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Abstract: The N-phenylquinoneimine scaffold is a versatile synthetic platform that has gained
significant attention in the field of drug discovery due to its structural diversity and capacity to
interact with biologically relevant targets. This review explores established synthetic methodologies
and highlights the significant biological activities exhibited by compounds derived from this scaffold,
their implications for medicinal chemistry, and the development of novel therapeutics.
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1. Introduction

Diversity-orientated synthesis (DOS) continues to grow as an area of importance in
the disciplines of organic synthesis and chemical biology [1–3]. One important area that
should benefit significantly from DOS is drug discovery. The existing chemical space can
be expanded with new synthetic molecules, with the hope of identifying novel and better
drug and probe molecules [4]. Arguably, one of the most promising synthetic strategies
for generating collections of new compounds with increased molecular complexity and
diversity via DOS involves the sequencing of multicomponent reactions with subsequent
transformations, including cyclisations, couplings, and refunctionalisations [5].

DOS requires a planning algorithm to deliver an efficient but divergent route. Al-
though DOS aims to achieve a diverse and non-focused coverage of biologically active
chemical space, the results of DOS may find use in other fields in future years. Complexity-
generating reactions are again important for efficiency (multicomponent-coupling, cascade
and tandem complexity-generating reactions are the most valuable); however, pathways
need to be identified that give structurally diverse targets. In order to achieve the high-
est levels of structural diversity, (i) the building blocks, (ii) the stereochemistry, (iii) the
functional groups and, most importantly, (iv) the molecular framework must be varied.
The key to the structural complexity is the complexity-generating reactions, while the
key to the structural diversity comprises the branch points and building blocks [3]. The
identification in the forward direction of pairwise relationships, where the product of
one complexity-generating reaction is the substrate for another, can lead to high levels of
molecular complexity in a very efficient manner [2].

1.1. N-Phenylquinoneimine and Its Pharmacological Significance

N-Phenylquinoneimine (NPQ 1, Figure 1), due to its α,β-keto and α,β-imino func-
tionalities, is highly reactive and offers great potential for regioselective reactions. NPQs
are highly coloured compounds [6–8] and constitute a core structure in several important
natural products, Refs. [9,10], some of which are key abiotic and biological compounds,
which intercalate with DNA [11]. New avenues for molecular sensors [12] and ligands,
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Refs. [13,14] for drug delivery [15,16] and controlled material growth have been provided
through many of these hybrid materials. NPQs can be used as building blocks to access
useful synthetic compounds that can serve as potential key intermediates in cascade re-
actions [17]. Since many natural products and druglike compounds include heterocyclic
subunits, the ability to synthesise efficiently diverse heterocyclic compounds is critical.
NPQs can be used to access aromatic heterocyclic structures largely used as scaffolds for
generating combinatorial libraries in drug-discovery research [18]. Sulfones that can be
synthesised from multistep reactions of NPQs are found in many medicines and drug
candidates under development for the treatment of a host of diseases impacting human
health worldwide [19]. NPQs represent a new frontier for the design and generation of
molecular diversity and complexity [20,21].
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1.2. Quinoneimines in Natural Products and Dyes

Natural products and their structural analogues have historically made a major contribu-
tion to pharmacotherapy, especially for cancer and infectious diseases [22,23], but also in other
therapeutic areas, including cardiovascular diseases and multiple sclerosis [24–26]. Natural
products are characterised by enormous scaffold diversity and structural complexity [27].

Quinoneimines are highly coloured dyes [6–8,28,29] and constitute a core structure
in several important natural products [9,10,30–34]. Some of these quinoneimines have
been reported as growth-promoting substances with a low molecular weight, isolated
from microorganisms [20]. Exfoliazone, Questiomycin A, N-Acetylquestiomycin A, and
Acetylmichigazone have been isolated from Streptomyces exfoliates BT-38 [9,10], and Venezue-
lines A–G from Streptomyces venezuelae [30]. Chandrananimycins A–C were isolated from
the culture broth of a marine Actinomadura sp. Isolate M045. They contain the phenoxazin-
3-one chromophore, which is part of complex natural products like actinomycin, aurantin,
and cryptomycin and is responsible for their colour [31]. Chandrananimycin D, pitu-
camycin, grixazone B, and benzerramycin A–C have been reported from a Streptomyces
griseus strain isolated from an old building with moisture damage [32,33]. Cinnabarin and
Cinnabarinic acid have been isolated as fungal pigments [34] (Figure 2).

Quinoneimine dyes are based on the structure of the fictional compound para-quinone-
di-imine 2, from which the name of the dye class originates. There are several subgroups of
quinoneimine dyes, such as the azines 3, the oxazines 4, and the thiazines 5 (Figure 3).

Quinoneimine dyes are commonly used in colour photography and in the production
of pencils, as well as for dyeing paper and fur. In addition, they are used as chemical
indicators [35].

Some commonly used and important quinoneimine dyes are neutral red, safranin O,
Nile blue, Nile red, Meldola’s blue, gallocyanin, gallamine blue, celestine blue B, and the
methylene blue homologues (Figure 4).

In microbiology, neutral red is used in the MacConkey agar to differentiate bacteria
for lactose fermentation [36]. It also acts as a pH indicator, changing from red to yellow
between pH 6.8 and 8.0.



Molecules 2024, 29, 249 3 of 22

Safranin is the classic counterstain in both Gram stains and endospore stains. It is also
used as redox indicator in analytical chemistry.
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Figure 3. Some subgroups of quinoneimine dyes.

