2.37% 13.24%

24(R)-pseudogin
senoside F11

5 2.27% 3.05% 11.45% 9.60% 4.73% 7.63%
50 3.64% 3.81% 5.78% 8.32% 5.78% 8.32%

500 10.45% 0.06% 2.31% 17.38% 2.26% 17.29%

Methyl
ophiopogon
flavanone A

5 3.20% 8.50% 18.33% −10.97% 3.26% −17.92%
50 6.69% 0.25% 6.76% −14.39% 7.63% −13.20%

500 10.48% −0.92% 8.68% −19.99% 9.02% −19.61%

Methyl
ophiopogon
flavanone B

5 3.11% 4.61% 18.61% −16.54% 8.96% −17.22%
50 6.34% −2.69% 8.47% 15.54% 7.37% 12.48%

500 8.83% 1.73% 17.70% 13.69% 18.75% 12.19%

2.2. Pharmacokinetics Experiment

This study employed Ultra-Performance Liquid Chromatography–Mass Spectrometry
(UPLC–MS/MS) to examine the pharmacokinetic properties of 20 bioactive components
in a cell-derived xenograft (CDX) model following oral administration of a 10.2 g/kg
PG–OJ extract. The drug concentration–time curves and pharmacokinetic parameters of the
20 bioactive components were presented in Figure 2 and Table 5. The findings demonstrated
that the drug concentrations of the 20 bioactive components exhibited a biphasic or multi-
phasic phenomenon. This could be attributed to the release and elimination of drugs in the
stomach, with only a small portion being absorbed into the bloodstream and distributed
to the lung tissue, resulting in the initial peak. Subsequently, the drugs are released
and absorbed persistently through the hepatic–intestinal and gastrointestinal circulations,
generating a second peak. Moreover, the presence of multiple peaks could be associated
with the hydrolytic effects of bacterial enzymes or the intermittent release of bile during
the reabsorption of saponin components [19].

The majority of saponins are distributed quickly in tissues from plasma within 5 min
of administration. Protopanaxatriol-type (PPT) ginsenosides (such as ginsenoside Rg1, Rg2,
Re, Rh1, Rf, and notoginsenoside R1), Oleanolic-acid-type saponins (OA) ginsenoside Ro,
and Ocotillol-type saponins (OT), pseudoginsenosides RT5 and 24(R)-pseudoginsenoside
F11 show rapid absorption and reach their maximum concentration (Cmax) within 15 min
of administration. However, Protopanaxadiol-type saponins (PPD) ginsenosides (such
as Ginsenoside Rb1, Rb2, Rb3, Rc, Rd, and Rg5) reach their peak concentration after
12 h. This suggests that PPT ginsenosides enter the bloodstream more quickly, allow-
ing for earlier absorption within the body. In lung tissue, the elimination of PPT, OA, OT
ginsenosides, and two flavanone compounds occurs within 8 h, while the majority of PPD
ginsenosides’ elimination is a slower process. Notably, although ginsenoside Rh1 has the
longest half-life (6.9 h), it is still notably shorter than those of pseudoginsenosides RT5
(10.6 h) and PPD ginsenosides (7.41–66.6 h, excluding ginsenoside Rg5). The difference in
elimination characteristics between PPT and PPD ginsenosides could be associated with
differences in plasma protein binding. Alternatively, it could be due to the fact that only
PPT ginsenosides are able to be transported by organic anion transporting polypeptide 2B1
(OATP2B1), despite all ginsenosides binding to rat organic anion transporting polypeptide
2B23 (OATP2B23) [20].

