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Abstract: The two enantiomers of chiral phosphonate 4-phenyldinaphtho[2,1-d:1′,2′-f][1,3,2]
dioxaphosphepine 4-oxide, O=PPh(BINOL), were synthesized from the proper 1,1′-bi-2-naphtol
(BINOL) enantiomer and characterized. The structure of the (S)-enantiomer was elucidated by means
of single-crystal X-ray diffraction. The reaction with anhydrous ZnBr2 afforded complexes having the
general formula [ZnBr2{O=PPh(BINOL)}2] that showed intense fluorescence centered in the near-UV
region rationalized on the basis of TD-DFT calculations. The corresponding Mn(II) complexes with
the general formula [MnX2{O=PPh(BINOL)}2] (X = Cl, Br) exhibited dual emission upon excitation
with UV light, with the relative intensity of the bands dependent upon the choice of the halide. The
highest energy transition is comparable with that of the Zn(II) complex, while the lowest energy
emission falls in the red region of the spectrum and is characterized by lifetimes in the hundreds of
microseconds range. Although the emission at lower energy can also be achieved by direct excitation
of the metal center, the luminescence decay curves suggest that the band in the red range is possibly
derived from BINOL-centered excited states populated by intersystem crossing.

Keywords: phosphonates; BINOL; zinc(II); manganese(II); luminescence; dual emission

1. Introduction

The enantiomers of 1,1′-bi-2-naphtol (BINOL) and related species play a key role in
asymmetric organic synthesis and catalysis [1–13]. A recent noticeable example is consti-
tuted by the integration of chiral BINOL-phosphoric acid and Cu(II)-porphyrin modules
into a single framework, able to promote the asymmetric α-benzylation of aldehydes
via visible-light-induced photothermal conversion [14]. Actual advanced applications
of BINOL-based compounds include supramolecular enantiorecognition, which is also
based on luminescence measurements, and the development of materials with chiral optical
properties [15–21]. Recent examples in this field are chiroptical switches constituted by tetra-
hedral boron BINOL derivatives containing fluorene- or dibenzosuberenone-substituted
pyridinylhydrazone moieties that exhibit noticeable chiroptical changes after visible light
irradiation [22].

Even though several BINOL derivatives of synthetic and technological interest contain
trivalent or pentavalent phosphorus, such as phosphonites and phosphoric acid derivatives,
the chiral phosphonate 4-phenyldinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-oxide,
O=PPh(BINOL), was subjected to quite limited investigation. Its synthesis, first reported
in 1990, was based on the reaction between BINOL and phenylphosphonic dichloride in
benzene in the presence of triethylamine as a base. The compound and related species
were investigated as possible new organophosphorus pesticides and insecticides [23].
According to a 2023 Chinese patent [24], the same product can be obtained from BINOL
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and diethyl phenylphosphonate in the presence of trifluoromethylsulfonic anhydride,
dimethyl sulfoxide, and tetrabutylammonium bromide. The synthesis of P-stereogenic
2′-hydroxy-[1,1′-binaphthalen]-2-yl alkyl(phenyl)phosphinates from O=PPh(BINOL) was
achieved by reacting this species with Grignard reagents, methylmagnesium bromide, and
isopropylmagnesium bromide, in particular [25].

Compounds containing the [O=P]-donor moiety proved to be a viable choice to isolate
luminescent Mn(II) complexes, sometimes behaving as multifunctional materials [26–31].
Another interesting metal center to be combined with [O=P]-donor ligands for optics is
zinc. For instance, non-linear optical properties were observed for [ZnCl2(O=PPh3)2] [32],
and Zn(II) halide complexes with N,N,N′,N′-tetramethyl-P-indol-1-ylphosphonic diamide
showed intense green phosphorescence [33]. Given our interest in the preparation of
luminescent metal complexes with phosphonates and cyclic organophosphorus com-
pounds [34–37], we synthesized the two enantiomers of O=PPh(BINOL), and we started
investigating the luminescent properties of the related Zn(II) and Mn(II) halide complexes.
The preliminary results, together with the single-crystal X-ray structure determination of
(S)-O=PPh(BINOL), are provided in this communication.

2. Results and Discussion

The two O=PPh(BINOL) enantiomers were isolated in good yield and purity by
reacting the BINOL enantiomers with O=PPhCl2 in the presence of triethylamine as a
proton scavenger (Scheme 1). The formation of the desired products was confirmed by
elemental analysis data and NMR spectroscopy. The 1H NMR spectra, comprised between
8.2 and 7.0 ppm, are coherent with the presence of 17 aromatic protons. Despite the
superposition of some resonances, most of the doublets related to the hydrogen atoms
in the 3, 3′, 4, 4′, 5, 5′, and 8, 8′ positions of the BINOL fragment can be distinguished.
The 13C{1H} NMR spectra confirm the lack of equivalence of the two naphthyl rings in
O=PPh(BINOL), which show 15 CH and 9 Cipso resonances, with some coupled with the 31P
nucleus. The 31P{1H} NMR spectra are composed of a single sharp signal around 27 ppm.
Selected NMR spectra are provided as Supplementary Materials Figures S1–S4. The νP=O
stretching is tentatively assigned to the strong band at 1280 cm−1 also on the basis of the
comparison with the related Zn(II) complex described below.
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Scheme 1. Synthesis of (R)- and (S)-O=PPh(BINOL).