Nile blue and Nile red are fluorescent dyes [37]. They have reasonably high flu-
orescence quantum yields in nonpolar solvents and they fluoresce at reasonably long
wavelengths [38].

Meldola’s blue dye is used mainly as a pigment in textiles, paper, and paints. It has
also been used in electrochemical experiments involving DNA, wherein the dye mediates
electron transport [39].

Celestine blue dye is used with iron-aluminium complexes as a substitute for haema-
toxylin in H–E (haematoxylin–eosin) staining because of its resistance to low-pH solutions. It
has been used as a new electroactive indicator in DNA biosensors and is also applicable to
HOCl detection in living cells and to assaying the chlorinating activity of myeloperoxidase [40].
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1.3. Biological Activity of N-Phenylquinoneimine Scaffolds

Quinoneimines are key abiotic and biological components that intercalate with DNA [11].
Quinoneimines and diimines are of interest in chemistry, and the former moieties have been
proposed as intermediates in a number of biological processes [41]. Their diverse biological
activities and synthetic applications have attracted the synthetic community to synthesise
these important alkaloids [42–45]. Imai S. et al. [10] have reported exfoliazone (Figure 2), a
phenoxazine antibiotic showing antifungal activity against V. ceratosperma. Pitucamycin
and Chandrananimycin D have been found to exhibit antiproliferative activities against a
number of cell lines and only a weak cytotoxicity [33].

Chandrananimycins A–C (Figure 2), isolated from Actinomadura sp. Isolate M048,
have been reported to have high biological activity against Staphylococus aureus, Bacillus
subtilis, and Streptomyces viridochromogenes [31]. They have also exhibited antialgal activity
against the microalgae Chlorella vulgaris, Chlorella sorokiniana, and Scenedesmus suspicatus
and antifungal activity against Mucor miehei and Candida albicans. Compounds such as
Chandrananimycins A–C, containing the phenoxazine-3-one chromophore, are frequently
encountered as metabolites of microorganisms. They are yellow-to-orange-coloured com-
pounds and exhibit antibacterial [46], antifungal [10], phytotoxic [47], and anticancer activi-
ties. In addition, some are also known to show potent cell-growth-stimulating activity [9].
Due to their DNA intercalation, these complex phenoxazinone derivatives have shown
pronounced antimicrobial [48], antitumor [49], and anticancer potency [50], with some
of them also exhibiting anticoccidial activity [51]. Table 1 summarises the quinoneimine
derivatives occurring as natural products and their biological activities.

Table 1. Naturally occurring quinoneimines and their biological activities.

Quineimine Derivatives as Natural Products Biological Activities (References)

Exfoliazone Antibiotic, antifungal, antitumor, growth-promoting activities [9,10]

Questiomycin A, N-acetylquestiomycin A, and
Acetylmichigazone Growth stimulatory and inhibitory effects [9]

Venezuelines A–G Cytotoxic and antitumor activities [30]

Chandrananimycins A–D Antibacterial, antifungal, antialgal, phytotoxic, and anticancer activities [31,33]

Actinomycins Antibacterial, antitumor, and anticancer activities [52–55]

Pitucamycin Antiproliferative and cytotoxic activities [33]

Grixazone B Antimicrobial [33]

Benzerramycin A–C Antiproliferative [32]

Cinnabarin and Cinnabarinic acid Antibacterial, antimicrobial [34]
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1.4. Significance of Quinoneimine-Based Drugs

Exfoliazone (Figure 2) is an antibiotic that is active against Valsa ceratosperma, the
causative fungus of the apple canker disease [10].

The actinomycins are a family of chromopeptide antitumor antibiotics isolated from
various Streptomyces strains [50]. Actinomycins C3 and D have found clinical application as
anticancer drugs, particularly in therapy for Wilm’s tumor [52] and soft tissue sarcomas [53]
in children, and are still of interest in molecular biology [50].

Actinomycin D (Figure 5) has also been proposed as a therapeutic agent for AIDS, be-
cause of its potency as an inhibitor of HIV-1 minus-strand transfer [54]. It is a chemotherapy
medication used to treat a number of types of cancer. This includes rhabdomyosarcoma,
Ewing’s sarcoma, trophoblastic neoplasm, testicular cancer, and certain types of ovarian
cancer [55].
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Some chemicals and drugs have been reported to form reactive quinone and quinoneimine
metabolites [56]. Quinoneimines are found as highly redox-active molecules and elec-
trophiles, with both properties being crucial for their reactivity in biological systems. They
are highly reactive organic chemicals and comprise a class of toxicological intermedi-
ates [57,58] that interact alone by generating reactive oxygen species (ROS) in biological
systems to promote inflammatory reactions and reactive immune cells, oxidise DNA, and
induce toxicity. They can be responsible for effects in vivo, including immunotoxicity,
cytotoxicity, and carcinogenesis [57]. Quinoneimines reduce the oxygen to reactive oxy-
gen species, acting as prooxidants, and, as electrophiles, they form covalent bonds with
tissue nucleophiles.

Important drug molecules that lead to the formation of quinoneimine reactive metabo-
lites include Lumiracoxib (non-steroidal anti-inflammatory), Diclofenac (non-steroidal
anti-inflammatory), Paracetamol (antipyretic), Amodiaquine (antimalarial), Gefitinib (ki-
nase inhibitor), and Eriotinib (kinase inhibitor) (Figure 6).