In the PG–OJ extract, the AUC(0–∞) of PPD ginsenosides Rg5, Rb1, Rd, and PPT gin-
senosides F2 and Rg2 were significantly higher than those of other components, suggesting
that these five components have higher exposure levels, which is associated with their
increased content in the PG–OJ extract. In lung tissue, the component with the highest
exposure level is the rare ginsenoside Rg5, which is synthesized during the steaming
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process of ginseng and has been proven to possess substantial potential bioactivity as a
broad-spectrum anticancer and anti-inflammatory drug [21]. In contrast, the tissue expo-
sure levels of PPD ginsenosides F1, Rh1, and NotoG-R1 are extremely low, which may be
attributed to Phase II enzymes metabolizing triterpene ginsenosides into water-soluble
metabolites that can be excreted by the kidneys [22].
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Table 5. Pharmacokinetic parameters of isolated components after intragastric administration (mean ± SD, n = 6).

Components Cmax/ng/g Tmax/min AUC(0–∞)/ng/g·min AUC(0–t)/ng/g·min MRT(0–t)/min T1/2/min

Ginsenoside Rg1 50.24 ± 6.67 15.00 ± 0.00 2345.90 ± 212.68 2295.03 ± 213.32 135.88 ± 4.70 98.12 ± 2.74
Ginsenoside Re 132.49 ± 32.88 5.00 ± 0.00 3933.20 ± 224.66 3815.68 ± 233.30 93.98 ± 3.79 105.69 ± 4.36
Ginsenoside Ro 11.95 ± 0.88 12.50 ± 2.89 1415.87 ± 57.44 1043.18 ± 64.96 184.92 ± 4.08 252.46 ± 11.88
Ginsenoside Rh1 8.98 ± 0.20 12.50 ± 5.00 1724.14 ± 411.48 1303.44 ± 70.16 190.78 ± 1.61 418.21 ± 293.98
Ginsenoside F1 4.12 ± 0.45 240.00 ± 0.00 648.77 ± 60.38 640.00 ± 61.94 197.55 ± 1.51 134.21 ± 14.44
Ginsenoside F2 134.49 ± 1.58 60.00 ± 0.00 24,395.33 ± 613.30 21,872.62 ± 480.93 184.97 ± 1.87 349.67 ± 16.15

Ginsenoside Rg5 7967.81 ± 441.77 240.00 ± 0.00 1,372,202.28 ± 48,963.33 1,342,117.43 ± 45,675.73 183.91 ± 2.00 126.76 ± 9.45
Ginsenoside Rg2 71.11 ± 6.20 15.00 ± 0.00 16,012.21 ± 284.14 13,822.64 ± 316.65 187.28 ± 1.45 214.68 ± 6.15
Ginsenoside Rg3 4.75 ± 0.12 5.00 ± 0.00 14,133.43 ± 3134.88 1879.87 ± 53.24 230.11 ± 2.69 2381.66 ± 562.33
Ginsenoside Rf 47.90 ± 6.96 15.00 ± 0.00 3678.93 ± 167.94 3656.82 ± 167.79 159.91 ± 1.98 76.57 ± 1.04

Ginsenoside Rb1 440.68 ± 15.67 720.00 ± 0.00 283,948.70 ± 17,261.40 227,245.91 ± 5460.47 687.50 ± 1.03 1974.59 ± 188.71
Ginsenoside Rb2 7.20 ± 0.96 720.00 ± 0.00 6076.50 ± 664.68 3935.63 ± 598.40 712.61 ± 2.29 1191.02 ± 262.76
Ginsenoside Rb3 5.92 ± 0.45 720.00 ± 0.00 16,689.44 ± 2585.97 4049.29 ± 622.84 827.16 ± 190.05 3995.02 ± 516.27
Ginsenoside Rc 42.95 ± 2.11 720.00 ± 0.00 25,129.88 ± 1611.92 23,180.66 ± 703.80 698.08 ± 7.43 444.67 ± 101.01
Ginsenoside Rd 82.95 ± 2.11 720.00 ± 0.00 56,296.57 ± 6663.99 46,163.94 ± 1033.00 667.90 ± 1.77 970.90 ± 220.59