The values of specific rotation [α]20
D measured in acetone for the two enantiomers are

−326 for (R)-O=PPh(BINOL) and +326 for (S)-O=PPh(BINOL), which are much higher than
those measured for the enantiomers of free BINOL under the same experimental conditions
(±30), an effect attributable to the more rigid structure generated by the formation of the
{C4O2P} ring. It is worth noting that the specific rotation is inverted, moving from a BINOL
enantiomer to the related O=PPh(BINOL) enantiomer.

Crystals of (S)-O=PPh(BINOL) suitable for single-crystal X-ray diffraction were col-
lected from dichloromethane/diethyl ether solutions. A picture of the structure is provided
in Figure 1. Crystal data and structure refinement are summarized in the Supplementary
Materials Table S1, while selected bond lengths and angles are reported in the caption of
Figure 1. The chiral BINOL derivative crystallizes in P212121, one of the so-called Söhncke
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space groups. The Flack parameter was refined to a value of −0.004(14) confirming the
absolute structure [38]. The environment of the phosphorus atom is tetrahedral, with angles
ranging from 102.37(7) to 117.13(8)◦; the former corresponds to the O-P-O angle in the seven-
membered ring of the dioxaphosphepine. The P-O and P-C distances are in accordance
with the nature of the bonds, with the double P=O bond being about 0.14 Å shorter than the
single P-O bonds. The P-C bond length, 1.777(2) Å, is, as expected, longer than that found
in the P(III) compound 8-phenyldinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine [39].
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Figure 2. {PO2C4} 7-membered ring of (S)-O=PPh(BINOL) with torsion angles (°). 

Figure 1. Single-crystal X-ray structure of (S)-O=PPh(BINOL). Selected bond lengths [Å]: P(1)-
O(1) 1.4619(13), P(1)-O(2) 1.6028(12), P(1)-O(3) 1.5985(12), P(1)-C(31) 1.7770(17), O(2)-C(11) 1.407(2),
O(3)-C(21) 1.4047(19), C(11)-C(12) 1.378(2), C(21)-C(22) 1.376(2), C(12)-C(22) 1.486(2). Selected an-
gles [◦]: O(1)-P(1)-O(2) 117.13(8), O(1)-P(1)-O(3) 109.81(7), O(3)-P(1)-O(2) 102.79(6), O(1)-P(1)-C(31)
114.91(8), O(3)-P(1)-C(31) 108.85(7), O(2)-P(1)-C(31) 102.37(7), C(11)-O(2)-P(1) 118.18(10), C(21)-O(3)-
P(1) 119.07(10).

The two naphthalene rings (10 membered) form a dihedral angle of 59.88(5)◦. The
7-membered ring is, as expected, highly puckered, with a boat conformation with torsion
angles as denoted in Figure 2 [40]. The root mean square deviation for this ring from the
best plane is 0.3757 Å. The oxygen atoms are the most deviated, with one of them 0.557(1) Å
over and the other 0.532(1) Å below the best plane. This plane and the benzene ring form a
dihedral angle of 76.25(6)◦, which is different from the quasi-perpendicular disposition,
which is equal to 90.4(3)◦ and found in the P(III) dioxaphosphepine compound [39].
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O=PPh(BINOL) behaves as a ligand towards Zn(II), and the reaction between
O=PPh(BINOL) and anhydrous ZnBr2 allows the isolation of complexes having the general
formula [ZnBr2{O=PPh(BINOL)}2] in yields above 70%. Unfortunately, all the attempts to
grow single crystals suitable for X-ray diffraction failed. The proposed formula is, however,
supported by elemental analysis data and NMR spectroscopy. The 1H NMR spectra, as
expected, independent upon the choice of the O=PPh(BINOL) enantiomer, show only
resonances in the 8.5–6.5 ppm range related to the phenyl and BINOL moieties, which
are shifted and broadened compared to the free ligands. On the other hand, a single
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resonance around 28 ppm is observable in the 31P{1H} NMR spectra, which is broadened in
comparison to O=PPh(BINOL). Selected spectra are reported in Figures S5 and S6. As a
further confirmation, the IR spectra closely resemble those of the free ligands, as observable
in Figure S7. The only noticeable change affects the band centered at 1280 cm−1 in the free
ligands, which was, for this reason, assigned to the νP=O stretching [41]. The complex is
thermally stable up to about 150 ◦C, then decomposition with mass loss occurs. The related
TGA curve is reported in Figure S8.

Dichloromethane solutions of the two enantiomers of [ZnBr2{O=PPh(BINOL)}2] ab-
sorb radiation for wavelengths below 340 nm, as observable, for instance, in Figure 3.
SOC-corrected TD-DFT calculations at the C-PCM/r2SCAN-3c level (dichloromethane as
a continuous medium) predict the most intense absorption at 358 nm, with an underesti-
mation of the energy of around 5%. According to the hole-electron distribution [42], the
absorption appears to be essentially related to the presence of the BINOL fragment, and
the same consideration is also valid for further bands predicted at longer wavelengths,
between 359 and 385 nm, with much lower intensities. In all cases, the participation of
triplet configurations is negligible. As observable in Figure 4, the character of the transition
changes from ligand-centered for the main absorption to interligand charge transfer for the
bands predicted at lower energy.

