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Abstract: This review covers the last 25 years of the literature on analogs of suberoylanilide hydrox-
amic acid (SAHA, known also as vorinostat) acting as an HDAC inhibitor. In particular, the topic has
been focused on the synthesis and biological activity of compounds where the phenyl group (the
surface recognition moiety, CAP) of SAHA has been replaced by an azaheterocycle through a direct
bond with amide nitrogen atom, and the methylene chain in the linker region is of variable length.
Most of the compounds displayed good to excellent inhibitory activity against HDACs and in many
cases showed antiproliferative activity against human cancer cell lines.
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1. Introduction

Histone deacetylases (HDACs) and histone acetyltransferases (HATs) catalyze, re-
spectively, deacetylation and acetylation of specific lysine residues situated on the amino-
terminal tails of histone proteins. These enzymes play a key role in gene transcription [1]
since acetylation is associated with an open chromatin configuration resulting in enhancing
transcription [2] whereas the deacetylation process induces condensed and transcriptionally
inactive heterochromatin [3].

Normally, it exists as a balance between histone acetylation and deacetylation in
normal cells; however, it has also demonstrated that these two enzymes are not only
involved in the regulation of chromatin structure and gene expression, but they can also
regulate cell cycle progression and carcinogenic processes [4]. Inhibition of HDACs can
lead to cell differentiation, apoptosis, and cell cycle arrest both in several cancer cell
lines and in vivo, thus making HDAC inhibitors (HDACIs) a very important class of
anticancer agents [5,6]. Besides their anticancer effects, some HDACIs also exhibit valuable
neuroprotective properties in brain injuries such as stroke [7] and ischemia [8]. Further,
some studies have reported the potential of HDACIs to treat chronic neurological disorders
such as amyotrophic lateral sclerosis [9] and Alzheimer’s disease [10].

The common classification of HDACs is based on a molecular phylogenetic analysis
of the primary structure. They are grouped (based on homology to yeast enzymes [11])
in distinct classes: class I (HDAC1, HDAC2, HDAC3, and HDAC8), class IIa (HDAC4,
HDAC5, HDAC7, and HDAC9), class IIb (HDAC6 and HDAC10), and class IV (HDAC11);
these classes contain zinc-dependent domains. The class III belongs to a structurally and
mechanistically distinct class of NAD+-dependent hydrolases (sirtuins, Sirt1–Sirt7) [12].

HDAC inhibitors have been classically structurally grouped into four classes: hydrox-
amates, cyclic peptides, aliphatic acids, and benzamides [13].

In Figure 1, some examples for each class are reported.
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Suberoylanilide hydroxamic acid (SAHA, vorinostat), trichostatin A (TSA), and beli-

nostat (PXD-101) are hydroxamic acid-based pan-HDAC inhibitors. Romidepsin (dep-

sipeptide, FK228) is a natural cyclic peptide which inhibits HDAC1 and HDAC2 selec-

tively. Entinostat, mocetinostat, and tucidinostat are benzamide derivatives. Entinostat is 

selective to HDAC 1, 2, and 3, and mocetinostat is a class I selective HDAC inhibitor. Ali-

phatic acids, including valproic acid and sodium phenylbutyrate have limited HDAC in-

hibitory potencies in millimolar range [14]. Some drugs such as vorinostat, romidepsin, 

belinostat, panobinostat, and chidamide that have been granted by US/Chinese FDA and 

others are under clinical trials [15]. 

To date, several HDAC inhibitors (HDACs) were addressed for cancer treatment, and 

all FDA-approved HDAC-targeting drugs are pan-HDAC inhibitors [16]. For this reason, 

many recent studies have focused on innovative strategies for the design of novel selective 

HDACIs and on their applications [17–19]. 

Since most of the known HDAC isoforms show a highly conserved nature, and they 

bind to the main pocket of the catalytic site interacting with a Zn2+ ion, the classical phar-

macophore model now widely accepted, shown in Figure 2 (applied to SAHA), and this 

Figure 1. Examples of structures of major classes of HDAC inhibitors.

