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Abstract: A new fermentation method for kiwi wine was explored by developing the well-known
medicinal and edible plant Cyclocarya paliurus (C. paliurus) to create more value with undersized
kiwifruits. In this study, the changes in bioactive substances during the C. paliurus–kiwi winemaking
process were analyzed on the basis of response surface optimization results, and the antioxidant
capacity, aromatic compounds, and sensory quality of the C. paliurus–kiwi composite wine with
kiwi wine and two commercial kiwi wines were compared. The results showed that DPPH radical,
OH− radical, and ABTS+ scavenging rates remained at over 60.0%, 90.0%, and 70.0% in C. paliurus–
kiwi wine, respectively. The total flavonoid content (TFC) and total polyphenol content (TPC) of
C. paliurus–kiwi wine were significantly higher than those of the other three kiwi wines. C. paliurus–
kiwi wine received the highest score and detected 43 volatile compounds. Ethyl hexanoate, which
showed stronger fruity and sweet aromas, was one of the main aroma components of C. paliurus–kiwi
wine and different from commercial wines. This wine has a good flavor with a natural and quality
feeling of C. paliurus–kiwifruit extract, low-cost processing, and great market potential.

Keywords: Cyclocarya paliurus; kiwi wine; undersized kiwifruits; flavor compounds; antioxidant
capacity; sensory analysis

1. Introduction

Cyclocarya paliurus (Batal) Iljinskaja (C. paliurus) is a traditional, medicinal, and edible
plant distributed in southern China [1]. In past studies, the main focus has been on the
activity studies and cytotoxic assays of C. paliurus extracts and compounds. Its leaves have
been widely used as a remedy for hyperlipidemia in traditional medicine. Xie et al. [2]
demonstrated that its leaves are commonly used as a remedy for hyperlipidemia. C. paliurus
leaves ethanol extract, which shows the potential to clean hepatic fat and may be significant
in the treatment of diabetic cardiomyopathy [3,4]. C. paliurus polysaccharide can also treat
type 2 diabetes mellitus [5]. Furthermore, C. paliurus can be added to functional foods
and dietary supplements. At present, C. paliurus leaves are utilized as green vegetables or
made into tea, which is a traditional, healthy, sweet herbal beverage in China [6,7]. Other
beverage products of C. paliurus, such as alcoholic products, are yet to be developed.

Kiwifruit (Actinidia Lindl) is a fruit with a sweet taste and is rich in vitamin C, various
essential amino acids, and other nutrients [8]. Currently, China produces more than half the
world’s kiwifruit. However, the increase in production has also produced a large number of
perishable, undersized kiwifruits, which are not suitable for sale [9]. Kiwifruit growers are
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looking to manufacture other value-added products from undersized kiwifruit. Therefore,
the kiwifruit industry needs to diversify its products, such as kiwi wine. Processing
defective fruits into value-added food products such as fermented beverages could reduce
orchard economic losses and maximize the use of fruit resources [10].

In fruit wines and beverages, fruity aroma is an important flavor profile and the main
distinguishing characteristic as it embodies sensory pleasure [11]. Since the kiwi wine
aroma is not attractive enough, many attempts have been made to improve it, such as
mixed fermentation with compound yeasts, fermentation with fruit peel, or selection of
kiwifruit varieties, etc. Mixed fermentation produces more popular fragrances, such as the
flower and sweet fruit notes of wines, and produces more volatile compounds compared
with pure fermentation [12]. Kiwifruit peel is a potentially valuable source of compounds
and has a higher antioxidant level than fruit pulp [13]. Fermentation with peel and pulp
can increase the aromatic content of fruit wine. Tea is considered a suitable medium for
fermentation and can improve the quality of wine. For example, CTC (crush, tear, and curl)
tea is typical for producing tea cider [14]. C. paliurus leaves are also a kind of traditional
Chinese tea. Likewise, the C. paliurus aqueous extracts show a bright brownish-yellow
color, which makes the wine sample more translucent. The sales of easy-drinking wine with
medium alcohol content have been growing in Europe [15]. Proper drinking of fruit wine,
including medium alcohol content fruit wine, is beneficial to human health [16]. Therefore,
we proposed the combination of C. paliurus and kiwifruit to produce a kiwifruit–tea wine
with medium alcohol content and to improve the nutrient value and enhance the aroma of
kiwi wine [17]. In addition, this proposal aimed to reduce the waste of undersized kiwifruit
and improve the income of fruit farmers.

