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Abstract: Photodynamic therapy (PDT) is a non-invasive anticancer treatment that uses special
photosensitizer molecules (PS) to generate singlet oxygen and other reactive oxygen species (ROS) in
a tissue under excitation with red or infrared light. Though the method has been known for decades,
it has become more popular recently with the development of new efficient organic dyes and LED
light sources. Here we introduce a ternary nanocomposite: water-soluble star-like polymer/gold
nanoparticles (AuNP)/temoporfin PS, which can be considered as a third-generation PDT system.
AuNPs were synthesized in situ inside the polymer molecules, and the latter were then loaded with
PS molecules in an aqueous solution. The applied method of synthesis allows precise control of
the size and architecture of polymer nanoparticles as well as the concentration of the components.
Dynamic light scattering confirmed the formation of isolated particles (120 nm diameter) with
AuNPs and PS molecules incorporated inside the polymer shell. Absorption and photoluminescence
spectroscopies revealed optimal concentrations of the components that can simultaneously reduce the
side effects of dark toxicity and enhance singlet oxygen generation to increase cancer cell mortality.
Here, we report on the optical properties of the system and detailed mechanisms of the observed
enhancement of the phototherapeutic effect. Combinations of organic dyes with gold nanoparticles
allow significant enhancement of the effect of ROS generation due to surface plasmonic resonance in
the latter, while the application of a biocompatible star-like polymer vehicle with a dextran core and
anionic polyacrylamide arms allows better local integration of the components and targeted delivery
of the PS molecules to cancer cells. In this study, we demonstrate, as proof of concept, a successful
application of the developed PDT system for in vitro treatment of triple-negative breast cancer cells
under irradiation with a low-power LED lamp (660 nm). We consider the developed nanocomposite
to be a promising PDT system for application to other types of cancer.

Keywords: polymer nanocarrier; nanosystem; Au nanoparticles; temoporfin; photodynamic therapy

1. Introduction

Photodynamic therapy (PDT) is a modern, non-invasive, rapidly developing, and
promising method for treating a wide range of oncological diseases [1]. PDT is based on
the interaction of light and a photosensitizer (PS), leading to the formation of cytotoxic
reactive oxygen species (ROS). ROS damage cancer cells initiating apoptosis, necrosis, or
autophagy [2]. PDT treatment has the advantage of reduced side effects otherwise typically
following other methods of radiation or chemotherapy [2,3]. The main limitation of the use
of PSs in anticancer treatments is their nonselective accumulation in non-target tissues, poor
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stability in aqueous solutions, and dark cytotoxicity [2,4]. An ideal PDT system must have
several important characteristics including low dark cytotoxicity, selective accumulation
in target tissues, optical absorption maxima in the range of the phototherapeutic window
(650–850 nm), and final metabolization and excretion from the body [5].

The first-generation PS systems were based on hematoporphyrin derivatives, had
low chemical purity, and low photogeneration efficiency. The second-generation PSs were
represented by pure synthetic compounds having an aromatic macrocycle in their structure
(chlorins, phthalocyanines, benzoporphyrins, etc.) and optical absorption in the range of
650–800 nm [6,7]. However, these second-generation PS systems had poor water solubility
and formed aggregates under physiological conditions thus reducing the yield of the ROS
generation. The experimental and clinical studies of the first- and second-generation PSs
demonstrated the need for improvement to achieve better therapeutic effects. Significant
advances have been made over the last decade for creating the next generation of pho-
tosensitizers; however, these attempts are still mainly in the developmental stage [8–15].
The third-generation PSs rely on the conjugation of second-generation PS with target-
ing moieties such as amino acids, peptides, or by their encapsulation into nanocarriers
(liposomes, micelles, polymers, or nanoparticles) [16–19]. The encapsulation strategy and
application of nanocarriers allows for improvement in biocompatibility and selectivity
of the PDT systems as well as enhancement of the phototherapeutic effects [20,21]. Such
approaches also improve the stability and hydrophilicity of nanodrugs, reduce side-effects,
help maintain a constant rate of PS delivery, ensure targeted delivery of drugs to tumor
cells, and limit dark toxicity [22,23].

A promising strategy to enhance the anti-tumor efficiency of drugs is the use of metal
nanoparticles. Gold nanoparticles (AuNPs) have been studied in the context of various
cancer treatments and have demonstrated their potential as an alternative or adjunct to
many chemotherapeutic drugs improving therapeutic responses [24]. The effectiveness of
AuNPs is based on the surface plasmon resonance effect. This phenomenon is responsible for
the characteristic optical properties of gold nanoparticles, such as surface-enhanced Raman
scattering (SERS), absorption (SEA), fluorescence (SEF), and photocatalysis [25–28]. Therefore,
a combination of AuNPs and PSs in hybrid nanosystems can enhance ROS generation and
cytotoxicity of PDT [29,30]. AuNPs conjugated with drugs or a PS and targeting polymers
are effective against various types of cancer [31,32]. Previous studies demonstrated the high
impact of plasmon enhancement on ROS photogeneration in applications of nanohybrids
containing polymer, photosensitizers, and AuNPs in vitro [33–35]. The accumulation
of nanosystems based on dextran-graft-polyacrylamide (D-g-PAA) in tumors in mouse
xenograft models has been also demonstrated [36].