Suberoylanilide hydroxamic acid (SAHA, vorinostat), trichostatin A (TSA), and be-
linostat (PXD-101) are hydroxamic acid-based pan-HDAC inhibitors. Romidepsin (dep-
sipeptide, FK228) is a natural cyclic peptide which inhibits HDAC1 and HDAC2 selectively.
Entinostat, mocetinostat, and tucidinostat are benzamide derivatives. Entinostat is selective
to HDAC 1, 2, and 3, and mocetinostat is a class I selective HDAC inhibitor. Aliphatic
acids, including valproic acid and sodium phenylbutyrate have limited HDAC inhibitory
potencies in millimolar range [14]. Some drugs such as vorinostat, romidepsin, belinostat,
panobinostat, and chidamide that have been granted by US/Chinese FDA and others are
under clinical trials [15].

To date, several HDAC inhibitors (HDACs) were addressed for cancer treatment, and
all FDA-approved HDAC-targeting drugs are pan-HDAC inhibitors [16]. For this reason,
many recent studies have focused on innovative strategies for the design of novel selective
HDACIs and on their applications [17–19].

Since most of the known HDAC isoforms show a highly conserved nature, and they
bind to the main pocket of the catalytic site interacting with a Zn2+ ion, the classical
pharmacophore model now widely accepted, shown in Figure 2 (applied to SAHA), and
this reflective binding model was firstly proposed for HDAC inhibitors by Jung et al. [20,21].
The model includes three (A-B-C) key pharmacophoric features: the zinc binding group
(ZBG) coordinating the catalytic zinc ion, a hydrophobic linker placed in the hydrophobic
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substrate binding tunnel, and a linker group connected with a CAP group occupying the
entrance to the active site [17,18].
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Several HDACIs contain an amide-alkyl-hydroxamic acid framework, such as that
present in the first discovered HDAC inhibitor trichostatin A (TSA) (Figure 1). In this
context, a very important HDACI is suberoylanilide hydroxamic acid (SAHA), well known
as vorinostat, with a structure that conforms to the above indicated pharmacophore A-B-C,
where A is the cap group (CAP) for protein surface interactions, C is a zinc coordinating
group (ZBG) that repress the hydrolysis of acetyl group in the lysine residue, and B is a
linker group that connects CAP with ZBG (Figure 2A) [22].

SAHA was the first HDAC inhibitor approved by the US Food and Drug Adminis-
tration in 2006 for the treatment of cutaneous T cell lymphoma [23]. Many SAHA analogs
have been synthesized and tested as HDACIs.

The present review reports the synthesis and biological activity of HDACIs analogs of
vorinostat, focusing attention on those bearing an aza-heteroaromatic instead of a phenyl
group in a CAP fragment, a linear aliphatic chain of a different length as a linker, and a
carboxy-, ester-, or hydroxamic group as ZBG (Figure 2B). This review, excluding patent
literature, covers literature articles of the last 25 years.

We divided the review into sub-headings, depending on the length chain of the
aliphatic linker. In turn, each sub-heading has been structured based on the class of the
heterocycle bound to the amide nitrogen atom of the CAP group.

2. Two-Carbon Linker Chain
2-Amino-1,3,4-thiadiazoles in the CAP Group

The only reported HDACIs bearing a C-2 alkyl chain are 2-amino-1,3,4-thiadiazole-
based hydroxamates 4a and 4b [24]. They were synthesized as depicted in Scheme 1.
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Scheme 1. Synthetic pathway to 1,3,4-thiadiazole derivatives 4a,b.