In this research, we analyzed the antioxidant levels and their changes during the
C. paliurus-blended kiwi wine (herein called C. paliurus–kiwi wine) making process. We also
explored alterations in physicochemical properties and the correlation of physicochemical
properties with antioxidant activity. At the same time, we also compared C. paliurus–kiwi
wine, kiwi wine, and two commercial kiwi wines in order to have a more comprehensive
understanding of the similarities and differences in the antioxidant capacity and aromas
of Cyclocarya paliurus–kiwifruit composite fermented wine and kiwi wine. Undersized
“Xuxiang” kiwifruits were chosen as the main components to make C. paliurus–kiwi wine.
The making process of C. paliurus–kiwi wine was refined into an alcoholic fermentation
and resting process, making the whole process more systematic. The C. paliurus–kiwi wine
opens up a new direction for the development of C. paliurus, which is only available as
a tea drink currently. We hope that the results will provide a theoretical foundation for
C. paliurus–kiwi winemaking.

2. Results and Discussion
2.1. Nutrient and Antioxidant Capacity

RSM is a statistical method to optimize projects and improve experimental efficiency.
This method has been applied in the wine fermentation of fruits such as cactus pear, mango,
and date palm in early reports [18–20]. The optimum C. paliurus–kiwi winemaking condi-
tion (data provided in the supplementary material) was optimized by RSM, and alterations
in the physicochemical properties and antioxidant activity of wine were analyzed accord-
ing to this condition. The TFC, TPC, and other substances in C. paliurus and kiwifruit
could effectively scavenge free radicals. Martínez et al. [21] used more than one method
in order to gain a fuller picture of the antioxidant capacity of fruit co-products. The total
antioxidant activity of the sample was evaluated using four indicators (DPPH, ABTS+,
OH−, and O2

− scavenging activity). Then, the correlations among time, physicochemical
properties (TFC, TPC, and ABV), and antioxidant capacity (DPPH, ABTS+, OH−, and O2

−)
of C. paliurus–kiwi wine were analyzed.

Figure 1A showed that the DPPH radical scavenging ability fluctuated in the first
10 days of the winemaking process and then fell slowly but remained above 60.0% through-
out the 14 days of the winemaking process of the C. paliurus−kiwi wine. The study of wines
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made from eight muscadine varieties showed that “Noble” among them had the same vari-
ation as C. paliurus–kiwi wine [22]. The same DPPH radical scavenging capacity variation
was found in grenadine pomegranate wine by Xie et al., and Lan et al. [2,23] proved that
the DPPH radical scavenging ability of flavonoids from C. paliurus was dose-dependent
and was 38.3% to 94.7% for the concentrations of flavonoids at 10 to 80 mg/100 mL. Wang
et al. [24] speculated that the change in polyphenol content was responsible for the change
in DPPH scavenging capacity. ABTS+ scavenging activity decreased to 71.9% initially, then
increased during the 4th to 6th days of fermentation, and remained relatively stable at
over 80.0% in the 6th to 14th days of the C. paliurus–kiwi winemaking process. ABTS+

and FRAP showed the same decreasing trend in the white wine, as antagonistic interac-
tions between polyphenols may occur [24]. These changes in the fermentation process are
due to the interactions of microorganisms and enzymes, resulting in the decomposition
and transformation of substances [25]. The O2

− scavenging activity went up and then
fell sharply. Lei et al. [26] demonstrated that ABTS+ and O2

− scavenging activities were
18.0–63.2% and 35.6–61.6% at 5.00–25.0 mg/100 mL of C. paliurus flavonoids extraction
in liquid form. However, a slight decrease in O2

− scavenging activity was observed in
pomegranate wine. After fermentation, the antioxidant activity in orange wine will be
lower than that in orange juice [27]. Different varieties of wine showed different patterns of
change in O2

− scavenging activity during fermentation, reflecting the differences in their
phenolic composition. The OH− radical is a reactive oxygen species formed in vivo that
can cause serious damage to biomolecules [28]. The OH− radical scavenging ability in the
C. paliurus–kiwi wine samples was strong and remained unchanged.

TPC increased in C. paliurus–kiwi wine made with “Xuxiang” kiwifruit during early
fermentation and later stabilized after yeast fermentation, as shown in Figure 1A. Earlier
research found that the TPCs in “Hayward” and “Guichang” wines considerably increased,
whereas those in “Jinkui”, “Milian One”, and “Yate” wines showed a decreasing trend
after fermentation [29]. Changes in the TPC of C. paliurus–kiwi wine may be related to
bioconversion of the non-free forms of phenolic compounds and the metabolism of yeast
in the fermentation broth. TFC in wine increased during the winemaking process. The
same result was found in other research [30,31]. The increase may be due to the fact
that flavonol compounds have simpler structures; polyphenols were broken down and
converted into flavonoids by enzymes during the winemaking process of C. paliurus–kiwi
wine [32]. As shown in Figure 1B, ABV (r = 0.857) and TFC (r = 0.885) were significantly and
positively correlated with time. A negative correlation was found between O2

− scavenging
activity (r = −0.870) and time. Additionally, ABV was found to be highly and positively
correlated with TFC (r = 0.884). The total sugar content of C. paliurus–kiwi wine decreased
continuously and sharply from 18 to 6 ◦Brix during 7 days of the alcohol fermentation. At
the end of alcohol fermentation, the alcohol content was 9.60 vol.%. The addition of sucrose
is an important way to increase the ABV of C. paliurus–kiwi wine [33]. During the resting
process, the concentration of alcohol content remained the same. Figure 1C,D showed
that the O2

− scavenging activity, TFC, and TPC of C. paliurus–kiwi wine were significantly
higher than those of the other three kiwi wines. This phenomenon is closely related to the
abundance of organic compounds, especially flavonoids, in C. paliurus leaves [2].