Paracetamol is widely used as an over-the-counter remedy to treat fever and pain.
N-acetyl-p-aminophenol (APAP), the active ingredient in Paracetamol, is metabolised via
3 pathways: glucuronidation, sulfation, and glutathione conjugation. Glucuronidation
and sulfation produce nontoxic metabolites for excretion. N-acetyl-p-benzoquinoneimine
(NAPQI) is a toxic intermediate produced via cytochrome P450 2E1 (CYP 2E1; the main
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metabolising agent) and cytochrome P450 3A4 (CYP3A4) metabolism. NAPQI is then
conjugated by glutathione (GSH) to form a nontoxic metabolite for excretion (Scheme 1) [56].
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1.5. Synthesis of Quinoneimines

The common method of preparing N-phenylquinoneimines is through the oxidation
of the corresponding hydroxydiphenylamine by using various oxidising agents (Table 2).

Table 2. Various oxidising agents used in the preparation of quinoneimines.

Substrate Oxidising Agent Solvent Temp (◦C) Time (h) Yield (%) Ref.

6 HgO Benzene Reflux 1 78 [59]

6 Ag2CO3 on Celite Toluene rt 30 min 99 [60]
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Table 2. Cont.

Substrate Oxidising Agent Solvent Temp (◦C) Time (h) Yield (%) Ref.
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Other oxidising agents used include iodoxybenzene and iodosylbenzene [68,69]. The
use of Ag2CO3 on Celite for the oxidation of 4-hydroxydiphenylamine 6 is shown in
Scheme 2. The Ag2CO3 adsorbed onto Celite, also known as Fétizon’s reagent, is a solid-
supported oxidising agent (and so is easily removed after the reaction); it provides the
iminoquinones in an excellent yield and is preferred to other methods [60,70]. The method
uses two equivalents of Ag2CO3 and, at room temperature, 99% conversion to product 1 is
observed in 24 h.
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Most of these methods have disadvantages, such as the use of solvents and toxic
reagents, a robust play environment, and low efficiency due to polymerisation, hydrolysis,
and dimerisation. Electrochemical methods, on the other hand, are known as suitable,
moderate, economical, fast, and easy methods that have been used for the synthesis of new
quinoneimine derivatives [71].
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2. Molecular Diversity from N-Phenylquinoneimine

Molecular diversity refers to the variety of different molecules that make up living
organisms and their interactions with each other. This diversity is essential for life, as
it enables organisms to carry out a range of biological functions, such as metabolism,
growth, and reproduction. One aspect of molecular diversity that refers to the variety of
chemical structures and properties of molecules is chemical diversity. Chemical diversity is
important for drug discovery and development, as different molecules can have different
effects on biological systems. Natural products, such as those derived from plants and
microorganisms, are a rich source of chemical diversity and have been used for centuries in
traditional medicine.

The best, but most difficult, strategy for chemical diversity is to make compounds in a
way that anticipates problems at each step of the drug-discovery process in which organic
synthesis is involved. The first such step involves finding a molecule that modulates a
disease target or process; this requires thousands of structurally diverse compounds to
be produced for screening. The next step is to optimise the biological properties of the
compounds found during screening. This involves making analogues of the compounds,
each containing slightly different structural modifications—ideally, every atom in the
compound should be modified, without an overwhelming synthetic effort. The final step
involves synthesising the optimal compound, either for use as a biochemical probe for
research or as a drug in medicine, efficiently, at low cost and in large quantities [72].

Scheme 3 [21] shows some reactions of N-Phenylquinoneimine that can lead to struc-
tural complexity and molecular diversity.
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2.1. Nucleophilic Addition Reactions of N-Phenylquinoneimine
2.1.1. Direct Addition

NPQ 1 can react with nucleophiles via 1,2-addition or 1,4-addition. NPQ has two
unique sites susceptible to 1,2-addition: the ketone and the imine. If the nucleophile is an
amine, for example, RNH2, then attack at the carbonyl carbon followed by reduction gives
1,4-diaminoarenes 8, whilst attack at the imino carbon converts the N-phenyl group to a
new group 7 (Scheme 4).
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Scheme 4. Nucleophilic attack via 1,2-addition to the ketone or the imine.

2.1.2. Conjugate Addition

There are two possible α,β-unsaturated systems in NPQ chemistry: α,β-keto andα,β-
imino. All four β-carbons are unique and have different reactivities. Scheme 5 shows
the products of the attack of a nucleophile at all four sites susceptible to 1,4-addition. By
quenching the enolate with an electrophile other than H+, it may be possible to selectively
add two substituents to the ring in a single reaction. The stereochemistry of the N-arylamine
also introduces asymmetry. Attack on the α,β-ketone generates products 9 and 10, whilst
attack on the α,β-imine generates products 11 and 12 (Scheme 5).
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2.2. Reaction with Nitrogen Nucleophiles
2.2.1. Aliphatic Amines

The addition of primary aliphatic amines 13 to NPQ 1 has been reported by Cottman [66,73]
as a method of preparing N-substituted phenylenediamines. The reaction proceeds via a 1,2-
addition to the carbonyl group, which, on reduction, gives 1,4-diaminoarenes (Scheme 6).
The reaction between NPQ and primary amines may be in the presence of, or absence of, an
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acid catalyst. The N-phenyl-N′-diimines compound 14 was reduced to the N-substituted
phenylenediamines 15 using aqueous sodium hydrosulfite. Representative catalysts for the
hydrogenation reaction are platinum on carbon, palladium on carbon, and aqueous sodium
hydrosulfite [66]. The amines that have been reported for the reaction includes methy-
lamine, octylamine, 1,3-dimethylbutylamine, and cyclohexylamine. These N-substituted
phenylenediamines have utility as anti-degradants in rubber, polymer stabilisers, dye
intermediate, pharmaceuticals, and photographic chemicals [74,75].
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2.2.2. Aromatic Amines