Pseudoginsenoside RT5 5.11 ± 0.88 15.00 ± 0.00 2160.58 ± 307.18 890.71 ± 40.23 224.26 ± 5.19 634.34 ± 141.79
Notoginsenoside R1 7.16 ± 1.65 7.50 ± 3.54 1703.60 ± 109.17 1636.22 ± 104.54 207.16 ± 5.18 74.38 ± 1.47

24(R)-pseudoginsenoside F11 47.49 ± 6.94 15.00 ± 0.00 5604.97 ± 147.55 4660.97 ± 205.76 184.94 ± 2.87 227.16 ± 12.27
Methylophiopogonanone A 5.70 ± 0.88 150.00 ± 0.00 5425.63 ± 1564.22 1362.39 ± 36.13 219.18 ± 4.79 1219.25 ± 362.74
Methylophiopogonanone B 20.61 ± 2.38 150.00 ± 0.00 3466.12 ± 558.35 2331.08 ± 125.83 184.20 ± 10.94 390.53 ± 100.42
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2.3. Pharmacodynamic Experiment

As illustrated in Figure 3 and Table 6, the administration of PG–OJ in the nude-mouse
CDX model led to a rapid onset of action for the three cytokines IFN-γ, TNF-α, and TGF-β1
within 15 min. These cytokines reached their lowest concentrations at 8 h and remained
at a relatively stable level until 24 h. Significantly, at 30 min post-PG–OJ intervention,
the TGF-β1 concentration in the experimental group was notably higher than that in the
model group. This finding suggests that during the early stages of tumor development,
PG–OJ may upregulate TGF-β1 to facilitate apoptosis and inhibit tumor-cell proliferation.
In addition, the tumor-growth-inhibition rate demonstrates a significant therapeutic effect
after PG–OJ intervention (p < 0.001).

Table 6. Results of efficacy index in each group of mice (mean ± SD, n = 6).

Group TNF-α (pg/g) IFN-γ (pg/g) TGF-β1 (pg/g) Tumor Weight (mg)

C 6.25 ± 1.38 *** 541.81 ± 37.39 *** 626.67 ± 25.88 *** ----
M 2.30 ± 0.38 53.31 ± 7.41 316.33 ± 88.55 1282.09 ± 181.31

0.083 h 5.63 ± 0.66 ** 500.92 ± 199.42 *** 395.33 ± 79.28 519.22 ± 72.02 ***
0.167 h 2.79 ± 1.38 697.58 ± 221.38 *** 492.67 ± 124.69 513.57 ± 24.41 ***
0.25 h 3.53 ± 0.97 272.42 ± 71.31 460.83 ± 75.59 571.74 ± 64.86 ***
0.5 h 3.84 ± 1.11 206.23 ± 66.60 720.00 ± 23.53 *** 483.84 ± 89.12 ***

0.75 h 5.01 ± 1.31 * 167.15 ± 88.39 766.22 ± 112.59 *** 499.70 ± 40.04 ***
1 h 4.73 ± 0.75 * 79.58 ± 12.22 511.50 ± 98.52 * 513.44 ± 16.94 ***
2 h 5.64 ± 1.47 ** 140.73 ± 18.45 761.17 ± 109.49 *** 577.87 ± 40.68 ***
3 h 6.97 ± 1.44 *** 522.69 ± 116.26 *** 975.00 ± 104.86 *** 614.60 ± 39.46 ***
4 h 3.35 ± 1.43 132.55 ± 53.12 554.67 ± 20.40 ** 611.46 ± 12.89 ***
6 h 2.86 ± 1.01 82.68 ± 11.38 510.67 ± 104.52 * 578.167 ± 19.38 ***
8 h 2.42 ± 0.45 71.11 ± 7.73 467.11 ± 71.36 608.35 ± 27.81 ***
12 h 2.56 ± 0.67 72.67 ± 8.90 472.71 ± 51.56 660.64 ± 42.43 ***
24 h 2.65 ± 0.97 75.15 ± 12.45 487.83 ± 64.64 626.68 ± 23.61 ***

Note: Compared with the model group, * p < 0.05, ** p < 0.01, *** p < 0.001.
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cytokines (TNF-α, IFN-γ and TGF-β1) in the lung tissue of six mice in the PG–OJ group within
24 h, while the secondary figure shows the average changes within 2 h. (D) primarily illustrates the
average tumor-growth-inhibition-rate changes within 24 h and 2 h for the same group of six mice in
the PG–OJ group.