In conclusion, the TFC content in the wine gradually increased as the alcohol content
increased. The antioxidant activity during the winemaking process remained at a relatively
high and stable level. The TFC and TPC of C. paliurus–kiwi wine were higher than the other
three kiwi wines. Thus, the effective antioxidant capacities of C. paliurus–kiwi wine might
improve some nutritional principles.
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Figure 1. (A) Changes in TFC, TPC, ABV, and antioxidant capacity during the winemaking process
of C. paliurus–kiwi wine (the same below). (B) Correlation analysis among TFC, TPC, ABV, and
antioxidant capacity. (C) Comparison of antioxidant capacity in four kiwi wines. (D) Comparison
of TFC and TPC contents in four kiwi wines. Asterisks * and different letters represent significant
differences (p < 0.05).

2.2. Volatile Aroma Compounds in Four Kiwi Wines

Wine flavor comes from the mutual coordination of esters, alcohols, acids, aldehydes,
ketones, and other compounds. Other factors, such as ethanol content and the use of
pectinase, are also important for the aroma characterization of kiwi wine. Ethanol can
influence the release of volatile compounds [34]. Pectinase increases the juice yield of
kiwifruit and contributes to the clarification of fruit wines. Jiang et al. [35] demonstrated
that the content of aromatic compounds such as higher alcohols, esters, and terpenes
increased significantly in dragon fruit wine with pectinase pre-treatment. During the
resting process, the content of various volatile components, such as ethanol, obutanol,
isoamyl alcohol, caprylic acid, and capric acid, tends to decrease and eventually stabilize.
The main aroma components of four kiwi wines are formed during the alcohol fermentation
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stage. As shown in Figure 2A,B, 43 volatile compounds were detected in C. paliurus–
kiwi wine, totaling 9148.92 µg/L. kiwi wine, K1, and K2 contained 53, 34, and 29 flavor
substances, with mass concentrations of 8783.47, 5604.15, and 7126.43 µg/L, respectively.
The C. paliurus–kiwi wine contained slightly fewer types of volatile compounds but had
higher mass concentrations of volatile compounds than kiwi wine, with differences in
esters (4193.83 µg/L vs. 3236.88 µg/L) and alcohols (2012.47 µg/L vs. 451.810 µg/L).
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Figure 2. (A) Comparison of volatile compound quantities in four kiwi wines. (B) Comparison of
volatile compound contents in four kiwi wines. (C) Heat map of volatile aroma substances in four
kiwi wines. (D) Principal component analysis (PCA) for 100 volatile flavor compounds. The codes
for volatile flavor compounds were defined in Supplementary Table S3.
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These volatiles were classified into eight categories, namely esters (46 types), acids
(10 types), alcohols (9 types), terpenoids (8 types), carbonyl (6 types), hydrocarbons
(6 types), phenolics (5 types), ether (1 type), and others (9 types). A total of 100 substances
were detected in four kiwi wines. Esters impart sweet and fruity odors and occupy an
important part of the alcoholic fermentation by-products of the C. paliurus–kiwi wine [36].
They are derived from the fermentation products of brewer’s yeast and the enzymatic
esterification of higher alcohols and fatty acids. The esters dominated in terms of number.
The number of esters in C. paliurus–kiwi wine, kiwi wine, K1, and K2 were 20, 27, 16, and 14,
respectively. Additionally, the C. paliurus–kiwi wine had the highest ester mass concentra-
tion among the four wines, reaching 45.8%. The content of volatile acids in C. paliurus–kiwi
wine is greatly increased by fermentation. Acids balance the fruit aromas in wine. Acetic
acid and octanoic acid are high in the four types of wine [37]. Acetic acid makes the wine
sweet and cheesy. Among the alcohols, 3-methyl-1-butanol and phenylethyl alcohol in the
C. paliurus–kiwi wine (1323.32 and 572.120 µg/L) were much higher than those in the kiwi
wine (176.050 and 181.040 µg/L) and K2 (28.3900 and 84.4500 µg/L) and were not detected
in K1. 3-methyl-1-butanol has a whiskey, malt, and burnt aroma, and the rich 3-methyl-1-
butanol in C. paliurus–kiwi wine is related to the action of the BV818 yeast strain. Moreover,
phenylethyl alcohol is converted from phenylalanine and has a pleasant floral and honey
fragrance. The C. paliurus–kiwi wine contained two phenolics (2,4-di-tertbutylphenol and
phenol and 2-methoxy-3-(2-propenyl)-) but in low amounts. Moreover, terpenoids are
typical compounds in wines and directly reflect the fruit flavor profile of the wine [38].
Terpenoids were more abundant and diverse in C. paliurus–kiwi wine, and a few types
were found in K1 and K2.