The reactions of aromatic amines 16 with NPQ proceed through a 1,4-conjugate addi-
tion to the α,β-unsaturated ketone, yielding intermediate 17 (Scheme 7). This intermediate
is then reacted with another equivalent of NPQ at the α,β-unsaturated imine site, resulting
in intermediate 18. Subsequent oxidation reactions lead to the formation of the desired
diarylamino products 19, as depicted in Scheme 7 [21]. The decrease in the oxidation
potential of the quinoneimine, NPQ, is attributed to the introduction of electron-donor
arylamino substituents. Consequently, the starting quinoneimine, NPQ, acts as an oxidising
agent, as evidenced by the formation of p-hydroxydiphenylamine 19 [76].

The reaction has been reported by Tsoi E. V. et al. [76] Electron-withdrawing and
electron-donating anilines have been used, giving good yields (Scheme 8). Aromatic amines
react with NPQ, forming diarylamino products 19, which, when heated under oxidative
conditions (using potassium ferricyanide), are converted to products of intramolecular
oxidative cyclisation [76], phenazinones 21 through 5,10-dihydrophenazine derivatives 20
(Scheme 8).

The cyclisation of substituted quinone imines and diazabutadiene derivatives of
aminophenols afforded phenoxazine and benzoxazine derivatives, which were finally
transformed into fused heterocyces [77].
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2.3. Reaction with Sulfur Nucleophiles

NPQ reacts with sulfur nucleophiles, such as thiols [78], thiophenols [79], and
sulfinates [80], via nucleophilic addition.

2.3.1. Thiols

The nucleophilic addition of alkane- and arenethiols to NPQ occurs at the α,β-
unsaturated imine and the α,β-unsaturated ketone [78]. The reaction with alkane thiols
22 was conducted in ethanol at room temperature, giving the products of the hydrox-
ydiphenylamines, which are then oxidised using mercuric oxide to the corresponding
alkylthio- quinonimines 23. The reaction with arenethiols 24, however, was carried out in
benzene and refluxed; the alternative addition products 25, 26, 27, and 28 were observed
(Scheme 9). The difference in these reactions is attributed to the solvent effect of the polar
protic solvent (ethanol) versus a nonpolar solvent (benzene). The reaction of N-Phenyl-
1,4-benzoquinonemono imine benzoanalogs with alkanethiols was found to give similar
1,4-addition products [81].
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With a change in the reaction conditions (0 ◦C in benzene), the 6-monosubstituted
derivatives 29 was formed (Scheme 10).
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2.3.2. Sulfinates

The reaction of NPQ derivatives with sodium arenesulfinates 30 has been reported
by Konovalova et al. [80]. The reactions were carried out in acetic acid at 70 ◦C using two
equivalents of the nucleophile; however, the reactions afforded, exclusively, the product of
single 1,4-addition to the α,β-unsaturated imine system 31. This was then oxidised with
lead (IV) acetate to the corresponding 1,4-benzoquinone imine derivatives 32 (Scheme 11).
This method provides an alternative route to making this type of sulfone.
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Scheme 11. Addition of sodium arenesulfinates to NPQ derivatives [80].

Some polymers containing sulfone groups are useful engineering plastics, as they
exhibit high strength and resistance to oxidation, corrosion, high temperatures, and creep
under stress; for example, some are valuable as replacements for copper in domestic hot-
water plumbing [82]. Precursors to such polymers are the sulfones bisphenol S 33 and
4,4′-dichlorodiphenyl sulfone 34 (Figure 7). Examples of sulfones in pharmacology include
dapsone 35, a drug formerly used as an antibiotic to treat leprosy. Several of its derivatives,
such as promin, have similarly been studied or applied in medicine [83].
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2.4. Reaction with Halogens

Initial studies on the reaction of hydrobromic acid with NPQ have been reported by
Burmistrov et al. [84]. It was reported that the nucleophilic addition of bromide was to
the α,β-unsaturated ketone, giving compound 36 (Scheme 12). Aqueous hydrobromic
acid was added to NPQ in acetic acid at room temperature, and organic extracts from the
reaction mixture were treated with lead (IV) acetate to convert the phenol intermediate
to the quinoneimine system. Bromination of the phenyl ring at the para position was
also found to occur as a competing process, giving the di-substituted compound 37. The
addition of resorcinol to the reaction of NPQ with hydrobromic acid clearly changed the
composition of the reaction mixture, eliminating the bromination of the phenyl group and
giving the mono-substituted product 36 only.
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The reaction of hydrochloric acid with NPQ was conducted in the same manner and
reportedly gave the mono-substituted compound 38. However, the chlorination of the
phenyl group was not observed (Scheme 13) [85].
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reportedly gave the mono-substituted compound 38. However, the chlorination of the 
phenyl group was not observed (Scheme 13) [85]. 
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2.5. Reaction with Carbon Nucleophiles
2.5.1. Enolates

The reaction of NPQ with dimedone 39 has been reported by Novikov V. P. et al. [86].
The condensation reaction was carried out by boiling the quinoneimine, dimedone, and
anhydrous zinc chloride in propanol for 10 min. The reaction mixture was worked up with
water after cooling for 12 h at room temperature. The resulting product was filtered and
washed, giving a yield of 58% of compound 40 (Scheme 14).
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The course of the reactions with the organometallic reagents used is shown in Table 3 below.