2.4. Related Analysis
2.4.1. Comprehensive Weighted Scoring of Efficacy Indicators

Information entropy serves as a probability measure to characterize the level of data
discreteness. The smaller the entropy value, the greater the dispersion of the data. The
entropy-weighted method can objectively determine the weights of each indicator and
reflect various information objectively and accurately through weighted calculation. In
this study, the comprehensive evaluation index of the efficacy of three cytokines (E%) was
calculated using the entropy-weighted method, and the results are presented in Table S1.

2.4.2. Feature-Sorting Algorithm Based on LightGBM Model

This study proposes a feature-ranking approach based on the LightGBM algorithm,
which reorders the original features to assign corresponding shadow features to each
variable. The significance of each variable is assessed by comparing the permutation
accuracy of true samples with the best shadow feature samples [23]. Taking into account
variables that are meaningful to the model, the concentration ranges of 20 compounds were
designated as the feature sequence, and the comprehensive effect index S for each sample
served as the parent sequence. Based on the Kennard-Stone algorithm, a classic method,
we randomly selected 80% of the samples as the training set and the remaining 20% as
the testing set [24]. Additionally, to prevent model overfitting, we limited the maximum
tree depth to five and set a minimum sample number for each leaf node. As shown in
Figure 4A,C, the results from both the training and testing sets confirmed that the top-
five feature variables (including Methylophiopogonanone A, Methylophiopogonanone B,
Ginsenoside Rb1, Rh1, and Notoginsenoside R1) account for over 50% of the total SHapley
Additive ex-Planations (SHAP) values, suggesting a significant impact on the model’s
regression prediction. In Figure 4B,D, red points in the positive-influence graph represent
features with a positive impact on the prediction result, while blue points indicate the
opposite. Ginsenoside Rh1, Rf, Rb3, Rg5, and Rg1 exhibit a negative correlation with
the comprehensive-drug-effect-index sequence. Finally, based on the positive correlation
between the prototype components and S, we inferred that the active substance basis of
PG–OJ against lung cancer includes Methylophiopogonanone A, Methylophiopogonanone
B, Ginsenoside Rb1, and Notoginsenoside R1.
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3. Discussion

Pharmacokinetics play a crucial role in establishing concentration–activity/toxicity
relationships, facilitating target identification in traditional Chinese medicine, and the
discovery of new drugs [25]. In pharmacokinetic studies, investigators typically explore one
or more active ingredients in herbs, examining their tissue distribution and concentration–
activity profiles. However, some compounds may be undetectable or contribute minimally
to blood exposure, rendering them irrelevant to clinical outcomes. To address this limitation,
machine-learning and activity-weighted approaches are frequently employed to investigate
the exposure–efficacy/toxicity relationships of key efficacy component groups in target
organs. This approach enables the explanation of the drug mechanism of action and
identification of core components responsible for efficacy.

This study, based on the verification of the cytokine levels and tumor growth between
MG and CG, successfully establishes the CDX nude-mouse model. Our previous research
has demonstrated that PG–OJ extracts exhibit excellent anti-lung-cancer therapeutic effects
at a four-fold-clinical-equivalent dose. In this study, we further validate the efficacy of
this dose and explore its pharmacokinetic characteristics. The results indicate that oral
administration of PG–OJ extract significantly inhibits tumor growth in tumor-bearing mice,
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with an average inhibition rate of 55.73%. These differences may be closely related to
the strong absorption and slow elimination of some key active components in PG–OJ
in vivo. In addition, PG–OJ extract can initially stimulate the secretion of IFN-γ, thereby
initiating the antitumor immune process. Activated immune cells, such as T cells, then
release other cytokines, including TNF-α and TGF-β1. TNF-α can promote tumor-cell
apoptosis, while TGF-β1 plays a role in suppressing immune responses in the tumor
microenvironment [26,27]. These three factors jointly participate in regulating the tumor
immune microenvironment, affecting the development and treatment effect of lung cancer.
In tumor-bearing mice, the dynamic changes in IFN-γ and TGF-β1 may be related to the
expression-like tumor-cell levels, immune-cell functions, and other factors in the tumor
microenvironment [28,29].