Molecules 2024, 29, x FOR PEER REVIEW 4 of 14 
 

 

O=PPh(BINOL) behaves as a ligand towards Zn(II), and the reaction between 

O=PPh(BINOL) and anhydrous ZnBr2 allows the isolation of complexes having the 

general formula [ZnBr2{O=PPh(BINOL)}2] in yields above 70%. Unfortunately, all the 

attempts to grow single crystals suitable for X-ray diffraction failed. The proposed formula 

is, however, supported by elemental analysis data and NMR spectroscopy. The 1H NMR 

spectra, as expected, independent upon the choice of the O=PPh(BINOL) enantiomer, 

show only resonances in the 8.5–6.5 ppm range related to the phenyl and BINOL moieties, 

which are shifted and broadened compared to the free ligands. On the other hand, a single 

resonance around 28 ppm is observable in the 31P{1H} NMR spectra, which is broadened 

in comparison to O=PPh(BINOL). Selected spectra are reported in Figures S5 and S6. As a 

further confirmation, the IR spectra closely resemble those of the free ligands, as 

observable in Figure S7. The only noticeable change affects the band centered at 1280 cm−1 

in the free ligands, which was, for this reason, assigned to the νP=O stretching [41]. The 

complex is thermally stable up to about 150 °C, then decomposition with mass loss occurs. 

The related TGA curve is reported in Figure S8. 

Dichloromethane solutions of the two enantiomers of [ZnBr2{O=PPh(BINOL)}2] 

absorb radiation for wavelengths below 340 nm, as observable, for instance, in Figure 3. 

SOC-corrected TD-DFT calculations at the C-PCM/r2SCAN-3c level (dichloromethane as 

a continuous medium) predict the most intense absorption at 358 nm, with an 

underestimation of the energy of around 5%. According to the hole-electron distribution 

[42], the absorption appears to be essentially related to the presence of the BINOL 

fragment, and the same consideration is also valid for further bands predicted at longer 

wavelengths, between 359 and 385 nm, with much lower intensities. In all cases, the 

participation of triplet configurations is negligible. As observable in Figure 4, the character 

of the transition changes from ligand-centered for the main absorption to interligand 

charge transfer for the bands predicted at lower energy. 

 

Figure 3. Normalized absorption (ABS, CH2Cl2 solution, r.t.), emission (PL, solid, r.t., λexcitation = 260 

nm), and excitation (PLE, solid, r.t., λemission = 410 nm) spectra of (S,S)-[ZnBr2{O=PPh(BINOL)}2] at 

room temperature. Luminescence decay curve (solid, r.t., λexcitation = 373 nm, λemission = 410 nm) of 

(S,S)-[ZnBr2{O=PPh(BINOL)}2]. 

Figure 3. Normalized absorption (ABS, CH2Cl2 solution, r.t.), emission (PL, solid, r.t.,
λexcitation = 260 nm), and excitation (PLE, solid, r.t., λemission = 410 nm) spectra of (S,S)-
[ZnBr2{O=PPh(BINOL)}2] at room temperature. Luminescence decay curve (solid, r.t.,
λexcitation = 373 nm, λemission = 410 nm) of (S,S)-[ZnBr2{O=PPh(BINOL)}2].

The [α]20
D values measured in acetone are ±252, positive for (S,S)-[ZnBr2{O=PPh

(BINOL)}2] and negative for (R,R)-[ZnBr2{O=PPh(BINOL)}2]. Such a result indicates the
scarce influence of the coordination on the specific rotation since the [α]20

D values are
roughly proportional to the molar quantity of O=PPh(BINOL) in solution.

The luminescence of dichloromethane solutions of the complexes is hardly appreciable
to the human eye. Resolved emission spectra (see, for example, Figure S9) were collected
only using quite-opened slits and long acquisition times. On the other hand, the lumines-
cence is easily detectable in the solid state. Solid samples of [ZnBr2{O=PPh(BINOL)}2]
show only an emission band centered at 370 nm after excitation with UV light (Figure 3),
coherent with the PL spectra collected in solution and attributed to a fluorescent decay
on the basis of the luminescence lifetime, equal to 8 ns. The luminescence quantum yield
is 81%. The main luminescence data are summarized in Table 1. Based on the previ-
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ously described TD-DFT calculations, it can be tentatively supposed that the luminescence
exhibited by [ZnBr2{O=PPh(BINOL)}2] could be ascribed to the population of excited
singlet states having an interligand charge transfer nature. Such a hypothesis was con-
firmed by optimization at the C-PCM/B97-3c level for the lowest energy singlet excited
state of [ZnBr2{O=PPh(BINOL)}2], with subsequent simulation of the transitions at the
C-PCM/r2SCAN-3c level. The hole-electron distribution, shown in Figure 5, agrees with an
interligand charge transfer associated with S1→S0 radiative decay. The geometry variations
between the singlet ground state and the first singlet excited state are quite limited, with
the RMSD being 0.223 Å (see also Figure 5).
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Table 1. Luminescence data for the [MX2{O=PPh(BINOL)}2] complexes (M = Zn, X = Br; M = Mn,
X = Cl, Br; both enantiomers). Solid samples, r.t.