In this study, we synthesized a three-component nanocomposite based on star-like
polymer nanocarrier encapsulating gold nanoparticles and the PS temoporfin. Temoporfin
is one of a few PS molecules currently approved for medical trials in several European coun-
tries [37]. We report on the optical properties of the nanosystem and detailed mechanisms of
the observed enhancement of the phototherapeutic effect. We performed physicochemical
characterization of the hybrid nanosystem and determined the optimal concentrations of
the components that ensure maximum efficiency of the PDT. Additionally, we demonstrate,
as proof of concept, successful application of the developed PDT system for in vitro treat-
ment of triple-negative breast cancer cells (TNBC) under illumination with a low-power
LED lamp (660 nm).

2. Results and Discussion

The nanocomposite molecular system polymer/NPs/PS was fabricated in three stages.
First, a star-like graft copolymer with a dextran core and polyacrylamide arms Dextran-
graft-polyacrylamide (D-g-PAA) was synthesized via radical polymerization process and
was converted into anionic form (D-g-PAAan) [38,39]. The choice of this copolymer is based
on its previously reported efficacy for the design of nanosystems for chemotherapy and
PDT [40]. The applied method of synthesis allows for precise control of the conformation
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of macromolecules through variations in the size of the dextran core and the number and
length of grafted arms. This molecular system was used as a matrix for temoporfin and
AuNP encapsulation. During the second stage of preparation, AuNPs were synthesized in
situ into the polymer matrix in accordance with a previously reported protocol [36]. This
method of synthesis allows precise control of the NP diameter and size distribution. The
third step of the preparation included mixing of the PS (temoporfin) solution in DMSO
with a water dispersion of D-g-PAAan/AuNP particles and was performed just before
application of the system to biological systems. Molecular conformation of the system at
different stages of the preparation is shown in Scheme 1.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 17 
 

 

2. Results and Discussion 
The nanocomposite molecular system polymer/NPs/PS was fabricated in three 

stages. First, a star-like graft copolymer with a dextran core and polyacrylamide arms 
Dextran-graft-polyacrylamide (D-g-PAA) was synthesized via radical polymerization pro-
cess and was converted into anionic form (D-g-PAAan) [38,39]. The choice of this copoly-
mer is based on its previously reported efficacy for the design of nanosystems for chemo-
therapy and PDT [40]. The applied method of synthesis allows for precise control of the 
conformation of macromolecules through variations in the size of the dextran core and 
the number and length of grafted arms. This molecular system was used as a matrix for 
temoporfin and AuNP encapsulation. During the second stage of preparation, AuNPs 
were synthesized in situ into the polymer matrix in accordance with a previously reported 
protocol [36]. This method of synthesis allows precise control of the NP diameter and size 
distribution. The third step of the preparation included mixing of the PS (temoporfin) so-
lution in DMSO with a water dispersion of D-g-PAAan/AuNP particles and was per-
formed just before application of the system to biological systems. Molecular confor-
mation of the system at different stages of the preparation is shown in Scheme 1. 

 
Scheme 1. Stages of the PDT system preparation. 

2.1. Size Characteristics of Nanohybrids in Aqueous Solution 
The physicochemical properties of the system, interaction between the components, 

and ROS generation are of paramount importance for PDT. Therefore, we performed de-
tailed investigations of the structure and optical properties of the system. 

A TEM image of the D-g-PAAan/AuNPs nanosystem is shown in Figure 1a. Due to 
the low contrast of the polymer compared to AuNPs, only metal NPs are visible in the 
image. However, their spatial location clearly demonstrates the encapsulation of AuNPs 
into the polymer macromolecules, i.e., the formation of nanohybrids in the pictured sam-
ples. Indeed, AuNPs are arranged in groups along the polymer chains of PAAan. The av-
erage radius of AuNPs is 3.5 nm. However, given the low contrast of organic molecules 
(D-g-PAAan and temoporfin) and their aggregates compared to AuNPs, TEM does not 
provide complete information on the size of the studied nanohybrids. Therefore, size char-
acterization was performed using dynamic light scattering (DLS). 

Scheme 1. Stages of the PDT system preparation.

2.1. Size Characteristics of Nanohybrids in Aqueous Solution

The physicochemical properties of the system, interaction between the components,
and ROS generation are of paramount importance for PDT. Therefore, we performed
detailed investigations of the structure and optical properties of the system.

A TEM image of the D-g-PAAan/AuNPs nanosystem is shown in Figure 1a. Due
to the low contrast of the polymer compared to AuNPs, only metal NPs are visible in
the image. However, their spatial location clearly demonstrates the encapsulation of
AuNPs into the polymer macromolecules, i.e., the formation of nanohybrids in the pictured
samples. Indeed, AuNPs are arranged in groups along the polymer chains of PAAan. The
average radius of AuNPs is 3.5 nm. However, given the low contrast of organic molecules
(D-g-PAAan and temoporfin) and their aggregates compared to AuNPs, TEM does not
provide complete information on the size of the studied nanohybrids. Therefore, size
characterization was performed using dynamic light scattering (DLS).