Traditional Chinese medicine compatibility may significantly affect the pharmacoki-
netic (PK) parameters and blood concentrations of drugs. Employing a sensitive UPLC–
MS/MS method to analyze the time-varying curves of 20 compounds in the PG–OJ extract,
with a focus on the lung as the target organ, offers a valuable approach to understanding
the pharmacokinetic parameters and blood concentrations of drugs. In the PK studies,
significant differences were detected in PK parameters between PPT-type and PPD-type
saponins. These results align with previous findings, indicating higher exposure levels
of PPD-type ginsenosides and slower elimination compared to PPT-type ginsenosides.
Notably, rare ginsenosides such as Rg5 (i.e., the product of dehydroxylation and carbon
dehydration at position C-20 of Rg3) exhibit higher tissue exposure levels. The study by
Zhang et al. revealed that the number of sugar moieties in ginsenosides is an important
consideration in their anticancer biological activity, with the level of anticancer biological
activity decreasing proportionally with the number of sugar moieties [30].

We found that the concentrations of 20 chemicals in lung tissues were consistent with
the changes in the improvement rates of the three cytokines. Notably, the improvement
rates of IFN-γ, TNF-α, and TGF-β1 reached a second peak at 3 h after drug administration,
which was later than the second peak of drug concentration (2.5 h after drug administra-
tion), indicating a delayed pharmacodynamic effect. Further analysis may require more
in-depth research on pharmacokinetic parameters such as drug concentration and half-life
for both the model and treatment groups. LightGBM-algorithm-based PK-PD spectral
efficacy correlation analysis has revealed that four active ingredients, including Methy-
lophiopogonanone A, Methylophiopogonanone B, Ginsenoside Rb1, and Notoginsenoside
R1, have high characteristic-importance rankings and are positively correlated with the
comprehensive efficacy index. Methylophiopogonanone A emerged as a crucial chemical
indicator for the quality control in Ophiopogonis Radix-related herbal formulations. Exist-
ing studies have demonstrated that high concentrations of flavanone components may play
a vital role in the treatment of lung cancer [31,32]. Ginsenoside Rb1, another compound,
enhances the immune response by inducing antigen-presenting cells that secrete TNF-α
and T cells that secrete interferon γ and IL-10 [33]. Additionally, ginsenoside Rb1 also
promotes the production of immunoglobulins (such as IgA, IgG1, and IgG2) and enhances
virus-triggered interferon γ expression [34]. Notoginseoside R1 exhibits anticancer activity
by inhibiting TNF-α and suppressing cancer cell proliferation [35].

In conclusion, we suggest that Methylophiopogonanone A, Methylophiopogonanone
B, Ginsenoside Rb1, and Notoginsenoside R1 may be the important pharmacological basis
of the antitumor immune response in PG–OJ extracts. Utilizing PK–PD correlation-analysis
methods can provide more accurate and reliable results in the mining of active ingredients
within traditional Chinese medicine, thereby strongly supporting the development of
promising new drugs. This study only focused on the antitumor effect of PG–OJ and did
not compare it with other drugs. Future studies can further expand the sample size and
explore the combination of PG–OJ with other drugs.
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4. Materials and Methods
4.1. Materials and Chemicals