A heat map was made based on the number of volatile flavor components detected
to visualize the concentration difference in flavor compounds between the C. paliurus–
kiwi wine, kiwi wine, K1, and K2, with each compound represented by a different color
shade. Figure 2C shows the variabilities of the volatile aroma substances between the
C. paliurus–kiwi wine and the other three available wines. The volatile components of
C. paliurus–kiwi wine and kiwi wine were richer than those of K1 and K2. The sample
clustering results also indicated that the C. paliurus–kiwi wine was more similar in quality
to kiwi wine. PCA analysis in Figure 2D reveals close associations among 100 volatile flavor
compounds. Phenylacetic acid ethyl ester, terpinen-4-ol, acetic acid 2-phenylethyl ester,
and 1-hexanol were highly positioned on the positive sides of both PC1 and PC2. Methyl
benzoate occupied the highest sum of the absolute loading values on the sides of both PC1
and PC2; thus, methyl benzoate was proven to be a key aroma compound.

2.3. Odor Profiles and PCA Analysis of OAVs in Four Kiwi Wines

The ratio of volatile aroma compound concentration to an odor threshold value in a
food or beverage helps determine the relative importance of aroma/flavor [39]. OAV is the
average concentration of an aromatic substance divided by its odor threshold. Threshold
values are susceptible to small changes in the properties and structure of a substance,
resulting in large changes. When 1 > OAV > 0.1, it means that the aromatic compound can
increase the aroma and harmony of the wine to some extent. When OAV > 1, the substance
may have a direct influence on the aroma of the wine and be identified as a characteristic
aroma substance [40]. Table 1 shows the OAVs of the four kiwi wines, which were obtained
using reported sensory thresholds and aroma descriptions [41–43].

Linalool, geraniol, (Z)-ethyl cinnamate, ethyl butyrate, 3-methylbutyl acetate, ethyl hex-
anoate, ethyl octanoate, ethyl decanoate, benzoic acid ethyl ester, methyl 3-phenyl propenoate
ethyl heptanoate, 3-phenylpropionic acid ethyl ester, and 4-allyl-2-methoxyphenol had the
highest concentrations with OAVs above 1. In C. paliurus–kiwi wine, 3-methylbutyl acetate
and ethyl heptanoate were the characteristic volatiles that differed from the other three wines
and had the pronounced aromas of banana and pineapple. As shown in Figure 3A, the
C. paliurus–kiwi wine had a more pronounced sweet and fruity aroma. LA-AU yeast can
develop the complex aroma of ripe fruits, such as sour cherries, blackberries, etc., resulting in
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the smooth taste of the C. paliurus–kiwi wine. The kiwi wine had a bit more floral aroma, while
K1 and K2 had a higher intensity of chemical and fatty flavor. Similarly, nine-carbon-atom
straight-chain unsaturated alcohols, aldehydes, and 3-hexen-1-ol are important sources of
green and fatty flavors. Zhang et al. [44] demonstrated that all three melon spirits showed a
green, fatty flavor. The PCA result in Figure 3B showed that the C. paliurus–kiwi wine and
three wines could be separated by PC1 (54.8%) and PC2 (34.1%). Ethyl hexanoate, n-decanoic
acid, 3-methylbutyl acetate, ethyl octanoate, ethyl decanoate, ethyl 9-decenoate, and ethyl
heptanoate were closer to C. paliurus–kiwi wine. Those volatile aroma compounds were the
substances with fruity aromas, like those in bananas, green apples, and pineapples [45].

Table 1. Aroma series and OAVs of volatile aroma substances in four kiwi wines.

Compounds OT (µg/L) Aroma Description Aroma Series

OAVs

C.paliurus–
Kiwi Wine Kiwi Wine K1 K2

Octanoic acid 500 Fatty, rancid Fatty 0.494 0.0410 0.0150 n.d.

n-Decanoic acid 1.00 × 103 Waxy, tallowy, rancid,
soapy Fatty, chemical 0.127 n.d. n.d. n.d.

Linalool 25.0 Citrus, floral, sweet, grape Floral, fruity,
sweet 0.708 2.79 n.d. n.d.

Geraniol 7.50 Citric, geranium Floral 0.877 2.09 n.d. n.d.

(Z)-Ethyl cinnamate 1.00 Sweet, spicy, cinnamon,
woody

Sweet, green,
chemical n.d n.d. 8.63 n.d.