DLS-derived particle size distributions (PSD) (Figure 1b–d) are plotted in hydrody-
namic radius RH* coordinates. As a quantity which can be found from diffusion coefficients
by applying the Einstein–Stokes equation, RH* provides an intuitive scale for sample in-
tercomparing. However, we note that RH* is not always equivalent to the hydrodynamic
radius RH of non-electrolyte colloid particles or macromolecules.

Polyelectrolyte effects are clearly visible (Figure 1b), where we observe complex multi-
modal distributions for both D-g-PAAan and D-g-PAAan/AuNPs, instead of a single-peak
distribution from an uncharged polymer solution. Namely, there is a fast polyelectrolyte
diffusion mode and a slow polyelectrolyte diffusion mode. In brief, the fast diffusion mode
corresponds to the diffusion of charged macromolecules and has a notably lower diffusion
coefficient and RH* compared to uncharged polymers. The slow diffusion mode has a
complex and counterintuitive nature, often explained as the diffusion of aggregates.

Temoporfin cast into water from a DMSO solution clearly forms aggregates, namely
moderate aggregates with radii of 145 nm and very large aggregates with radii about
10 µm (Figure 1c, dashed line). This was expected, given that temoporfin is poorly soluble
in water.
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system and control samples; (d) temoporfin/D-g-PAAan/AuNPs and control samples.

RH* distributions from temoporfin/D-g-PAAan and temoporfin/D-g-PAAan/AuNPs
conjugates show a complete disappearance of the slow diffusion mode as well as the disap-
pearance of the previously noted temoporfin aggregates (Figure 1c,d). This observation
indicates the quenching of the polyelectrolyte effect and an increase in temoporfin solu-
bility. Size distributions of temoporfin/D-g-PAAan and D-g-PAAan/AuNPs/temoporfin
resemble the characteristic distribution curve of uncharged polymers. This effect is a result
of polyelectrolyte–temoporfin interaction. AuNPs do not play a significant role in this pro-
cess. The obtained radii of temoporfin/D-g-PAAan and temoporfin/D-g-PAAan/AuNPs
conjugates are 110 nm and 90 nm, respectively.

Additionally, zeta potentials of D-g-PAAan-based conjugates and control samples
(Table 1) reveal a decrease in surface charge for temoporfin/D-g-PAAan and D-g-PAAan/
AuNPs/temoporfin compared to bare D-g-PAAan and D-g-PAAan/AuNPs.

Table 1. Zeta potentials of studied PDT samples.

Sample Zeta-Potential, mV

D-g-PAAan −70.1
D-g-PAAan/AuNPs −45.8

Temoporfin −2.1
D-g-PAAan/Temoporfin −19.04

D-g-PAAan/AuNPs/Temoporfin −14.55
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2.2. Optical Properties of Temoporfin/D-g-PAAan and Temoporfin/D-g-PAAan/AuNPs
Nanohybrids

Absorption spectra of a D-g-PAAan/AuNPs aqueous solution, a mixture of temo-
porfin in DMSO with water, and aqueous solutions of D-g-PAAan and D-g-PAAan/AuNPs
are shown (Figure 2). The absorption spectrum of temoporfin in water (Figure 2a) has
features typical for porphyrins. Specifically, the spectrum contains weak long-wavelength
(530–620 nm) Q-peaks and an intense short-wavelength (380–440 nm) B (Soret) peak with a
characteristic doublet structure [41–44]. These peaks arise as a result of S0 → S1 and S0 → S2
transitions from the π-electron ground state to the 1st and 2nd excited π-electron states of
the porphyrin molecule, respectively. The absorption spectrum of the D-g-PAAan/AuNP
nanohybrid shows a clear characteristic peak [34] of surface plasmon resonance (SPR) in
the AuNPs at 520 nm (Figure 2b). The absorption spectrum of the D-g-PAAan polymer is
located in the UV range at wavelengths shorter than 250 nm (Figure 2a), i.e., outside the
spectral range relevant to this work consideration.
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Figure 2. (a) Absorption spectra of aqueous solutions of D-g-PAAan and D-g-PAAan/AuNPs,
temoporfin mixed with water, and aqueous solutions of D-g-PAAan and D-g-PAAan/AuNPs.
(b) Absorption spectrum of an aqueous solution of D-g-PAAan/AuNPs. (c) PL spectra of temoporfin
in water and aqueous solutions of temoporfin/D-g-PAAan and temoporfin/D-g-PAAan/AuNPs
under excitation of 423 nm. Concentrations of components: temoporfin—0.72 µg/mL, gold and
polymer—7.2 µg/mL.
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The characteristic features of the absorption spectrum of bare temoporfin in water
and in aqueous solutions of temoporfin/D-g-PAAan and temoporfin/D-g-PAAan/AuNPs
are the same. However, these three nanosystems differ significantly by absorption mag-
nitude. The absorption intensity increases when temoporfin is added to the polymer
solution, reaching the maximum value in the temoporfin/D-g-PAAan/AuNPs nanosys-
tem. The observed changes in the intensity of absorption when mixing temoporfin with
solutions of the polymer and the hybrid nanosystem clearly indicate an association of PS
molecules with macromolecules in the D-g-PAAan polymer and the D-g-PAAan/AuNPs
nanohybrid systems.