P. ginseng samples were purchased from Shennong Pharmacy (China, batch number:
C21110403), while the O. japonicus was obtained from the Ophiopogon japonicus (Thunb.) Ker
Gawl. plantation base in Sichuan, Shandong province (China). The human lung adenocar-
cinoma cell-line A549 cells were obtained from the Chinese Academy of Sciences (Shanghai,
China). Ginsenoside Ro (CAS: 34367-04-9; Lot number: WKQ19012811; purity ≥ 98%),
Rh1(CAS: 63223-86-9; Lot number: WKQ19013001; purity ≥ 98%), F1 (CAS: 53963-43-2; Lot
number: WKQ19012509; purity ≥ 98%), F2 (CAS: 62025-49-4; Lot number: WKQ19012808;
purity ≥ 98%), Rg2 (CAS: 52286-74-5; Lot number: WKQ18042804; purity ≥ 98%), Rg3
(CAS: 14197-60-5; Lot number: WKQ19012410; purity ≥ 98%), Pseudoginsenoside RT5
(CAS:98474-78-3; Lot number: WKQ19012409; purity ≥ 98%) and Pseudoginsenoside F11
(CAS: 69884-00-0; Lot number: WKQ18031309; purity ≥ 98%) were purchased from Weikeqi
Biotechnology Co., Ltd. (Chengdu, China), whereas Rd (CAS: 52705-93-8; Lot number:
PS0010161; purity ≥ 98%), Rb2 (CAS: 11021-13-9; Lot number: PS020544; purity ≥ 98%), Rc
(CAS: 111021-14-0; Lot number: PS020852; purity ≥ 98%), Rf (CAS: 52286-58-5; Lot number:
PS0010161; purity ≥ 98%), Rb3 (CAS: 68406-26-8; Lot number: PS020512; purity ≥ 98%),
Rb1 (CAS: 41753-43-9; Lot number: PS011946; purity ≥ 98%) and Rg5 (CAS: 186763-78-0;
Lot number: PS230911-02; purity ≥ 98%) were purchased from Chengdu Pusi Biotechnol-
ogy Co., Ltd. (Chengdu, China). Re (CAS: 52286-59-6; Lot number: 110754-200421; purity
≥ 98%), Rg1 (CAS: 22427-39-0; Lot number: 110703-200424; purity ≥ 98%) and Notogin-
senoside R1 (CAS: 80418-24-2; Lot number: 110745-201921; purity ≥ 98%) were purchased
from China national institutes for drug control. (Beijing, China). Methanol, acetonitrile and
formic acid (LC-MS grade) were purchased from Thermo company (Swedesboro, NJ, USA).

4.2. Preparation of Sample Solutions

A total of 120 g of dried powder from RG and OJ were accurately weighed into
round-bottomed flasks, and then 70% ethanol (1:10, w/v) was added, followed by heating
and reflux extraction for 1.5 h. The extract was filtered and recovered, and then dried to
powder in a freeze dryer. Finally, the freeze-dried powder was dissolved in 0.3% sodium
carboxymethyl cellulose water solution, resulting in a final concentration of 1.0 g·mL−1

(based on crude drug content).

4.3. Animal Treatments and Tissue-Sample Collection

Healthy BALB/c nude male mice (weight: 18–21 g) were purchased from Beijing
Huafukang Biotechnology Co., Ltd. (Beijing, China, License Number: SCXK (Jing) 2021-
0006). After 3 days of acclimatization, the mice were randomly divided into the control
group (CG), model group (MG), and the combined-administration group of P. ginseng and
O. japonicus (HM1-HM13) (6.8 g/kg, four-fold clinical-equivalent doses). Subsequently,
except for the CG, 0.2 mL (approximately 2 × 107 cells) of A549 cell suspension was
aspirated with a 1 mL syringe and injected into the right axillary fossa of the model group
and drug-administration-group mice. The control-group mice were injected with an equal
volume of PBS at the same location. The tumor diameter was measured daily using a caliper.
The model was successful when the tumor diameter > 3 mm. The combined-administration
group of P. ginseng and O. japonicus was given the corresponding drug orally, once a day,
with 0.2 mL/mouse each time. The control group and the model group mice were given
the same volume of distilled water, continuously orally for 21 days. During this period,
the body weight and tumor volume of the mice were recorded. At the end of the last
administration, the mice were weighed 0.083, 0.167, 0.25, 0.5, 0.75, 1, 2, 3, 4, 6, 8, 12, 24 h
later. After injecting 0.1% pentobarbital sodium, blood was collected from the eye-socket
vein, the mice were decapitated, and the tumor and lung tissues were carefully removed.