Table 3. Reaction of NPQ with organometallic compounds at −60 ◦C.

Reagent Solvent 41 (%) 42 (%) 43 (%)

CH3Li THF a 9.8 9.3 9.8

CH3Li Ether 13.6 14.1 13.9

CH3MgI Ether 15.6 14.0 14.8

CH3CuLiI Ether 0 30.5 28.7

CH3CuLiI THF a 0 28.1 57.7

CH3Li + CuCl b THF a 0 44.0 7.8

CH3MgI + CuI c Ether 23.4 17.8 18.4
a Tetrahydrofuran; b a solution of methyllithium was added to the mixture of the substrate and CuCl (1:2) at
25 ◦C while stirring; c 5 mol% of CuI (referred to the reagent) was added to the solution of the Grignard reagent
at −15 ◦C, and the solution was stirred for 30 min at this temperature, then cooled to −60 ◦C, and the reaction
was effected.

3. Oxidation of N-Phenylquinoneimine

The oxidation of NPQ using meta-Chloroperoxybenzoic acid in DCM at room temper-
ature yielded the N-phenylquinoneimine N-Oxide 44 (Scheme 16) [88].
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Scheme 17. Cycloaddition reaction of NPQ with diphenylketene. 
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products resulting from the homocoupling of the arylboronic acid (Scheme 18) [21]. A 
much lower yield was observed when electron-deficient boronic acids were used, and the 
equivalent of arylboronic acid used was found to be insignificant to the yield of the 
coupled product. 

Scheme 16. Oxidation of NPQ.

The presence of an electron-withdrawing group should cause a change in the chemical
shifts in the 1H NMR spectrum of NPQ N-oxide when compared to NPQ. The largest
differences will be for protons closest to the nitrogen, as expected when considering their
proximity to the N-oxide. A relatively smaller downshift in the peaks for the other protons,
which are farther away from the oxygen of the N-oxide, should, therefore, be expected.

3.1. Cycloaddition Reactions

The addition of diphenylketene 45 to NPQ in ether, as reported by Bird C. W. [89],
resulted in the formation of a cycloaddition product, β-lactam 46, which rearranged to give
the oxindole 47 (Scheme 17). The oxindole can be readily converted into the methyl ether
via dimethyl sulphate and methanolic sodium hydroxide.
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3.2. Coupling Reactions

Some palladium-catalysed coupling reactions of NPQ have been investigated using the
monosubstituted bromo-NPQ 36. [21] The Suzuki, Stille, Kumada, and Buchwald–Hartwig
reactions of NPQ are discussed below; others include carbonylation [90] and redox-neutral
C-N coupling reactions [91].

3.2.1. Suzuki Coupling

The reaction of 3-bromo NPQ 36 with a range of arylboronic acids gave the coupled
products 49 in average-to-good yields, with the biaryl products 50 obtained as by-products
resulting from the homocoupling of the arylboronic acid (Scheme 18) [21]. A much lower
yield was observed when electron-deficient boronic acids were used, and the equivalent of
arylboronic acid used was found to be insignificant to the yield of the coupled product.
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3.2.2. Stille Coupling

The reaction of 3-bromo NPQ 36 with tributyl(phenyl)stannane 51a was carried out
using one equivalent of the arylstannane in THF, with LiCl as the base, and heated at
100 ◦C for 24 h [92]; both the coupled product and biaryl product were obtained in low
yields. The reaction was repeated with the base changed to Ag2CO3 and the solvent to
dioxane, and an increase in yield was observed for the coupled product 52, while the
biaryl product was not formed (Scheme 19). This demonstrates that the solvent/base
combination is critical in the optimisation of the palladium-catalysed Stille reaction. The
reaction with tributyl(thiophen-2-yl)stannane 51b was, therefore, only carried out using
Ag2CO3 in dioxane, and the coupled product was obtained at a good yield, while the biaryl
product was not formed. This selectivity could also result from the use of one equivalent
of the arylstannane, since the reaction of a Pd(II) precatalyst with two equivalents of the
arylstannane mostly accounts for the homocoupling side-products [93].
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3.2.3. Kumada Coupling

The reaction of 3-bromo NPQ 36 with isopropylmagnesium chloride 53 was conducted
in THF at 60 ◦C for 2 h (Scheme 20) [94]. The crude reaction mixture was purified via
chromatography (SiO2 1:4 ethylacetate–petrol) to give the coupled product 54 as a red oil.
The Kumada coupling, although only giving a low yield of the product, is important and
different from the other coupling reactions investigated, as it allows the introduction of
alkyl as well as aryl groups.
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The lack of reactivity and low yields observed in some of the palladium-catalysed
coupling reactions considered may result from the oxidation of Pd(0) to Pd(II) by the
bromo NPQ in the oxidative addition step of the catalytic cycle, since it also acts as
an oxidising agent.

3.2.4. Buchwald–Hartwig Coupling

The Buchwald–Hartwig amination reaction was investigated by coupling 3-bromo
NPQ with arylamines as a means of forming new C–N bonds (Scheme 21) [21].
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The reaction, which may also occur via addition to the α,β-unsaturated ketone, gives
the expected coupled product 56 in good yields, as shown in Table 4. The anilines with
electron-deficient groups (entries 3 and 4) were observed to give lower yields. The product
of diaddition to the α,β-unsaturated ketone and α,β-unsaturated imine, 57 was also ob-
served. A product of dimerisation was observed with entries 5 and 6, giving compound 58
as a by-product resulting from oxidative coupling between two molecules.