Complex PL Max
(nm)

PLE
(nm) τ

Φ

(%)

[ZnBr2{O=PPh(BINOL)}2] 370 320, <300 8 ns 81
[MnCl2{O=PPh(BINOL)}2] 380, 653 410–500, <400 220 µs (58%), 700 µs (42%) 48
[MnBr2{O=PPh(BINOL)}2] 380, 641 410–500, <400 216 µs (62%), 530 µs (38%) 14

The synthetic procedure was extended to the preparation of Mn(II) derivatives by
replacing ZnBr2 with Mn(II) halides. Complexes having the general formula [MnX2{O=PPh
(BINOL)}2] (X = Cl, Br) were isolated with yields higher than 70%. Elemental analyses
agree with the proposed general formula. The experimental magnetic moments are in
line with the theoretical 5.9 BM expected for high-spin d5 derivatives of first-row tran-
sition elements. The IR spectra, shown in Figure S10, are strictly similar to those of
[ZnBr2{O=PPh(BINOL)}2], confirming the slight lowering of the νP=O stretching caused by
the coordination. The 31P{1H} NMR spectra of the [MnX2{O=PPh(BINOL)}2] complexes
are broadened by paramagnetic relaxation, particularly for the bromo-derivative; however,
a single resonance centered in the 27–28 ppm range was detected, which is in line with
the value reported for [ZnBr2{O=PPh(BINOL)}2]. The nuclearity of the Mn(II) complexes
cannot be unambiguously defined since all the attempts to grow single crystals suitable for
X-ray diffraction were unsuccessful. The thermal behavior of [MnBr2{O=PPh(BINOL)}2] is
strictly comparable with that of the analogous Zn(II) bromo-derivative with decomposition
around 150 ◦C. On the other hand, despite the melting point in the same temperature range
(160 ◦C), the chloro-complex [MnCl2{O=PPh(BINOL)}2] did not exhibit meaningful mass
loss for temperatures below 300 ◦C (Figure S8).
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Figure 5. (A) TD-DFT optimized (C-PCM/B97-3c) first excited singlet state of [ZnBr2{O=PPh
(BINOL)}2] with hole (light blue) and electron (green) distributions for the S1←S0 transition (C-
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tones) of [ZnBr2{O=PPh(BINOL)}2].

As previously described for the Zn(II) enantiomers, the specific rotation values appear
dependent upon the molar quantity of the chiral phosphonate in solution without meaningful
influence of the Mn-O bonds. [α]20

D is ±282 for (S,S)- and (R,R)-[MnCl2{O=PPh(BINOL)}2]
and ±248 for (R,R)- and (S,S)-[MnBr2{O=PPh(BINOL)}2].

As for the Zn(II) complex, the luminescence measurements were limited to the solid
state (Table 1). The PL spectra of [MnX2{O=PPh(BINOL)}2] (Figure 6) are composed of
two different bands: one centered in the UV region and similar to that already described
for [ZnBr2{O=PPh(BINOL)}2] (λmax = 380 nm), while the other centered between 641 and
653 nm, with FWHM values in the 2500–2600 cm−1 range. No emission in the green region
attributable to the Mn(II) 4T1(4G)→6A1(6S) transition in a tetrahedral environment was
detected. The PLE spectra (Figure 6) reveal that the lowest energy emission can be achieved
with UV light shorter than 380 nm, but also using wavelengths in the 410–500 nm range.
The higher energy bands in the PLE spectra are almost in part associated with the excitation
of the coordinated O=PPh(BINOL) ligands, while those at lower energy are in line with
direct Mn(II) excitation [43,44].

It is worth noting that the relative intensity of Mn(II) excitation compared to the
ligands′ excitation depends upon the choice of the halide due to the increased spin-orbit
coupling moving from X = Cl to X = Br that relaxes the selection rules for the metal-centered
transitions [45]. The relative intensity of the PL bands is also dependent upon the nature of
the halide, since the emission in the red range is relatively more intense for the enantiomers
of [MnBr2{O=PPh(BINOL)}2] (Figure 6). The increased spin-orbit coupling appears to
also be involved in this case, favoring the population of lower-energy excited states by
intersystem crossing. The relative increase of the emission at a lower energy has, as a
consequence, a noticeable reduction of the luminescence quantum yield, which drops
from 48% for [MnCl2{O=PPh(BINOL)}2] to 14% for [MnBr2{O=PPh(BINOL)}2]. Such an
outcome was expected on the basis of the energy gap law [46], but it also suggests that
the localization of the lower energy excited state could be in molecular regions where the
electronic-vibrational coupling is favorable, such as the coordinated phosphonates.
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Figure 6. Normalized emission (PL, solid, r.t., λexcitation = 310 nm, solid lines) and excitation (PLE,
solid, r.t., λemission = 650 nm, dotted lines) spectra of (S,S)-[MnX2{O=PPh(BINOL)}2] (X = Cl, Br) at
room temperature. Luminescence decay curves (solid, r.t., λexcitation = 290 nm, λemission = 640 nm) of
(S,S)-[MnX2{O=PPh(BINOL)}2] (X = Cl, Br).