After homogenizing 50 mg of right-lung-tissue sample, 2 mL of acetonitrile was added
to precipitate proteins. The mixture was oscillated for 2 min and then centrifuged for
10 min (12,000 rpm, 4 ◦C). The supernatant from the new centrifuge tube was collected
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and dried with nitrogen at room temperature. Finally, the supernatant was redissolved in
50 µL of acetonitrile solution containing 0.1% formic acid. After oscillating for 1 min,
another centrifugation step was performed, and the resulting supernatant was used
for analysis.

4.4. UHPLC—Orbitrap MS Conditions

Samples were analyzed on the Vanquish UPLC System (Thermo, Waltham, MA,
USA). The Agilent C18 column (4.6 × 150 mm, 4 µm, PN:693970-902T) was selected. The
mobile phase was composed of 0.1% formic acid aqueous solution (A) and 0.1% formic
acid acetonitrile solution (B). The procedure of gradient elution was as follows: 0–10 min,
95–75% A; 10–25 min, 75–45% A; 25–40 min, 45–30% A; 40–50 min, 30–5% A; 55–55.1 min,
5–95% A; 55.1–60 min, 95% A. The column temperature was set to 30 ◦C with the flow
rate of 0.3 mL/min and the injection volume of 3.0 µL. The mass-spectrometry detection
with negative-ion mode was carried out using an Orbitrap Exploris 120 Mass Spectrometer
(Thermo, Waltham, MA, USA) and Electrospray ionization (ESI). The sheath-gas-flow rate
was 30 L/min and the auxiliary-gas-flow rate was 10 L/min. The capillary temperature
was 325 ◦C, and the resolution was 120,000 in full scan mode with the mass scan range of
80~1500 m/z. The secondary cracking was performed with HCD at a collision voltage of
30 eV, and unnecessary MS/MS information was removed using the dynamic exclusion
method. Quantitative analysis was performed using the selective-ion-detection (SIM) mode
(Table S2). The total-ion chromatogram and chemical structures of the 20 compounds are
shown in Figures S1 and S2.

4.5. Preparation of Quality-Control (QC) Samples and Method Validation

Twenty standard substances and internal standards (IS) were precisely weighed and
separately dissolved in 70% methanol, followed by mixing and dilution to form a series of
standard working solutions. The series of standard working solutions were then mixed
with normal lung tissue to prepare QC (low, medium, and high concentration) samples,
with an end concentration of 20 µg/mL for the internal standard. Table S3 shows the
concentrations of each standard working solution and QC sample. According to the FDA
Guidance for Industry on Bioanalytical Methods, the selectivity, matrix effect, extraction
recovery, standard curve, accuracy, precision, stability, residual effect, and dilution effect of
the HPLC–MS/MS method were all validated [36].

4.6. Data Analysis of the Pharmacokinetic Study

The Phoenix 8.1 software was used to analyze pharmacokinetic parameters, including
the maximum concentration (Cmax), time to reach Cmax (Tmax), elimination half-life (T1/2),
mean residence time (MRT), and area under the concentration–time curve (AUC).