Table 4. Reaction of 3-bromo NPQ with aniline derivatives.

Entry Aniline 55 R1 R2 56 (%) 57 (%) 58 (%)

1 a H H 79 13 nd

2 b 4-OMe H 66 17 nd

3 c 4-Cl H 29 15 nd

4 d 4-CF3 H 29 3 nd

5 e 2-Me H 72 t 5

6 f H Me 59 8 3
nd = not detected, t = trace amount.

The formation of the dimerised product 58 is not surprising, as it has been reported
that unexpected observations, new transformations, or unusual side reactions often occur
in Pd-catalysed reactions, and these stem from poor catalytic turnover, unusual reactivity
or selectivity, or the presence of unwanted side-products [93].

4. Conclusions

Overall, N-phenylquinoneimine-based compounds have emerged as a powerful probe
for scientists in drug discovery and medicinal chemistry. Significant advances have been
evidenced in their natural product chemistry, copolymerisation [95], and coupling reactions.
This novel class of quinoneimine derivatives shows promising antibacterial, antimicrobial,
anticancer, anti-inflammatory, antioxidant, and other therapeutic activities that position
them as versatile potential drug candidates for interventions in various disease areas and
for use as building blocks to access new synthetic molecules.
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56. Klopčič, I.; Dolenc, M.S. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem. Res. Toxicol.

2019, 32, 1–34. [CrossRef] [PubMed]

https://doi.org/10.7164/antibiotics.56.622
https://doi.org/10.1002/ejoc.200901206
https://doi.org/10.1021/np100344u
https://www.ncbi.nlm.nih.gov/pubmed/20715808
https://doi.org/10.3891/acta.chem.scand.12-0603
https://doi.org/10.1088/1742-6596/1764/1/012207
https://doi.org/10.7164/antibiotics.42.168
https://doi.org/10.1016/j.tet.2006.08.056
https://www.acarindex.com/turkish-journal-of-chemistry/electrochemical-detection-of-specific-dna-sequences-from-pcr-amplicons-on-carbon-and-mercury-electrodes-using-meldola39s-blue-as-an-intercalator-783586
https://www.acarindex.com/turkish-journal-of-chemistry/electrochemical-detection-of-specific-dna-sequences-from-pcr-amplicons-on-carbon-and-mercury-electrodes-using-meldola39s-blue-as-an-intercalator-783586
https://doi.org/10.3390/antiox11091719
https://doi.org/10.1021/jo00294a013
https://doi.org/10.1021/jo9815397
https://doi.org/10.1021/jo200966k
https://doi.org/10.1021/ol902566p
https://www.ncbi.nlm.nih.gov/pubmed/20039698
https://doi.org/10.1021/ol025503j
https://www.ncbi.nlm.nih.gov/pubmed/11893194
https://doi.org/10.1016/S0944-5013(97)80046-8
https://www.ncbi.nlm.nih.gov/pubmed/9352667
https://doi.org/10.1016/S0040-4039(00)96358-5
https://doi.org/10.1139/v66-114
https://doi.org/10.1039/D0MD00072H
https://doi.org/10.1021/np990416u
https://doi.org/10.7164/antibiotics.39.1704
https://doi.org/10.1016/S0959-8049(97)89014-4
https://doi.org/10.1016/S0959-8049(97)00334-1
https://www.ncbi.nlm.nih.gov/pubmed/9470811
https://doi.org/10.1128/JVI.72.8.6716-6724.1998
https://www.ncbi.nlm.nih.gov/pubmed/9658119
https://www.drugs.com/monograph/dactinomycin.html
https://www.drugs.com/monograph/dactinomycin.html
https://doi.org/10.1021/acs.chemrestox.8b00213
https://www.ncbi.nlm.nih.gov/pubmed/30500181


Molecules 2024, 29, 249 21 of 22

57. Bolton, J.L.; Trush, M.A.; Penning, T.M.; Dryhurst, G.; Monks, T.J. Role of quinones in toxicology. Chem. Res. Toxicol. 2000,
13, 135–160. [CrossRef] [PubMed]

58. Porubek, D.; Rundgren, M.; Larsson, R.; Albano, E.; Ross, D.; Nelson, S.D.; Moldéus, P. Quinone Imines as Biological Reactive
Intermediates. In Biological Reactive Intermediates III: Mechanisms of Action in Animal Models and Human Disease; Kocsis, J.J., Jollow,
D.J., Witmer, C.M., Nelson, J.O., Snyder, R., Eds.; Springer: Boston, MA, USA, 1986; pp. 631–644. [CrossRef]

59. Burmistrov, K.S.; Burmistrov, S.I. Redox potentials of N-arylquinonimines. Ukr. Khimicheskii Zhurnal 1978, 44, 832–835.
60. Baragona, F.; Lomberget, T.; Duchamp, C.; Henriques, N.; Lo Piccolo, E.; Diana, P.; Montalbano, A.; Barret, R. Synthesis of

5-substituted 2,3-dihydrobenzofurans in a one-pot oxidation/cyclization reaction. Tetrahedron 2011, 67, 8731–8739. [CrossRef]
61. Adams, R.; Looker, J.H. Quinone Imides. IV. p-Quinone Monosulfonimides. J. Am. Chem. Soc. 1951, 73, 1145–1149. [CrossRef]
62. Fields, D.L., Jr.; Lodaya, J.S. Preparation of Quinoneimines from Hydroxyphenylamines Using Hypochlorite as Oxidizing Agent.