Temoporfin has low solubility in water. Therefore, when a temoporfin solution in
DMSO is added to an aqueous solution of polymer/AuNP, temoporfin precipitation takes
place on the polymer particles. The polymer particles act as seeding agents accumulating
PS molecules. At the same time, due to an expanded conformation of the star-like macro-
molecules swollen in water, temoporfin molecules can penetrate the inner space and come
in close contact with gold nanoparticles.

Photoluminescence (PL) spectra of temoporfin in water, the temoporfin/D-g-PAAan,
and temoporfin/D-g-PAAan/Au NP nanosystems are shown (Figure 2c). The PL spectrum
of temoporfin in water has a structure typical for porphyrins [42,44]. To be exact, the
spectrum contains two peaks. These are short-wave (653 nm) PL00 and long-wave (715 nm)
PL01 peaks. These peaks originate from S1(0) → S0(0) and S1(0) → S0(1) radiative transitions
from the ground vibrational level of the 1st excited π-electron state to the ground and 1st
excited vibrational levels of the ground π-electron state of the PS molecule, respectively.
In addition to the intense PL00 and PL01 peaks, there is also a weak peak at 618 nm in the
PL spectrum. This is probably due to radiative transitions in the phenyl group bound to
the porphyrin ring. The intensity of the peak at 615 nm of bare temoporfin is quite low
but increases when temoporfin is bound to the polymer. This is an additional argument in
favor of our conclusion about the binding of temoporfin molecules to the polymer, which is
discussed below.

The PL spectrum of temoporfin significantly changes when temoporfin is mixed with
polymer solutions or solutions of nanohybrid comprised of polymer with gold nanoparticles
(Figure 2c). Mixing temoporfin with an aqueous solution of the polymer D-g-PAAan leads
to an increase in the intensity of the PL spectrum compared to the intensity of the spectrum
of bare temoporfin in water. This effect is analogous to the increase in the intensity of light
absorption by temoporfin when mixed with a polymer solution. At the same time, mixing
temoporfin with a solution of nanohybrid D-g-PAAan/AuNPs leads to the opposite effect:
the intensity of the spectrum decreases compared not only to the temoporfin/D-g-PAAan
system but also to bare temoporfin in water. The observed PL quenching when adding PS
to the nanohybrid solution containing gold NPs is observed only at high concentrations
of the components, while the reverse effect of PL intensity growth is observed at low
concentrations. Concentration effects in the PL spectrum and their physical mechanisms
are discussed below. In addition to changes in the total PL intensity, there is also a relative
change in the intensities of PL00 and PL01 peaks in systems containing AuNPs and in
which AuNPs are absent. Accordingly, based on PL data, we concluded that temoporfin
molecules interact (bind) with D-g-PAAan and D-g-PAAan/AuNPs macromolecules, and
this interaction is different in the presence and absence of AuNPs.

The binding of temoporfin molecules to D-g-PAAan and D-g-PAAan/AuNPs macro-
molecules was verified directly by measuring the PL anisotropy coefficient r, which char-
acterizes the degree of freedom of molecules possess during their motion. PL anisotropy
for temoporfin in water is 5%. Mixing temoporfin with an aqueous solution of D-g-PAAan
leads to an increase in the PL anisotropy (10%), which indicates the binding of temoporfin
molecules to polymer macromolecules. The value of r for temoporfin in an aqueous solution
of temoporfin/D-g-PAAan/AuNPs is 14%, indicating that temoporfin molecules bind to
the hybrid macromolecules that contain AuNPs. It is worth noting that the value of the PL
anisotropy does not depend on the concentration of the components in the entire studied
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concentration range. An additional argument in favor of the conclusion regarding the
binding of temoporfin molecules to the polymer and hybrid macromolecules is the increase
in the intensity of the weak 615 nm PL peak, which occurs when temoporfin is mixed with
D-g-PAAan and D-g-PAAan/AuNPs solutions, that is noted above.

The behavior of the total PL intensity of temoporfin as a function of time after
mixing temoporfin in DMSO with water and aqueous solutions of D-g-PAAan and D-
g-PAAan/AuNPs was investigated (Figure 3). The PL intensity of temoporfin in water
does not depend on the time after mixing. However, the temporal behavior of the PL
intensity of temoporfin in the composition of temoporfin/D-g-PAAan and temoporfin/D-
g-PAAan/AuNPs nanosystems is fundamentally different; specifically, during the first
30 min the intensity increases sharply, the growth rate then decreases, and after 90 min, the
dependence remains constant. During the first day after mixing, the PL intensity remains
constant. Starting from the second day, the PL intensity gradually decreases. The increase
in the PL intensity of temoporfin in the composition of the temoporfin/D-g-PAAan and
temoporfin/D-g-PAAan/AuNPs systems proves the coordination of temoporfin molecules
with the macromolecules of the polymer and the Au containing nanohybrids. As evi-
denced by DLS data, the binding of PS molecules to macromolecules of D-g-PAAan and
D-g-PAAan/AuNPs leads to the destruction of the aggregates of temoporfin molecules,
which causes an increase in PL intensity. Quenching of PL, which is observed starting from
the second day after mixing, probably occurs due to the oxidation of temoporfin.
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aqueous solutions of D-g-PAAan and D-g-PAAan/AuNPs. Concentrations: temoporfin—0.72 µg/mL,
D-g-PAAan and Au—7.2 µg/mL.