4.7. Pharmacodynamic Experiment

The tumor-inhibition rate for each group was calculated based on the body weight and
tumor-tissue-sample weights of the mice. The left-lung-tissue samples from each group
were homogenized in a PBS solution containing 1% PMSF (five times the weight of the lung
tissue) and then collected after high-speed centrifugation. The concentrations of TNF-α,
IFN-γ, and TGF-β1were measured using an ELISA kit according to the instructions of the
kit, and the cell-factor repair rate was calculated. A curve is plotted showing the changes
in tumor-inhibition rate and cytokine repair rate following drug intervention over time.
All analyses were performed using GraphPad Prism Software 8.1. The cytokine repair rate
(CR) and tumor-growth-inhibition rate (IR) were calculated as follows: CR (%) = (average
cytokines levels of model group − average cytokines levels of treatment group)/(average
cytokines levels of model group − average cytokines levels of control group) × 100%.
IR (%) = 1 − (average tumor weight of treatment group/average tumor weight of model
group) × 100%.
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4.8. PK–PD-Correlation Analysis
4.8.1. The Comprehensive Weight Method for Efficacy-Indicators Assessment

In this study, the comprehensive score S was calculated using the weight method,
which covered CR. First, after processing the raw data using the Min–Max normalization
method, the scaling of different indicators could be unified. Then, the dimensionless
values {Yij} were taken to calculate the characteristic weight value {Pij} as Equation (1).
Subsequently, the information entropy value of parameter {Ej} could be expressed as
Equation (2). The comprehensive weight method used parameter entropy to calculate the
weight of each indicator value {Wj}, as shown in Equation (3). Finally, the comprehensive
score {S} for the efficacy indicators of each sample was obtained as Equation (4).

Pij =
Yij

∑n
i=0 Yij

(1)

Ej = −k ∑m
i=1 Pijln(Pij) k = 1/ ln(m) > 0 and Ej ≥ 0 (2)

Wj =
1 − Ej

∑n
j=1

(
1 − Ej

) j = 1, 2, 3, 4, 5 (3)

S = ∑n
j=1 Wj × Pij (4)

4.8.2. Feature-Ranking Based on LightGBM Model

LightGBM is an algorithm based on ensemble learning that employs decision tree
models to rank the importance of feature variables. By employing a gradient-based feature-
selection method, it can effectively identify features with a strong influence on the target
variable, thereby mitigating overfitting risks and enhancing the model’s generalization
ability in small-sample scenarios. Therefore, it can be considered as a simple and effective
comprehensive evaluation method of the spectrum–effect relationship. In LightGBM
algorithm, the positive- and negative-force graph represents the degree of impact of features
on the prediction results. SHAP value is a numerical method used to explain the prediction
results of the model. It measures the contribution of each feature to the model’s prediction
outcomes. The SHAP value ranges from −1 to 1, with values closer to 1 indicating a greater
impact of the feature on the prediction result, and values closer to −1 indicating a smaller
impact. In this study, a data matrix was constructed using the quantitative measurements of
20 component concentrations at different time points after administration as independent
variables and the composite pharmacodynamic score S as the dependent variable. Z-score
standardization preceded data matrix analysis, and Python 3.10 software was used to
calculate the SHAP values of each component.

5. Conclusions

We developed a specific and sensitive LC–MS/MS method for concurrent quantifica-
tion of 18 saponins and two flavanones in biological samples. Ginsenoside Rg5, a unique
component of PG–OJ decoction, exhibits significant chemopreventive effects on cancer,
suggesting it is a promising prospect. This method was effectively employed to study
the pharmacokinetic properties of compounds in lung cancer mice by way of continuous
gavage with PG–OJ extract for a period of twenty-one days. The improvement rates of
TNF-α, TGF-β1, and IFN-γ indicate that PG–OJ can effectively enhance the antitumor
immune effect. Based on the LightGBM algorithm, the PK–PD-pattern analysis revealed
the importance ranking of 20 key components in lung cancer mice, and identified four
key pharmacodynamic-substance-component groups (Methylophiopogonanone A, Methy-
lophiopogonanone B, Ginsenoside Rb1, and Notoginsenoside R1). This research strategy
aims to propose a practical and precise method, providing a scientific foundation for
uncovering the key active ingredients of medicinal plants.
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