WO9952860A1, 21 October 1999.
63. Fields, D.L., Jr.; Lohr, R. Preparation of Quinoneimines from Hydroxyphenylamines Using Hydrogen Peroxide and a Catalyst.

WO9952859A1, 21 October 1999.
64. Fields, D.L., Jr.; Stern, M.K.; Lodaya, J.S. Preparation of N-Phenylbenzoquinoneimines via Oxidation of Hydroxydiphenylamines

Using a Modified Activated Carbon Catalyst. WO9936395A2, 22 July 1999.
65. Ma, H.; Wu, S.; Sun, Q.; Li, H.; Chen, Y.; Zhao, W.; Ma, B.; Guo, Q.; Lei, Z.; Yan, J. A new method for the synthesis of iminoquinones

via DMP-mediated oxidative reaction. Synthesis 2010, 19, 3295–3300. [CrossRef]
66. Cottman, K.S. Preparation of a N-Substituted Phenylenediamine. U.S. Patent 4968843A, 6 November 1990.
67. Capehart, S.L.; ElSohly, A.M.; Obermeyer, A.C.; Francis, M.B. Bioconjugation of Gold Nanoparticles through the Oxidative

Coupling of ortho-Aminophenols and Anilines. Bioconjugate Chem. 2014, 25, 1888–1892. [CrossRef]
68. Barret, R.; Daudon, M. Synthesis of Quinone-Imines with Iodoxybenzene. Synth. Commun. 1990, 20, 1543–1549. [CrossRef]
69. Barret, R.; Daudon, M. Preparation of quinone-imide ketals from amides with hypervalent organo-iodine compounds. Tetrahedron

Lett. 1991, 32, 2133–2134. [CrossRef]
70. Balogh, V.; Fetizon, M.; Golfier, M. Oxidations with Silver Carbonate/Celite. V. Oxidations of Phenols and Related Compounds. J.

Org. Chem. 1971, 36, 1339–1341. [CrossRef]
71. Mehrdadian, M.; Khazalpour, S.; Amani, A. Electrochemical synthesis of new quinone-imines with assisted of 4-ethynylaniline

and para-toluidine as nucleophile. Electrochim. Acta 2022, 427, 140849. [CrossRef]
72. Schreiber, S.L. Molecular diversity by design. Nature 2009, 457, 153–154. [CrossRef] [PubMed]
73. Cottman, K.S.; Kuczkowski, J.A. Preparation of N-alkyl-N’-phenyl-p-phenylenediamines. EP617004A1, 28 September 1994.
74. Lewis, R.J. Hawley’s Condensed Chemical Dictionary, 15th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2007; p. 59.
75. Verschueren, K. Handbook of Environmental Data on Organic Chemicals. Volumes 1–2, 4th ed.; John Wiley & Sons: New York, NY,

USA, 2001; p. 179.
76. Tsoi, E.V.; Afanas’eva, G.B.; Chupakhin, O.N. Research in the chemistry of heterocyclic quinoneimines. 3. Oxidative cyclization

of 2,5-diarylamino-substituted 1,4-benzoquinone-4-phenylimines—Simple method for the preparation of 2-arylamino-5-aryl-3-
phenazinones. Chem. Heterocycl. Compd. 1984, 20, 263–267. [CrossRef]

77. Abakumov, G.A.; Druzhkov, N.O.; Kurskii, Y.A.; Abakumova, L.G.; Shavyrin, A.S.; Fukin, G.K.; Poddel’skii, A.I.; Cherkasov, V.K.;
Okhlopkova, L.S. Quinone imines and aminophenols as precursors of new heterocycles. Russ. Chem. Bull. 2005, 54, 2571–2577.
[CrossRef]

78. Afanaseva, G.B.; Tsoi, E.V.; Chupakhin, O.N.; Sidorov, E.O.; Konovalov, S.V. Thiylation of 1,4-Benzoquinone-4-Phenylimine by
Alkanethiol and Arenethiol. Zh. Org. Khim. 1985, 21, 1926–1932.

79. Varlamov, V.T.; Gadomsky, S.Y. Kinetics and mechanism of the chain reaction between N-phenyl-1,4-benzoquinone monoimine
and thiophenol. Russ. J. Phys. Chem. 2017, 91, 835–842. [CrossRef]

80. Konovalova, S.A.; Avdeenko, A.P.; Santalova, A.A.; D’Yakonenko, V.V.; Palamarchuk, G.V.; Shishkin, O.V. Reaction of N-aryl-1,4-
benzoquinone imines with sodium arenesulfinates. Russ. J. Org. Chem. 2014, 50, 1757–1762. [CrossRef]

81. Tsoi, E.V.; Afanas’eva, G.B.; Chupakhin, O.N.; Sidorov, E.O. Reactions of N-Phenyl-1,4-benzoquinonemono imine benzoanalogs.
Zh. Org. Khim. 1989, 25, 2409–2416.

82. Fink, J.K. High Performance Polymers; William Andrew Inc.: Norwich, NY, USA, 2008.
83. Drill, V.A.; DiPalma, J.R. Drill’s Pharmacology in Medicine; McGraw-Hill: New York, NY, USA, 1971.
84. Burmistrov, K.S.; Toropin, N.V.; Burmistrov, S.I. Reaction of Hydrogen Bromide with N-Aryl-1,4-Benzoquinonemonoimines. Zh.