The band in the red range is not present in the PL spectrum of [ZnBr2{O=PPh(BINOL)}2];
it is also absent in the PL spectrum of the free ligand collected at room temperature
(Figure S11). Emissions in the yellow-red range can be associated with radiative decay
from Mn(II) excited states in complexes with a coordination number greater than four, for
instance, five-coordinated [47–50], but also with phosphorescence from ligand-centered
excited states populated by intersystem crossing [51,52]. The fact that the red emission
could also be achieved by direct Mn(II) excitation does not allow an unambiguous dis-
crimination since the excited states of the metal center could populate low-lying ligand-
centered excited states. TD-DFT calculations on [ZnBr2{O=PPh(BINOL)}2] in the triplet
state configuration indicate the possibility of a triplet→singlet BINOL-centered emission
in the red range with λemission calculated at 607 nm. The hole-electron distribution re-
lated to the transition is shown in Figure S12. The energy gap between the optimized
geometries of [ZnBr2{O=PPh(BINOL)}2] in triplet and singlet states is identical to the
one obtained between the geometries of [MnBr2{O=PPh(BINOL)}2] in octet and sextet
states (55.7 kcal mol−1); thus, the same transition appears possible also for the Mn(II)
complexes. The role of the BINOL fragments in the octet configuration is highlighted
by the spin density plots shown in Figure S12. It is, however, worth noting that DFT
calculations on the tetrahedral mononuclear [MnBr2{O=PPh(BINOL)}2] and on the dimer
[MnBr(µ-Br){O=PPh(BINOL)}2]2, where the metal center is five-coordinated, indicate that
the formation of the latter species is possible. The energy variation (electronic energy +
nuclear repulsion) for the dimerization is negative by about −25.7 kcal mol−1. Despite the
reduction in molecularity, the estimated Gibbs energy variation is slightly negative, being
about −2.3 kcal mol−1 (Figure S13).

The localization of the emitting states can be tentatively supposed from the lumi-
nescence decay curves of [MnCl2{O=PPh(BINOL)}2] and [MnBr2{O=PPh(BINOL)}2]. As
observable in Figure 6, the decays are quite similar, with average lifetimes (τav) of 422 µs for
[MnCl2{O=PPh(BINOL)}2] and 335 µs for [MnBr2{O=PPh(BINOL)}2]. The bi-exponential
fit of the curves reveals the presence of a common component (τ1), equal to 220 µs (58%)
for X = Cl and to 216 µs (62%) for X = Br. The second component (τ2) is equal to 700 µs
(42%) for X = Cl and 530 µs (38%) for X = Br. The presence of bi-exponential decay could
be associated with the superimposition of different emission bands, but such a hypothesis
appears unlikely considering the shape and FWHM values of the emissions in the red range.
The bi-exponential decays are thus tentatively ascribed to solid-state effects in the samples.
In every case, the scarce influence of the nature of the halide on the lifetime is more in line
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with a ligand-centered process involving the BINOL fragments than a metal-centered one.
It appears, therefore, that the main role of Mn(II) is to favor intersystem crossing among
phosphonate-centered excited states, probably due to the intermediate population of Mn(II)
excited levels. The influence of the coordinated halides on the luminescence quantum
yield can be thus interpreted considering that the acceleration of the intersystem crossing
given by the presence of the bromo-ligands favors the population of the lower energy
long-lived excited state. The low quantum yield is caused by the efficient vibrational decay
in this state.

3. Experimental Section
3.1. Materials and Methods

Commercial solvents (Merck, Darmstadt, Germany) were purified, as described in the
literature [53]. Anhydrous MX2 halides (M = Mn, X = Cl, Br; M = Zn, X = Br) were purchased
from Alfa Aesar (Ward Hill, MA, USA) and Merck. The enantiomers of BINOL and the
other organic reactants were Merck products. All the syntheses were carried out under
an inert atmosphere, working in a MBraun Labstar glove-box with a MB 10 G gas purifier
(Garching, Germany) filled with N2 and equipped for organic and inorganic syntheses.

Elemental analyses (C, H) were carried out using an Elementar Unicube microanalyzer
(Langenselbold, Germany). The halide content was determined using Mohr’s method [54].

Magnetic susceptibilities were measured on solid samples at 298 K using an MK1
magnetic susceptibility balance (Sherwood Scientific Ltd., Cambridge, UK, magnetic field
strength 3.5 kGauss) and corrected for diamagnetic contribution using tabulated Pascal’s
constants [55].

Melting points were registered using a FALC 360 D instrument equipped with a
camera. Thermogravimetric analyses (TGA) were carried out under am N2 atmosphere
with a Perkin-Elmer TGA 4000 instrument (Waltham, MA, USA). The heating rate was set
at 20 ◦C min−1 from 40 ◦C up to 500 ◦C.