Studying the influence of changes in the concentration of PS, polymer, and AuNPs on
the optical properties of the investigated nanosystems is important for understanding the
impact of the interactions of temoporfin with polymer and AuNPs on electronic processes
in temoporfin molecules in hybrid nanosystems. The changes in the concentrations of PS
molecules and metal NPs cause changes in the mean PS molecule–AuNP distances inside
the polymer macromolecules. The distance changes influence the strength of coupling
of metal NP and PS molecules [40,45–49]. Also, the coupling strength depends strongly
on the spectral overlap of SPR in metal NPs and the electronic energy spectrum of the
PS molecules. The coupling is stronger at shorter distances and higher overlap. Since
temoporfin molecules and AuNPs are closely located inside the hybrid macromolecule and
there is a significant overlap of the AuNP SPR absorption band with the absorption and PL
spectra of temoporfin molecule, it is reasonable to expect the strong coupling of AuNPs
with temoporfin molecules in temoporfin/D-g-PAAan/AuNPs nanohybrids. The coupling
occurs through two physical mechanisms. These mechanisms are plasmon enhancement
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and non-radiative energy transfer between the PS molecule and metal NP (Förster resonant
energy transfer, FRET).

The concentration dependences of the total optical density and total PL intensity of
temoporfin in water and aqueous solutions of D-g-PAAan and D-g-PAAan/AuNPs were
determined (Table 2). An increase in the concentration of PS leads to an increase in the
optical density of temoporfin in water (Table 2), which is quite expected. At the same
time, in the temoporfin/D-g-PAAan system, the absorption concentration increases faster
than bare temoporfin. This is due to the destruction of PS aggregates in the presence of
the polymer. In the triple temoporfin/D-g-PAAan/AuNPs nanosystem, the increase in
absorption occurs even faster than in the temoporfin/D-g-PAAan system. This is due to
the plasmon enhancement of light absorption by temoporfin molecules located near the
gold NPs in the nanohybrid macromolecule.

Table 2. The total optical density and total PL intensity of temoporfin in water and aqueous solutions
of temoporfin/D-g-PAAan and temoporfin/D-g-PAAan/AuNPs nanosystems. Optical density and
PL intensity are normalized to the corresponding values for temoporfin in water at its minimal
concentration of 0.072 µg/mL.

Sample Normalized Absorption
(Total Optical Density), rel. un

Normalized Total PL
Intensity, rel. un.

1 2 3 1 2 3

0.072 µg/mL (Temoporfin),
0.72 µg/mL (D-g-PAAan/Au) 1 1.38 1.58 1 1.24 1.51

0.72 µg/mL (Temoporfin),
7.2 µg/mL (D-g-PAAan/Au) 4.32 10.11 11.66 2.60 3.53 3.28

7.2 µg/mL (Temoporfin),
72 µg/mL (D-g-PAAan/Au) 45.68 80.45 95.24 6.18 7.22 5.68

1—Temoporfin; 2—Temoporfin/D-g-PAAan; 3—Temoporfin/D-g-PAAan/AuNPs.