Ethyl butyrate 20.0 Papaya, butter, sweetish,
apple Fruity n.d 52.7 n.d. n.d.

3-Methylbutyl acetate 30.0 Banana Fruity 3.53 n.d. n.d. n.d.

Ethyl hexanoate 8.00 Green apple, brandy,
wine-like Fruity 55.0 16.5 11.0 2.74

Ethyl octanoate 250 Sweet, fruity, pear Fruity, sweet 6.46 0.702 0.494 1.25
Ethyl decanoate 500 Fruity, Strawberry Fruity 2.54 0.160 n.d. 1.65

Benzoic acid ethyl ester 53.0 Rose Floral 3.66 11.4 6.24 n.d.
Ethyl 9-decenoate 100 - - 0.215 n.d. n.d. n.d.

Phenylacetic acid ethyl
ester 70.0 Fruity, rose, honey Fruity, floral n.d 0.116 0.0600 n.d.

Methyl 3-phenyl
propenoate 11.0 Cherry Fruity n.d 4.23 n.d. n.d.

Ethyl heptanoate 0.170 Pineapple Fruity 156 n.d. n.d. n.d.
3-Phenylpropionic acid

ethyl ester 1.60 - - n.d 10.8 n.d. n.d.

4-Allyl-2-
methoxyphenol 5.00 Clove, honey, spice Floral n.d n.d. 1.20 n.d.

Odor thresholds (OT), not detected (n.d.).

In summary, the main volatile flavor components detected in the C. paliurus–kiwi wine
made a key contribution to the sweet aroma, delicate taste, and smooth taste with a long
aftertaste of the wine, resulting in a kiwi wine with a harmonious flavor and pleasant aroma.

2.4. Sensory Analysis of Four Kiwi Wines

The results of the sensory analysis of wines are shown in Table 2. Among them, the
C. paliurus–kiwi wine received the highest score, with a clear brownish-yellow color, a
soft and smooth taste, and a pronounced fresh kiwifruit flavor. The total score for sensory
evaluation of C. paliurus–kiwi wine was higher than the three kiwi wines, which meant
sensory quality for C. paliurus–kiwi wine was improved. With the addition of C. paliurus
aqueous extracts, the color of C. paliurus–kiwi wine was darker than that of kiwi wine and
closer to the brown color of the kiwifruit peel. Lan et al. [46] believed that if the color of
kiwi wine was similar to that of kiwifruit itself, it would be more acceptable to consumers.
In conclusion, the C. paliurus–kiwi wine can improve the sensory quality of kiwi wine to a
certain extent, and the C. paliurus–kiwi wine has more prospects in the future sales market.
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Table 2. Sensory analysis of four kiwi wines.

Color Appearance
(25.0 Points)

Aroma
(30.0 Points)

Taste
(30.0 Points)

Typicality
(15.0 Points)

Total Score
(100.0 Points)

C. paliurus–kiwi
wine 22.0 22.8 23.8 9.80 78.5

kiwi wine 20.0 23.8 23.8 10.2 77.8
K1 19.5 20.5 22.0 9.50 71.5
K2 20.0 20.0 22.0 9.10 71.1

The mean scores of 15 judges (three replicates) were kept as three significant numbers.

3. Materials and Methods
3.1. Materials

Two commercial kiwi wines with high-sale volumes currently on the market were pur-
chased and analyzed in comparison with C. paliurus–kiwi wine and kiwi wine. Information
about the commercially available kiwi wines is presented in Table 3.

Table 3. Information about the commercially available kiwi wines.

Name Brand Features ABV (Vol.%)

K1 Dujiangyan Qingcheng Mountain Avenue Industrial Co. (Chengdu, China) Fermented wine 12.5
K2 Anhui Rose Supreme Organic Food Co. (Lu’An, China) Fermented wine 11.0

Alcohol by volume (ABV).

3.2. Preparation of C. paliurus Aqueous Extracts and Kiwifruit Pulp

Fresh “Xuxiang” kiwifruits were purchased in Yuyao City, Zhejiang Province, China.
Intact mature fruits (8 ◦Brix) without any physical injuries with a length of 4–6 cm (sub-
stantially smaller than normal kiwifruits) were collected. Commercially dried C. paliurus
leaves were collected in Sangzhi County, Hunan Province, China. Whole, undersized
kiwifruits were washed with water and then liquefied with fruit peel to obtain a thick pulp
in a blender. The leaves were ground in a blender (Zhejiang Supor Co., Ltd., Hangzhou,
China) for 1 min until uniform in size, and the powder could pass through a 200-mesh
sieve to make the extraction facile [47]. The ratio of C. paliurus powder to water was 1:50
(w/v). Extraction was performed in a water bath at 70 ◦C for 25 min. The C. paliurus
aqueous extracts were added to the kiwifruit pulp after being cooled to room temperature
(21 ± 3 ◦C). In this experiment, pectinase (>40,000 AJDU/g, Diboshi Brewing Machine Co.,
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Ltd.) at 160 mg/L was added to the C. paliurus–kiwi mixed solution, and SO2 concentration
was adjusted to 50.0–60.0 mg/L with the addition of food-grade K2S2O5 (each gram of
K2S2O5 can convert to 0.520–0.570 g SO2) (Zhejiang Yinuo Biological Technology Co., Ltd.,
Wenzhou, China). The mixed solution was then placed in a 40 ◦C thermostat water bath for
3.5 h to obtain the C. paliurus–kiwi mixed enzymatic hydrolysate [48].