HDAC inhibitory activity of compounds 4a and 4b was assessed by the Color de Lys
assay and the results showed in both cases IC50 values > 5 µM, lower than that of SAHA
(IC50 = 0.15 ± 0.02).
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3. Three-Carbon Linker Chain
3.1. 2-Amino-1,3,4-thiadiazoles in the CAP GROUP

Hydroxamates bearing 2-amino-1,3,4-thiadiazole-derivatives in the CAP group and
a C-3 linker chain were obtained as depicted in Scheme 2. Intermediates 5a–d were
obtained by the reaction between 2-amino-1,3,4-thiadiazoles 2a–d and methyl 5-chloro-
5-oxopentanoate (in turn obtained from dimethyl glutarate after partial hydrolysis and
treatment with SOCl2). Treatment of 5a–d with NH2OK in methanol gave compounds
6a–d [24]. The HDAC inhibitory activity of compounds 6a–d is summarized in Table 1.
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Scheme 2. Synthetic route for preparation of compounds 6a–d.

Table 1. HDAC inhibitory activity of compounds 6a–d.

Compound HDAC
IC50 (µM)

6a >5

6b 0.16 ± 0.03

6c 1.87 ± 0.41

6d 2.71 ± 0.25

SAHA 0.15 ± 0.02

Among 6a–d, only 6b showed HDAC inhibition activity (IC50 = 0.16 ± 0.03) close to
that of SAHA (IC50 = 0.15 ± 0.02). Moreover, the effect of 6b on the cell viability in MDA-
MB-231 breast cancer cells and K562 chronic myelogenous leukemia cells was evaluated,
resulting in a IC50 value of 5.90 ± 2.75 and 6.75 ± 2.37, respectively.

3.2. Indazoles in the CAP Group

Among the series of indazole derivatives 16a–s is characterized by different spacer
length and substituents on the heterocyclic ring, prepared as shown in Scheme 3; the only
reported compounds with a 3-carbon linker chain are 16a (n = 3, R = 3-methoxyphenyl)
and related precursors [25].

The biological activity, of HDACIs, of compound 16a was tested against HDAC1,
HDAC2, and HDAC8 (IC50 = 76 nM, 168 nM, and 54 nM, respectively) and compared
with that of SAHA (IC50 = 13 nM, 70 nM, and 44 nM, respectively). Moreover, 16a was
administered to solid cancer cell lines HCT116 (human colorectal cancer cells, IC50 > 50 µM),
MCF-7 (human breast cancer cells, IC50 > 41.5 mM), and HeLa (human cervical cancer cells,
IC50 > 50 µM), but its activity was lower than that of SAHA (IC50 = 4.9 mM, 0.8 mM, and
5.0 µM for the three cell lines, respectively).
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4. Four-Carbon Linker Chain (4-C Spacer)
4.1. 2-Amino-1,3,4-thiadiazoles in the CAP Group

Compounds 17a–d (Figure 3) were obtained with the same synthetic sequence shown
in Scheme 2, using, in this case, 6-chloro-6-oxohexanoic acid as acyl chloride [24].
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Figure 3. Thiadiazole hydroxamic acids with a four-methylene chain.

The HDAC inhibitory activity of the compounds was assayed: in all four cases, it was
lower compared with that of SAHA which was chosen as a positive control, as indicated in
Table 2.

Table 2. HDAC inhibitory activity of compounds 17a–d.

Compound HDAC
IC50 (µM)

17a 1.03 ± 0.04

17b 1.70 ± 0.40

17c 1.12 ± 0.01

17d 3.49 ± 0.04

SAHA 0.15 ± 0.02
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4.2. Indazoles in the CAP Group

With the synthetic sequence depicted in Scheme 3, when n = 4 and R = 3-methoxyphenyl,
indazole derivative 16b (Figure 4) was obtained [25]. This compound showed activity
towards HDAC1 (IC50 = 13 nM), HDAC2 (IC50 = 62 nM), and HDAC8 (IC50 = 41 nM) equal
or a little better than that of SAHA (HDAC1 IC50 = 13 nM; HDAC2 IC50 = 70 nM; HDAC8
IC50 = 44 nM).
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4.3. Benzothiazoles in the CAP Group