The effect of changing the concentration of the polymer and AuNPs on the total PL in-
tensity of temoporfin in the temoporfin/D-g-PAAan and temoporfin/D-g-PAAan/AuNPs
nanosystems was investigated (Table 2). In general, an increase in the concentration of
PS with a simultaneous increase in the concentrations of polymer and gold leads to an
increase in the PL intensity of temoporfin. However, these dependencies are more complex
compared to absorption. First, at minimal concentrations of PS, polymer, and gold, the PL
intensity is minimal for temoporfin in water, intermediate for the temoporfin/D-g-PAAan
system, and maximal for the triple temoporfin/D-g-PAAan/AuNPs nanosystem. Indeed,
at the minimal concentration, the distance between PS molecules and gold NPs is maximal,
which is sufficient for the existence of plasmonic enhancement of PL, but it is too large
for the efficient action of FRET between the PS molecules and AuNPs, which quenches
PL. Second, an increase in the concentration of temoporfin in water leads to a sublinear
increase in the intensity of PL, which is due to the strengthening of aggregation in the
system of hydrophobic molecules of the PS. At higher concentrations, the distance between
PS molecules and AuNPs decreases leading to increased FRET. This results in a slowdown
in the concentration growth of PL intensity for the temoporfin/D-g-PAAan/AuNPs system.
A further increase in concentration leads to a further decrease in the distance between PS
molecules and gold NPs, and as a result, a significant predominance of FRET over plasmon
enhancement is observed. At the highest concentration, the PL intensity of the PS in the
temoporfin/D-g-PAAan/AuNPs system is the lowest (Table 2). In turn, an increase in the
concentration of the polymer leads to a faster increase in PL intensity compared to the case
of bare temoporfin in water, which is caused, as mentioned above, by the destruction of
PS aggregates in the presence of the polymer. Since the initial electronic state of the PS
molecule is the ground (unexcited) state during absorption transitions, these transitions are
not affected by FRET but only by plasmon enhancement.
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Thus, the PL intensity of PS molecules is determined by two competing physical
mechanisms. The first is the plasmon enhancement, which is stronger when the distance
between the molecules and the gold NPs is smaller [40,45–50]. The strength of the plasmon
field depends on the distance to the metal NP as Esp ∝ R−3 [49,51]. The second mechanism
is Förster dipole–dipole resonance non-radiative energy transfer (FRET), in which the
energy of an excited donor (PS molecule) can be non-radiatively transferred to an acceptor
(metal NPs) [40,45–47]. FRET leads to PL quenching. The PL quenching rate due to FRET
depends on the donor–acceptor distance as EFRET ∝ R−6. This effectively limits FRET to
below 10 nm. As a result of the competition between PL quenching due to FRET and PL
plasmon enhancement, there is an optimal distance between the metal NPs and the PS
molecules (about 10 nm) at which the PL intensity is the highest. At distances less than
10 nm, a small decrease in the distance leads to a strong decrease in PL intensity, i.e., to PL
quenching. At distances greater than 10 nm, a decrease in the distance leads to an increase
in PL intensity, i.e., to PL enhancement.

Therefore, at low concentrations of AuNPs (0.72 µg/mL), the distance between temo-
porfin molecules and AuNPs is too large for FRET. An increase in the concentration of
AuNPs and PS molecules leads to a decrease in the distance between molecules and NPs,
which causes an increase in the PL plasmon enhancement. At higher concentrations of gold
(7.2 µg/mL), the distance between the temoporforin molecules and the NPs becomes small
so that the FRET process is triggered leading to PL quenching when the gold concentration
increases. Thus, we conclude that there is an optimal concentration of AuNPs and temo-
porfin molecules that provides the greatest plasmon enhancement of various electronic
processes involving the photosensitizer temoporfin, in particular the photogeneration of
singlet oxygen.

2.3. ROS Generation

A study of ROS generation under photodynamic therapy conditions for D-g-PAAan/
AuNPs/Temoporfin systems was carried out. The aim was to exclude cellular mechanisms
of ROS generation, for example, mitochondria damage by AuNPs [51].

No statistically significant differences in ROS levels were found after 660 nm light
irradiation of saline and D-g-PAAan/AuNPs (Figure 4). ROS levels increased ~3X in a
temoporfin solution and ~5X for the triple nanocomposite D-g-PAAan/AuNPs/temoporfin
solution.
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Figure 4. ROS level for saline (control), D-g-PAAan/AuNPs (72 µg/mL), temoporfin (7.2 µg/mL)
and D-g-PAAan/AuNPs/temoporfin (72 µg/mL D-g-PAAan/AuNPs, 7.2 µg/mL temoporfin) after
irradiation with 660 nm light. Error bars indicate the standard deviation; n = 6, Kruskal–Wallis test,
* p < 0.05.

The results prove the degradation of the photosensitizer and generation of free radicals
after the 660 nm light irradiation. The conjugation of AuNPs and temoporfin in the D-g-
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PAAan polymer matrix enhances ROS formation. Thus, energy is exchanged between the
photosensitizer and the nanoparticles with an increase in ROS generation.

2.4. Photodynamic Therapy In Vitro

The potency of the nanocomposite comprised of polymer, AuNPs, and temoporfin
was tested to deduce the efficacy of the nanocomposite to kill triple-negative breast can-
cer (TNBC) cells. The IC50 of the nanocomposite was determined to be 4 µg/mL D-g-
PAAan/AuNPs with 0.4 µg/mL temoporfin. The cell counts of MDA-MB-231 TNBC cells
declined significantly with nanocomposite applications (Figure 5b), while no significant
decrease in cell numbers was observed when normal breast epithelial cells received iden-
tical treatments (Figure 5a). No significant changes in cell numbers were observed in
normal breast epithelial cell cultures that were exposed to the individual components
of the nanocomposite with or without red light exposure (Figure 5c). When TNBC cells
were treated with individual components only the m-THPC resulted in a reduction in cell
number following red light exposure (Figure 5d).
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Figure 5. Cell counts 24 h after PDT treatment with select nanocomposite concentrations. (a) Human
breast epithelial cells that did not receive light are denoted with dark green, and human breast epithe-
lial cells that did receive light are denoted with light green (n = 3), (b) TNBC cells that did not receive
light are denoted with dark red, and cells that did receive light are denoted with light red (n = 6).
(c) Human breast epithelial cells and (d) TNBC cells were exposed to the individual components of
the nanocomposite with and without light treatments. Error bars indicate the standard deviation.
* p < 0.05, ** p < 0.01, *** p < 0.005.