3.3. Wine Fermentation

The main fermentation was conducted for seven days and then filtrated through
gauze, and then the wine was transferred to a new glass vessel to start post-fermentation
for seven days (Scheme 1). The fermentation was conducted in triplicate. Wine samples
were collected every two days, then sealed and stored at 4 ◦C until analysis.

Molecules 2023, 28, x FOR PEER REVIEW 9 of 15 
 

 

Table 3. Information about the commercially available kiwi wines. 

Name Brand Features ABV (Vol.%) 

K1 Dujiangyan Qingcheng Mountain Avenue Industrial Co. (Chengdu, China) Fermented wine 12.5 

K2 Anhui Rose Supreme Organic Food Co. (Lu’An, China) Fermented wine 11.0 

Alcohol by volume (ABV). 

3.2. Preparation of C. paliurus Aqueous Extracts and Kiwifruit Pulp 

Fresh “Xuxiang” kiwifruits were purchased in Yuyao City, Zhejiang Province, China. 

Intact mature fruits (8 °Brix) without any physical injuries with a length of 4–6 cm (sub-

stantially smaller than normal kiwifruits) were collected. Commercially dried C. paliurus 

leaves were collected in Sangzhi County, Hunan Province, China. Whole, undersized ki-

wifruits were washed with water and then liquefied with fruit peel to obtain a thick pulp 

in a blender. The leaves were ground in a blender (Zhejiang Supor Co., Ltd., Hangzhou, 

China) for 1 min until uniform in size, and the powder could pass through a 200-mesh 

sieve to make the extraction facile [47]. The ratio of C. paliurus powder to water was 1:50 

(w/v). Extraction was performed in a water bath at 70 °C for 25 min. The C. paliurus aque-

ous extracts were added to the kiwifruit pulp after being cooled to room temperature (21 

± 3 °C). In this experiment, pectinase (>40,000 AJDU/g, Diboshi Brewing Machine Co., 

Ltd.) at 160 mg/L was added to the C. paliurus–kiwi mixed solution, and SO2 concentration 

was adjusted to 50.0–60.0 mg/L with the addition of food-grade K2S2O5 (each gram of 

K2S2O5 can convert to 0.520–0.570 g SO2) (Zhejiang Yinuo Biological Technology Co., Ltd., 

Wenzhou, China). The mixed solution was then placed in a 40 °C thermostat water bath 

for 3.5 h to obtain the C. paliurus–kiwi mixed enzymatic hydrolysate [48]. 

3.3. Wine Fermentation 

The main fermentation was conducted for seven days and then filtrated through 

gauze, and then the wine was transferred to a new glass vessel to start post-fermentation 

for seven days (Scheme 1). The fermentation was conducted in triplicate. Wine samples 

were collected every two days, then sealed and stored at 4 °C until analysis. 

 

Scheme 1. The production process of C. paliurus–kiwi wine. 

Fermentation of C. paliurus–kiwi wine was conducted according to previous litera-

ture with some modifications and response surface methodology (RSM) optimization re-

sults (data provided in the supplementary material) [49,50]. The initial sugar content was 

adjusted to 18 °Brix with white granulated sugar (Hebei Dundao Food Technology Co., 

Ltd., Shijiazhuang, China). Then, C. paliurus–kiwi-mixed enzymatic hydrolysate was ster-

ilized at 65 °C for 30 min and cooled to 21 ± 3 °C. The same weight of commercial Saccha-

romyces cerevisiae strains LA-MA, LA-AU, and BV818 were activated (hydration in a 5% 

glucose solution at 37 °C for 30 min) and added to the C. paliurus–kiwi mixed enzymatic 

Scheme 1. The production process of C. paliurus–kiwi wine.