IR spectra were collected in the 4000–400 cm−1 range using a Perkin-Elmer Spectrum
One spectrophotometer. Mono- and bidimensional nuclear magnetic resonance (NMR)
spectra were collected employing a Bruker Avance 400 instrument (Billerica, MA, USA)
operating at 400.13 MHz of 1H resonance. 1H NMR spectra are referred to as the partially
non-deuterated fraction of the solvent, itself referred to as tetramethylsilane. 31P{1H} NMR
resonances refer to 85% H3PO4 in water. 13C{1H} NMR spectra are quoted with respect to
the signal of the solvent, itself referred to as tetramethylsilane.

3.2. Synthesis of 4-Phenyldinaphtho[2,1-d:1′,2′-f][1,3,2]dioxaphosphepine 4-Oxide, O=PPh(BINOL)

The two enantiomers of O=PPh(BINOL) were obtained following a modified litera-
ture procedure [23]. In a typical preparation, a solution containing 5.0 mmol (1.432 g) of
(R)- or (S)-BINOL and 0.7 mL of phenylphosphonic dichloride (0.975 g, 5.0 mmol) in dry
toluene (30 mL) was prepared under an inert atmosphere, and then 1.4 mL of triethylamine
(10.0 mmol) were slowly added. The mixture was then refluxed for 8 h and subsequently
stirred overnight. The by-product triethylammonium chloride was separated by centrifu-
gation, then the solution was filtered on cotton, and the solvent was evaporated under
reduced pressure. The addition of diethyl ether (10 mL) caused the separation of a white
solid that was filtered, washed with 5 mL of diethyl ether, and dried under vacuum. Yields:
(R)-O=PPh(BINOL), 80% (1.633 g); (S)-O=PPh(BINOL), 77% (1.577 g).

Characterization of O=PPh(BINOL). Anal. Calcd for C26H17O3P (408.39 g mol−1, %): C, 76.47;
H, 4.20. Found for (R)-O=PPh(BINOL) (%): C, 76.16; H, 4.22. Found for (S)-O=PPh(BINOL)
(%): C, 76.28; H, 4.22. 1H NMR (CDCl3, 300 K, both enantiomers): δ 8.10 (d, 1H, JHH = 8.8
Hz, BINOL), 8.01 (d, 1H, JHH = 8.2 Hz, BINOL), 7.96 (d, 1H, JHH = 8.3 Hz, BINOL),
7.87 (d, 1H, JHH = 8.8 Hz, BINOL), 7.69 (d, 1H, JHH = 8.8 Hz, BINOL), 7.68–7.57 (m, 3H,
BINOL+Ph), 7.56–7.50 (m, 2H, BINOL+Ph), 7.49 (d, 1H, JHH = 9.0 Hz, BINOL), 7.44–7.30
(m, 5H, BINOL+Ph), 7.04 (dd, 1H, JHH = 8.8 Hz, JHH = 0.7 Hz, BINOL). 13C{1H} NMR
(CDCl3, 300 K, both enantiomers): δ 147.60 (d, JCP = 10.2 Hz, Cipso), 145.83 (d, JCP = 9.6 Hz,
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Cipso), 133.56 (d, JCP = 3.0 Hz, CH), 132.52 (s, CH), 132.49 (d, JCP = 1.4 Hz, Cipso), 132.45 (d,
JCP = 1.6 Hz, Cipso), 132.42 (s, CH), 131.94 (d, JCP = 1.1 Hz, Cipso), 131.56 (d, JCP = 1.1 Hz,
Cipso), 131.37 (d, JCP = 1.1 Hz, CH), 130.72 (s, CH), 128.58 (s, CH), 128.52 (s, CH), 128.48 (s,
CH), 128.37 (s, CH), 127.32 (s, CH), 127.01 (s, CH), 126.73 (s, CH), 125.76 (s, CH), 124.85
(d, JCP = 186.9 Hz, Cipso), 121.89 (d, JCP = 2.6 Hz, Cipso), 121.75 (d, JCP = 2.0 Hz, Cipso),
121.28 (d, JCP = 2.2 Hz, CH), 120.89 (d, JCP = 3.3 Hz, CH). 31P{1H} NMR (CDCl3, 300 K,
both enantiomers) δ 27.1 (FWHM = 2 Hz). IR (cm−1, both enantiomers): 3110–3020 m/w
(aromatic νC-H), 1620–1510 m (aromatic νC-C), 1325 m (νC-O), 1280 (νP=O).

3.3. Synthesis of [MX2{O=PPh(BINOL)}2] (M = Zn, X = Br; M = Mn, X = Cl, Br)

In a typical preparation, 2.0 mmol (0.817 g) of (R)- or (S)-O=PPh(BINOL) were re-
acted overnight under an inert atmosphere with 1.0 mmol of the proper anhydrous
MX2 precursor in freshly distilled ethanol (20 mL) at room temperature. After the re-
moval of the solvent under reduced pressure, the residue was dissolved in the mini-
mum amount of dichloromethane, and the solution was cleared by centrifugation. After
evaporation, diethyl ether (10 mL) was added, and the products were collected as white
powders after filtration, washed with 5 mL of diethyl ether, and dried under vacuum.
Yields: (R,R)-[ZnBr2{O=PPh(BINOL)}2], 71% (0.740 g); (S,S)-[ZnBr2{O=PPh(BINOL)}2], 73%
(0.761 g); (R,R)-[MnCl2{O=PPh(BINOL)}2], 76% (0.716 g); (S,S)-[MnCl2{O=PPh(BINOL)}2],
74% (0.697 g); (R,R)-[MnBr2{O=PPh(BINOL)}2], 80% (0.825 g); (S,S)-[MnBr2{O=PPh(BINOL)}2],
77% (0.794 g).