The combination of nanocomposite and light treatment induced cellular morphology
changes, suggesting the induction of apoptosis in the breast cancer cells (Figure 6a). No
similar shape changes were observed in the breast epithelial cells after exposure (Figure 6b).
At both concentrations tested, the breast cancer cell numbers were significantly decreased.
Red light exposure induced a significant reduction in cancer cell number compared to the
samples that did not receive light treatments (Figures 5b and 6b). This indicates that red
light treatment activates the PS and AuNPs resulting in increased cell death. The light
treatments had minimal effect on the breast epithelial cells that received the nanocomposite.
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3. Materials and Methods
3.1. Materials

All chemicals for the synthesis of polymer-nanocarriers and metal containing polymer
nanosystems were purchased from Merck (Munich, Germany) and used without further
purification, except where explicitly mentioned.

3.2. Polymer Nanocarrier

Star-like copolymer D-g-PAAan was used as a nanocarrier and a matrix for nanosystem
preparation. D-g-PAA in non-ionic form was synthesized via the radical graft polymeriza-
tion method reported previously [38]. PAA chains were grafted on certified dextran with
molecular weights MW = 7 × 104 g/mol. The number of PAA grafts was controlled by the
molar ratio of the added initiator to dextran to obtain a copolymer with 5 theoretical grafts.
The molecular parameters of this copolymer were MW = 2.15 × 106 g/mol, Rz = 85 nm,
and MW/Mn = 1.72. Then, the D-g-PAA sample was saponified to obtain the copolymer
in anionic form. Alkaline hydrolysis of D-g-PAA resulted in the transformation of amide
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groups of PAA chains to carboxylate; this is one of the peculiarities of the internal structure
of copolymer in anionic form (D-g-PAAan, Scheme 1) as previously reported [39]. Alkaline
hydrolysis was not accompanied by destruction or cross-linking of macromolecules. The
conversion degree of amide groups into carboxylate groups with 30 min of hydrolysis
calculated from the potentiometric titration data was 36%.

3.3. Nanosystem Preparation

D-g-PAAan/AuNPs: 1 g of D-g-PAAan was dissolved in 100 mL of water and kept for
24 h to achieve full dissolution. A total of 1 mL of aqueous HAuCl4 10−2 M was then added
to 9 mL D-g-PAAan. After 20 min of stirring, 0.4 mL of 10−1 M of fresh NaBH4 solution
was added and stirred for 20 min.

Temoporfin/D-g-PAAan/AuNPs: Appropriate volumes of 3 × 10−3 mg/mL temo-
porfin solution in DMSO were added to the stock D-g-PAAan/AuNPs or D-g-PAAan
solution to generate the desired concentrations and stirred for 20 min. The applied concen-
tration of DMSO was shown to have negligible cytotoxicity (Figure S1). The procedure was
performed just before application of the nanosystem to biological studies.

3.4. Optical Characterization

Absorption and PL spectra were recorded using a Cary 60 UV-VIS spectrophotometer
(Agilent Technologies Inc., Santa Clara, CA, USA) and a Shimadzu RF-6000 spectrofluo-
rophotometer (Shimadzu Corp., Kyoto, Japan), respectively. PL was excited by a wave-
length of 423 nm. The spectra were measured at room temperature for two hours after
mixing the temoporfin solution in DMSO with water and aqueous solutions of D-g-PAAan
and D-g-PAAan/AuNPs at 15 min intervals.

Polarization measurements of PL spectra were carried out to determine the degree of
PL anisotropy. PL anisotropy was determined as the following:

r =
IVV − GIVH

IVV + 2GIVH

where IiJ is the total PL intensity, ij indices denote the orientation of the polarizers be-
fore and after the sample, respectively (V—vertical and H—horizontal orientation), and
G = IHV/IHH is the grating factor [52].

3.5. Dynamic Light Scattering Characterization

Dynamic light scattering (DLS) studies of samples were performed using a NanoBrook
Omni particle size analyzer (Brookhaven Instruments, Holtsville, NY, USA) equipped with
a 532 nm laser. The scattered light was measured at an angle of 173◦ (backscattering). The
samples were kept at 25 ◦C for 5 min before measuring to achieve equilibrium. Fifteen
correlation curves for each sample were processed by the regularized singular-value de-
composition (SVD) algorithm. As a result, we obtained the hydrodynamic particle size
distribution (PSD) for the colloidal particles in the studied samples.

3.6. ROS Detection In Situ

Temoporfin (7.2 µg/mL), D-g-PAAan/AuNPs (72 µg/mL), and D-g-PAAan/AuNPs/
temoporfin solutions (7.2 µg/mL temoporfin + 72 µg/mL D-g-PAAan/AuNPs) in saline
were prepared. ROS was measured using a modified method by Daliang et al. [53]. Three
milliliters of each solution were added to 2′,7′-dichlorofluorescein (DCFH, Sigma-Aldrich,
Burlington, MA, USA) for ROS detection. The final DCFH concentration was 15 × 10−6 M.
The solutions were irradiated with 660 nm light. The light power was 100 mJ/s, and the
irradiation dose was 30 J/mL. Fluorescence measurements were collected immediately
after the end of light irradiation. A Shimadzu RF-6000 spectrofluorophotometer with
LabSolutions RF (ver. 1.11) software was used. Fluorescence was registered at 525 nm
with 488 nm excitation. The fluorescence of the samples was evaluated in arbitrary units.
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All samples were in the same conditions during the experiment. This study was repeated
six times.