Fermentation of C. paliurus–kiwi wine was conducted according to previous literature
with some modifications and response surface methodology (RSM) optimization results
(data provided in the supplementary material) [49,50]. The initial sugar content was
adjusted to 18 ◦Brix with white granulated sugar (Hebei Dundao Food Technology Co.,
Ltd., Shijiazhuang, China). Then, C. paliurus–kiwi-mixed enzymatic hydrolysate was
sterilized at 65 ◦C for 30 min and cooled to 21 ± 3 ◦C. The same weight of commercial
Saccharomyces cerevisiae strains LA-MA, LA-AU, and BV818 were activated (hydration in a
5% glucose solution at 37 ◦C for 30 min) and added to the C. paliurus–kiwi mixed enzymatic
hydrolysate. Then, the enzymatic hydrolysate was placed in the dark at 21 ± 3 ◦C without
stirring for alcohol fermentation [51,52]. The end of alcohol fermentation was marked by the
concentration of Brix keeping the same after two-day measurements. The yeast cells were
removed by centrifugation at 7000 rpm for 10 min. Later, the crude C. paliurus–kiwi wine
was filtrated through gauze and moved to a new sterilized glass bottle to rest for 7 days
(Scheme 1) and clarify [53]. The resting process was carried out under the same conditions
as alcohol fermentation. Citric acid and Na2CO3 were employed to adjust the pH of the
fermentation broth to 3.5–4.0 throughout the C. paliurus–kiwi winemaking process. Kiwi
wine is made solely from kiwifruit fermentation, using the same materials and methods as
C. paliurus–kiwi wine. The fermentation was conducted in triplicate. C. paliurus–kiwi wine
samples were collected every 2 days, sealed, and stored at 4 ◦C [54].

3.4. Nutrient and Antioxidant Capacity Analysis

The soluble solid content was measured by a hand-held Abbe refractometer (Hangzhou
Luheng Biotechnology Co., Ltd., Hangzhou, China), and the results were expressed in de-
grees Brix. pH was determined using a pH meter (Shanghai Lichen Instrument Technology
Co., Ltd., Shanghai, China). The wine was titrated to a pH of 8.2, and the total titratable
acidity (TTA) content was calculated based on the conversion coefficient of malic acid [55].
Total polyphenol content (TPC) was determined by Folin–Ciocalteu colorimetry. Total
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flavonoid content (TFC) was determined as described previously with slight modifications
to titrate with 0.1 mL/L of NaOH [56].

The antioxidant activities of the samples were evaluated using 2,2-diphenyl-1-picrylhydrazyl
(DPPH; Sigma-Aldrich St. Louis, MO, USA), 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonic
acid) diammonium salt (ABTS+; Sigma-Aldrich St. Louis, MO), hydroxyl (OH−), and superoxide
anion (O2

−) radical scavenging assays as described by Du et al. [57] and Panja et al. [58] with
some modifications. Briefly, the DPPH radical scavenging rate was determined by the subsequent
method. A total of 2 mL aqueous solution containing 0.2 mL C. paliurus–kiwi wine was added
to 2 mL 0.1 mmol/L solution of DPPH in methanol. The ABTS+ scavenging rate was measured
with the addition of a 0.2 mL wine sample to 2 mL of a diluted ABTS+ solution. OH− radical
scavenging rate was assayed by mixing 9 mmol/L salicylic acid/ethanol solution, wine sample,
and 9 mmol/L FeSO4 solution with 1 mL each. A total of 4.5 mL of 50 mmol/L Tris-HCl buffer
(pH 8.2) was mixed with 1 mL wine sample, and 0.4 mL of 25 mmol/L pyrogallol solution was
used to determine O2

− scavenging activity.
Alcohol by volume (ABV) was determined based on GC–MS [59,60]. Ethanol and pure

water were mixed at 2%, 3%, 4%, 5%, and 7% (v:v) to prepare the ethanol standard working
fluid. The concentration of the internal standard isopropanol solution was 0.002 mL/mL.
The oven temperature program started at a temperature of 40 ◦C, which was held for
3.8 min, and then increased to 200 ◦C at a rate of 15 ◦C/min. Finally, the temperature
was kept at 200 ◦C for 4 min post-run. The working curve was drawn with ethanol
concentration as abscissa and the ratio of the peak area of ethanol to the internal standard
as ordinate. Figure 4 shows the gas chromatograms of standards and C. paliurus–kiwi
wine samples, and the working curve was Y = −17.232X + 4.9836, R2 = 0.9957. The
C. paliurus–kiwi wine sample was diluted fivefold for GC–MS analysis. The results were
expressed as the arithmetic mean of three independent measurements obtained under
repeatability conditions.

3.5. Headspace Solid Phase Microextraction/Gas Chromatography–Mass Spectrometer
(HS-SPME/GC–MS) Analysis

Kiwi wine (5 mL) was pipetted into a cleaned 20 mL vial with 1 g NaCl. 2-octanol
dissolved in ethanol (0.45 mg/mL) was used for semi-quantification of the aroma com-
pounds contained in the four kiwi wines. Volatile substances were analyzed on an 8890 N
gas chromatograph equipped with a 5977-mass spectrometer (Agilent Technologies, Santa
Clara, CA, USA). An Agilent PAL 3 autosampler was used in the experiment. A 65/10 µm
polydimethylsiloxane–divinylbenzene SPME was chosen for headspace sampling. The
SPME fiber was aged for 10 min at 250 ◦C before each use. After the sample was balanced
at 40 ◦C for 15 min, the extraction head was inserted into a vial to extract the sample. The
extraction time was 30 min, and the agitation speed was 300 rpm. Volatile substances were
collected for analysis.