Org. Khim. 1993, 29, 1170–1174.
85. Burmistrov, K.S.; Yurchenko, A.G. Addition of Hydrogen-Chloride to N-Aryl-1,4-Benzoquinonmonoimines. Zh. Org. Khim. 1985,

21, 575–578.
86. Novikov, V.P.; Bolibrukh, L.D.; Makovetsky, V.P.; Kolesnikov, V.T.; Pivovarova, N.S.; Pirozhenko, V.V. Reaction of N-phenyl-1,4-

benzoquinone monoimine with dimedone. Dopov. Nats. Akad. Nauk Ukr. 1995, 6, 99–100.
87. Tlustakova, M.; Honzl, J. Reaction of N-phenyl-p-quinoneimine with organometallic agents. Collect. Czechoslov. Chem. Commun.

1972, 37, 4031–4034. [CrossRef]
88. Pedersen, C.J. Products of the photochemical decomposition of N,N′-disubstituted p-quinonediimine-N,N′-dioxides. J. Am. Chem.

Soc. 1957, 79, 5014–5019. [CrossRef]
89. Bird, C.W. The addition of diphenylketene to benzoquinone N-phenylimine. J. Chem. Soc. 1965, 3016. [CrossRef]

https://doi.org/10.1021/tx9902082
https://www.ncbi.nlm.nih.gov/pubmed/10725110
https://doi.org/10.1007/978-1-4684-5134-4_59
https://doi.org/10.1016/j.tet.2011.09.020
https://doi.org/10.1021/ja01147a078
https://doi.org/10.1055/s-0030-1258202
https://doi.org/10.1021/bc5003746
https://doi.org/10.1080/00397919008052871
https://doi.org/10.1016/S0040-4039(00)71255-X
https://doi.org/10.1021/jo00809a004
https://doi.org/10.1016/j.electacta.2022.140849
https://doi.org/10.1038/457153a
https://www.ncbi.nlm.nih.gov/pubmed/19129834
https://doi.org/10.1007/BF00515634
https://doi.org/10.1007/s11172-006-0157-7
https://doi.org/10.1134/S0036024417050272
https://doi.org/10.1134/S1070428014120070
https://doi.org/10.1135/cccc19724031
https://doi.org/10.1021/ja01575a050
https://doi.org/10.1039/jr9650003016


Molecules 2024, 29, 249 22 of 22

90. Wang, S.; Yao, L.; Ying, J.; Wu, X.-F. Palladium-catalyzed carbonylation of iminoquinones and aryl iodides to access aryl p-amino
benzoates. Org. Biomol. Chem. 2021, 19, 8246–8249. [CrossRef]

91. Jillella, R.; Raju, S.; Hsiao, H.-C.; Hsu, D.-S.; Chuang, S.-C. Pd-Catalyzed Redox-Neutral C–N Coupling Reaction of Iminoquinones
with Electron-Deficient Alkenes without External Oxidants: Access of Tertiary (E)-Enamines and Application to the Synthesis of
Indoles and Quinolin-4-ones. Org. Lett. 2020, 22, 6252–6256. [CrossRef]

92. Bailey, T.R. Unsymmetrical heterobiaryl synthesis. A highly efficient palladium-catalyzed cross-coupling reaction of heteroaryl
trialkylstannanes with aryl halides. Tetrahedron Lett. 1986, 27, 4407–4410. [CrossRef]

93. McGlacken, G.P.; Fairlamb, I.J.S. Palladium-Catalysed Cross-Coupling and Related Processes: Some Interesting Observations
That Have Been Exploited in Synthetic Chemistry. Eur. J. Org. Chem. 2009, 2009, 4011–4029. [CrossRef]

94. Iffland, L.; Petuker, A.; Van Gastel, M.; Apfel, U.P. Mechanistic Implications for the Ni(I)-Catalyzed Kumada Cross-Coupling
Reaction. Inorganics 2017, 5, 78. [CrossRef]

95. Takano, H.; Hiraishi, M.; Yaguchi, S.; Iwata, S.; Shoda, S.; Kobayashi, S. Alternating copolymerization of cyclic germylenes with
N-phenyl-p-quinoneimine via oxidation-reduction process. Polym. J. 2016, 48, 969–972. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1039/D1OB01623G
https://doi.org/10.1021/acs.orglett.0c01929
https://doi.org/10.1016/S0040-4039(00)84964-3
https://doi.org/10.1002/ejoc.200900139
https://doi.org/10.3390/inorganics5040078
https://doi.org/10.1038/pj.2016.59

	Introduction 
	N-Phenylquinoneimine and Its Pharmacological Significance 
	Quinoneimines in Natural Products and Dyes 
	Biological Activity of N-Phenylquinoneimine Scaffolds 
	Significance of Quinoneimine-Based Drugs 
	Synthesis of Quinoneimines 

	Molecular Diversity from N-Phenylquinoneimine 
	Nucleophilic Addition Reactions of N-Phenylquinoneimine 
	Direct Addition 
	Conjugate Addition 

	Reaction with Nitrogen Nucleophiles 
	Aliphatic Amines 
	Aromatic Amines 

	Reaction with Sulfur Nucleophiles 
	Thiols 
	Sulfinates 

	Reaction with Halogens 
	Reaction with Carbon Nucleophiles 
	Enolates 
	Organometallic Reagents 


	Oxidation of N-Phenylquinoneimine 
	Cycloaddition Reactions 
	Coupling Reactions 
	Suzuki Coupling 
	Stille Coupling 
	Kumada Coupling 
	Buchwald–Hartwig Coupling 


	Conclusions 
	References