3.7. In Vitro Cell Culture

The human TNBC line MDA-MB-231 and the human breast epithelial cell line MCF10A
were used in this study (ATCC, Manassas, VA, USA). The MDA-MB-231 cell line was main-
tained in Dulbecco’s Modified Eagle Medium (DMEM, Corning, NY, USA) supplemented
with 10% fetal bovine serum (FBS; Corning, NY, USA) and 1% antibiotic/antimycotic
(AA; ThermoFisher, Waltham, MA, USA). The MCF10A cell line was grown in DMEM en-
hanced with 10% FBS, 1% AA, and MEGM SingleQuots containing insulin, hydrocortisone,
GA-1000, hEGF, and BPE (Lonza, Walkersville, MD, USA). All the cell cultures were grown
at 37 ◦C in a humidified atmosphere of 5% CO2.

3.8. Photodynamic Therapy Protocol

The complete procedures for the PDT treatment were performed in the dark to prevent
an unwanted reaction of the light-sensitive treatment concentrations with the atmospheric
light. MDA-MB-231 and MCF10A cell lines were seeded in well plates and grown to
70% confluence. The culture medium was removed, and the cells were washed with PBS.
The different doses of nanocomposite treatment concentrations were then added to the
wells. The control wells only received DMEM. The cultures were then incubated for 90 min
with the nanocomposite. At the end of the incubation period, the treatment medium was
removed from the plates. The wells were washed three times with PBS to avoid interference
of the phenol red in the DMEM with the wavelengths of the red-light source. Subsequently,
the plate was exposed to light with the third wash of PBS on the wells. The plates were
placed in a cell culture hood 15 cm below a low-power red light for 10 min without a
lid. As a light source, a 660 nm Deep Red LED Light Bulb for red light therapy (ABI-A
Brighter Idea, Inc., Rockville, MD, USA) with a power density of 93.6 mW/cm2 and light
dose of up to 28.1 J/cm2 was used. The red light was covered with aluminum foil to
reduce light scatter and to expose the plate to the full intensity of the red light. After this
step, the PBS was removed and replaced with the culture medium of the cells. For the
experiments to evaluate the toxicity of the nanocomposite in the dark, the cells of a second
plate were treated under the same conditions but were not exposed to red light. The plates
not exposed to light were filled with the culture medium right after the third wash with
PBS. The plates were then kept in the incubator for 24 h before the experiments detailed
below were performed.

3.9. Cell Counts and Morphology

After PDT protocols with varying concentrations and constituents were implemented,
the cell morphology was imaged after 24 h with a Zeiss Axiovert 40 CFL inverted micro-
scope and collected with a Zeiss AxioCam camera and AxioVision 4.8 software (Pleasanton,
CA, USA). Cell counts were performed manually using a hemocytometer after the cells
were washed with PBS, detached with 0.05% trypsin (Corning, Manassas, VA, USA) and
neutralized with cell culture media.

3.10. Statistical Analysis and Figures

Statistical analyses for samples with one variance were performed using pair of
two samples for a mean value, and statistical analyses for samples with more than one
variance were performed with single-factor analysis of variance. Tests and plots were
generated using Excel (Microsoft, Washington, DC, USA, https://www.microsoft.com/
en-us/microsoft-365/excel, accessed on 6 March 2024). Experiments had a minimum of
n = 3 per group. The Kruskal–Wallis test (p < 0.05, n = 6) was used to analyze fluorescence
when measuring ROS levels. Cell counts were analyzed using a one-way ANOVA for
comparisons between the treatment groups, and student’s t-test was used for comparisons

https://www.microsoft.com/en-us/microsoft-365/excel
https://www.microsoft.com/en-us/microsoft-365/excel
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between the illuminated and control treatment groups. The date reported shows the mean
value ± the standard deviation. A p-value ≤ 0.5 was considered significant.

4. Conclusions

We have demonstrated the efficiency of a ternary PDT system comprising a dex-
tran/polyacrylamide star-like polymer with incorporated temoporfin and gold nanopar-
ticles in the generation of cytotoxic reactive oxygen species under 660 nm LED light
excitation. Detailed studies of the system’s optical properties and structure using dynamic
light scattering and absorption/emission spectroscopy revealed peculiarities of the excita-
tion mechanism responsible for PDT effects and allowed optimization of the composition
to achieve higher therapeutic effects. We demonstrated the applicability and effectiveness
of the system in PDT cancer treatment by comparative in vitro studies of human triple-
negative breast cancer cells and human breast epithelial cells. Though this study gives
a proof of concept only, the developed system is ready for in vitro studies and can be
modified for application to a broad variety of cancer types.
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