Characterization of [ZnBr2{O=PPh(BINOL)}2]. Anal. Calcd for C52H34Br2O6P2Zn (1041.97 g
mol−1, %): C, 59.94; H, 3.29; Br, 15.34. Found for (R,R)-[ZnBr2{O=PPh(BINOL)}2] (%): C,
59.70; H, 3.31; Br, 15.28. Found for (S,S)-[ZnBr2{O=PPh(BINOL)}2] (%): C, 59.75; H, 3.30;
Br, 15.40. M.p. (◦C, both enantiomers): 150. 1H NMR (CDCl3, 300 K, both enantiomers): δ
8.07 (d, 1H, JHH = 7.4 Hz, BINOL), 7.96 (t, 2H, JHH = 8.4 Hz, aromatic), 7.90–7.76 (m, 2H,
aromatic), 7.64 (m, br, 2H, aromatic), 7.60–7.44 (m, 4H, aromatic), 7.42–7.28 (m, 5H, aro-
matic), 6.95 (d, 1H, JHH = 8.8 Hz, BINOL). 31P{1H} NMR (CDCl3, 300 K, both enantiomers)
δ 28.0 (FWHM = 90 Hz). IR (cm−1, both enantiomers): 3060–2970 m/w (aromatic νC-H),
1620–1440 m (aromatic νC-C), 1325 m (νC-O), 1280–1240 m (νP=O).

Characterization of [MnCl2{O=PPh(BINOL)}2]. Anal. Calcd for C52H34Cl2MnO6P2 (942.61 g
mol−1, %): C, 66.26; H, 3.64; Cl, 7.52. Found for (R,R)-[MnCl2{O=PPh(BINOL)}2] (%): C,
65.99; H, 3.67; Cl, 7.49. Found for (S,S)-[MnCl2{O=PPh(BINOL)}2] (%): C, 66.29; H, 3.65;
Cl, 7.48. M.p. (◦C, both enantiomers): 160. χM

corr (c.g.s.u., both enantiomers): 1.39·10−2.
31P{1H} NMR (CDCl3, 300 K, both enantiomers) δ 27.2 (FWHM = 200 Hz). IR (cm−1, both
enantiomers): 3057 w (aromatic νC-H), 1620–1439 w (aromatic νC-C), 1326 m (νC-O), 1258 m
(νP=O).

Characterization of [MnBr2{O=PPh(BINOL)}2]. Anal. Calcd for C52H34Br2MnO6P2 (1031.52 g
mol−1, %): C, 60.55; H, 3.32; Br, 15.49. Found for (R,R)-[MnBr2{O=PPh(BINOL)}2] (%): C,
60.31; H, 3.33; Br, 15.43. Found for (S,S)-[MnBr2{O=PPh(BINOL)}2] (%): C, 60.35; H, 3.33;
Br, 15.45. M.p. (◦C, both enantiomers): 150. χM

corr (c.g.s.u., both enantiomers): 1.45·10−2.
31P{1H} NMR (CDCl3, 300 K, both enantiomers) δ around 28 (FWHM ≈ 5000 Hz). IR (cm−1,
both enantiomers): 3057 w (aromatic νC-H), 1620–1439 w (aromatic νC-C), 1325 m (νC-O),
1256 m (νP=O).

3.4. Optical Measurements

Absorption spectra were recorded with a Yoke 6000Plus double-beam spectropho-
tometer (Fengxian, China). Specific rotation [α]20

D was measured for acetone solutions
using an Exacta+Optech (Modena, Italy) Polarimeter model PL1 LED (λ = 589.3 nm).

Photoluminescence emission (PL) and excitation (PLE) spectra as well as lifetime decay
curves were registered on solid samples at room temperature using a Horiba Jobin Yvon
(Kyoto, Japan) Fluorolog-3 spectrofluorometer. Air-tight quartz sample holders were used
and filled in the glove box to avoid interactions of the air-sensible complexes with moisture.
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A continuous wave xenon arc lamp was used as the source, and the excitation wavelength
was selected using a double Czerny–Turner monochromator. Suitable long-pass filters were
placed in front of the acquisition systems. The detector was composed of a single Horiba
(Kyoto, Japan) iHR 320 monochromator and a Hamamatsu (Shizuoka, Japan) R928 photo-
multiplier tube. The excitation and emission spectra were corrected for the instrumental
functions. Time-resolved analyses were performed in multi-channel scaling mode (MCS) or
time-correlated single photon counting mode (TCSPC) employing Horiba SpectraLED and
NanoLED pulsed sources. The room-temperature photoluminescence quantum yields (Φ)
at the solid state were measured employing an OceanOptics (Orlando, FL, USA) HR4000CG
UV–vis–NIR detector, fiber-coupled to an integrating sphere connected to OceanOptics UV
LED continuous sources. The values are reported as the average of three measurements.