The following GC–MS parameters were used: capillary column, HP-INNOWAX
(30 m × 0.25 mm, 0.25 µm); injector temperature, 250 ◦C; ion source temperature, 230 ◦C;
quadrupole temperature, 230 ◦C. The elution program started at a temperature of 40 ◦C,
which was held for 3 min and then increased to 120 ◦C at a rate of 4 ◦C/min. Finally, the
temperature was increased to 240 ◦C at a rate of 6 ◦C/min and held for 12 min. The carrier
gas was ultrahigh-purity helium (99.999%) with a split injection port.
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Figure 4. (A) The gas chromatogram of the standard has a 7% ethanol content. (B) The gas chro-
matograms of C. paliurus–kiwi wine at the end of alcoholic fermentation. (C) The gas chromatograms
of C. paliurus–kiwi wine at the end of the resting process. (1) isopropyl alcohol; (2) ethanol.

Qualitative and quantitative characterization of volatile flavor components: Identi-
fication of the compounds was achieved by comparing their mass spectra and retention
indices with those available in GC–MS libraries (NIST14) and the Compound Database of
Plant and Food Research, or those published in the literature (NIST Chemistry WebBook,
http://webbook.nist.gov/chemistry/, accessed on 12 May 2022). Volatile compounds were
semi-quantified using the ratio of their peak area to that of the 2-octanol internal standard.

3.6. Sensory Analysis

Sensory analysis of four kiwi wines was implemented by 15 trained panelists according
to four factors, including color appearance (25.0 points), aroma intensity (30.0 points),
gustatory quality and intensity (30.0 points), and typicity in the tasting stage (15.0 points).
Each kind of wine sample was measured in triplicate, and panelists’ palates were requested
to be cleansed thoroughly with spring water before each measurement. This study was
reviewed and approved by the Zhejiang Ocean University IRB (Zhoushan, China), and
informed consent was obtained from each subject prior to their participation in the study.

3.7. Statistical Analysis

Each glass bottle contains about 350 mL of C. paliurus–kiwi wine. During the winemak-
ing process of C. paliurus–kiwi wine, the wine sample was measured every two days, and
every sample was only used once. For the measurement of volatile aromas, three bottles of
each fruit wine were used. Statistical analysis was performed using Microsoft Excel and
SPSS 22.0. The detected volatiles were determined by mass spectrometry and verified by
the spectral libraries (NIST 14) and their Kováts retention indices (RI). Flavor compounds
with an odor activity value (OAV) > 0.1 were selected for principal component analysis
(PCA). The concentration of volatile substances was normalized using log2 values and
shown by a heatmap. PCA and cluster analysis were performed using Origin Pro 2022 and

http://webbook.nist.gov/chemistry/
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TBtools 1.098, respectively. Experimental data were represented by the mean ± standard
deviation.

4. Conclusions

In this work, we analyzed the changes in physicochemical properties of C. paliurus–
kiwi wine and compared antioxidant capacity, aroma, and sensory differences between
the C. paliurus–kiwi wine, kiwi wine, and two commercially available kiwi wines. The
results indicated that antioxidant activity was maintained at a relatively high and stable
level during 14 days of the C. paliurus–kiwi winemaking process. TFC increased during the
winemaking process. TPC increased during early fermentation and later stabilized. O2

−

scavenging activity, TFC, and TPC of C. paliurus–kiwi wine were significantly higher than
those of the other three kiwi wines. Kiwi wine had a more floral aroma, whereas K1 and
K2 had a higher intensity of chemical and fatty flavor. However, there were forty-three
volatile aroma substances in the C. paliurus–kiwi wine, which showed a stronger fruity and
sweet aroma compared with commercially available wines. Ethyl hexanoate, 3-methylbutyl
acetate, ethyl octanoate, ethyl decanoate, etc. were the main aroma components in this
wine. The total score for sensory evaluation of C. paliurus–kiwi wine was also higher than
that of the other three kiwi wines. The wine made from defective kiwifruit and C. paliurus
had a distinctly fruity and sweet aroma, which made it more acceptable to consumers and
had great market potential.
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www.mdpi.com/article/10.3390/molecules29010032/s1, Table S1: Box–Behnken design and response
values for the C. paliurus–kiwi wine; Table S2: Variance analysis of the regression model; Figure S1:
Response surface results for TFC and TTA; Table S3: Abbreviations and concentration of volatile
aroma substances in Figure 2C.
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