3.5. Crystal Structure Determination

The crystallographic data were collected at CACTI (Universidade de Vigo) at 100 K
(CryoStream 800) using a Bruker D8 Venture Photon II CMOS detector (Billerica, MA,
USA) and Mo-Kα radiation (λ = 0.71073 Å) generated by an Incoatec high brilliance IµS
microsource (Geesthacht, Germany). APEX3 version 2019-11-0 [56] was used for collecting
frames of data, indexing reflections, and the determination of lattice parameters; SAINT
version 8.40B [56] for integration of the intensity of reflections; and SADABS version
2016/2 [56] for scaling and empirical absorption correction. The crystallographic treatment
was performed using the Oscail program [57] and solved using the SHELXT version 2018/2
program [58]. The structure was subsequently refined by full-matrix least-squares methods
based on F2 using the SHELXL version 2018/3 program [59]. Non-hydrogen atoms were
refined with anisotropic displacement parameters. Hydrogen atoms were calculated on
the basis of a riding model and refined with isotropic displacement parameters. Other
details concerning crystal data and structural refinement are given in Supplementary
Materials Table S1. CCDC 2298339 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from the Cambridge Crystallographic
Data Centre via https://www.ccdc.cam.ac.uk/data_request/cif (accessed on 17 December
2023). PLATON (version 140423) [60] was used to obtain some geometrical parameters
from the CIF file.

3.6. Computational Details

Geometry optimizations and TD-DFT calculations [61] were carried out without
symmetry constraints using the r2-SCAN-3c method [62], based on the meta-GGA r2SCAN
functional [63] combined with a tailor-made triple-ζ Gaussian atomic orbital basis set
with refitted D4 and geometrical counter-poise corrections for London-dispersion and
basis set superposition error [64–66]. Further calculations were performed with the GGA-
based B97-3c method [67], particularly for the geometry optimization of excited singlet
states. The C-PCM implicit solvation model was added to all the calculations, considering
dichloromethane as a continuous medium [68,69]. Calculations were carried out using
ORCA 5.0.3 [70,71], and the output files were analyzed with Multiwfn, version 3.8 [72].
The cartesian coordinates of the DFT-optimized structures are provided in Supplementary
Materials Table S2.

4. Conclusions

The BINOL-based phosphonates here investigated were revealed to be suitable O-
donor ligands for first-row d-block divalent metal centers such as Mn(II) and Zn(II). The
Zn(II) complex exhibited noticeable photoluminescence centered in the near-UV and was
attributed to fluorescence from excited states localized on the BINOL fragments.

The replacement of Zn(II) with Mn(II) causes a noticeable change in the emission
features, an influence associated in primis with easier intersystem crossing processes. Lumi-
nescence in the red region with lifetimes in the hundreds of seconds range is superimposed
on the ligand-centered fluorescence. The choice of the halide affects the ratios of the bands

https://www.ccdc.cam.ac.uk/data_request/cif
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in the PL and PLE spectra, while the luminescence lifetimes are roughly the same, moving
from the chloro- to the bromo-complex. Such an outcome suggests that the observed emis-
sions at longer wavelengths could be attributed to ligand-centered excited states populated
by intersystem crossing.

The chiroptical behavior of the new compounds requires further deepening planned
for the future, for instance, by measuring the circular dichroism and the circularly polarized
luminescence. Moreover, the research on BINOL-based phosphonate complexes will
be prosecuted by trying to isolate other coordination compounds with O=PPh(BINOL)
as ligand.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29010239/s1, Figure S1: 1H NMR spectrum of (S)-
O=PPh(BINOL); Figure S2: 31P{1H} NMR spectrum of (S)-O=PPh(BINOL); Figure S3: 13C{1H} NMR
spectrum of (S)-O=PPh(BINOL); Figure S4: 1H-13C HSQC NMR spectrum of (S)-O=PPh(BINOL);
Figure S5: 1H NMR spectrum of (S,S)-[ZnBr2{O=PPh(BINOL)}2]; Figure S6: 31P{1H} NMR spec-
trum of (S,S)-[ZnBr2{O=PPh(BINOL)}2]; Figure S7: IR spectra of (S)-O=PPh(BINOL) and (S,S)-
[ZnBr2{O=PPh(BINOL)}2]; Figure S8: TGA curves of the [MX2{O=PPh(BINOL)}2] complexes; Figure S9:
PL spectrum of [Zn{O=PPh(BINOL)}2] in CH2Cl2; Figure S10: IR spectra of (S,S)-[MnCl2{O=PPh
(BINOL)}2] and (S,S)-[MnBr2{O=PPh(BINOL)}2]; Figure S11: PL spectra of solid O=PPh(BINOL);
Figure S12: DFT optimized geometries of [ZnBr2{O=PPh(BINOL)}2] and of [MnBr2{O=PPh(BINOL)}2]
with Gibbs energy differences, hole and electron distributions, and spin density surfaces; Figure S13:
DFT optimized geometries of [MnBr2{O=PPh(BINOL)}2] and [MnBr2{O=PPh(BINOL)}2]2 with Gibbs
energy difference. Table S1: Crystal data and structure refinement for (S)-O=PPh(BINOL); Table S2:
Cartesian coordinates of the DFT-optimized structures.
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