Benzothiazole derivatives 19a–f [26] were obtained in good yields (from 70 to 90%)
by a reaction between 5-substituted 2-aminobenzothiazoles and adipic acid monomethyl
ester in the presence of 1,1’-carbonyldiimidazole and triethylamine in THF followed by a
conversion of the ester intermediates to the corresponding hydroxamic acids (Scheme 4).
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Cytotoxicity assays of compounds 19a–f against five cancer cell lines, namely SW620,
MCF-7, PC3, AsPC-1, and NCI-H460 revealed that compounds 19a–d exhibited cytotoxicity
against all tested cancer cell lines with IC50 values from 7.90 to 15.12 µg/mL whereas
compounds 19e and 19f were not cytotoxic (IC50 of >30 µg/mL).

However, when the effect of 19a–f on histone acetylation in SW620 cells was examined,
the HDAC inhibition at a concentration of 1 µg/mL was not significant.

4.4. 4-Anilinothieno [2,3-d]pyrimidine Derivatives in the CAP Group

Thieno [2,3-d]pyrimidine-based HDAC inhibitors with different lengths of the spacer
(n = 2, 3, 4) [27] were synthesized from the thieno [3,2-d]pyrimidin-4(3H)-one 20 after
nitration in an alpha position to the thiophene ring, chlorination on the pyrimidine ring,
treatment with different anilines, and reduction in the nitro group to the amino group.
The latter was reacted with the acyl chloride MeOCO(CH2)nCOCl (n = 4–6) to form the
methyl ester intermediates 25 that were subjected to hydrolysis. Subsequent treatment of
the obtained acid with hydroxylamine hydrochloride in the presence of BOP and DMAP
afforded the targeted compounds 26 (Scheme 5).

Focusing attention on the C-4 spacer, the in vitro inhibitory activity of compounds 26a
(R = 3-Cl, 4-F) and 26b (R = 3-CF3, 4-Cl) against HDAC1, HDAC3, and HDAC6 was lower
with respect to that of SAHA, except for 26a towards HDAC3 (26a IC50 = 126.56 ± 9.04;
SAHA IC50 = 158.17 ± 6.66).
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4.5. Thiazolyl-Coumarin Derivatives in the CAP Group

The in vitro inhibitory activity against HDACs of thiazolyl-coumarins linked, through
a C-4 alkyl spacer, to classic zinc binding groups, such as hydroxamic and carboxylic acid
moieties, was evaluated [28].

In particular, compounds 32a–c and 33a–c were synthesized as shown in Scheme 6.
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The first step was a Knoevenagel-type condensation between salicyl aldehydes 27a–c
and ethyl acetoacetate. After bromination of the coumarin acetyl group, the Hantzsch
synthesis gave the thiazole intermediates 30a–c that was reacted with the acyl chloride
derived from adipic acid methyl ester to give 31a–c. From the latter, acids 32a–c and
hydroxamic acids 33a–c were obtained. Compounds 33a–c were the most active inhibitory
compounds of the HDACs towards the HeLa cells.
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In addition, it has been shown that the expression and the activity of distinct histone
deacetylases (HDACs) are strongly correlated with cardiac fibrosis (CF) development.
In particular, HDAC1 and HDAC2 are mainly associated with the regulation of the biology
of CF in the heart; in this context, compound 33a showed significant inhibition on CF
proliferation at 1 µM concentration and also a decrease in procollagen type I and α–smooth
muscle actin (α–SMA) expression levels.

5. Five-Carbon Linker Chain (5-C Spacer)
5.1. 2-Amino-1,3,4-thiadiazoles in the CAP Group

Compounds 34a–d (Figure 5) were obtained as shown in Scheme 2, using, in this case,
7-chloro-7-oxohexanoic acid as acyl chloride [24]. The relevant HDAC inhibitory activity is
reported in Table 3.
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Table 3. HDAC inhibitory activity of compounds 34a–d.

Compound HDAC
IC50 (µM)

34a 0.089 ± 0.005

34b >5

34c 0.22 ± 0.04

34d 0.33 ± 0.05

SAHA 0.15 ± 0.02

The HDAC inhibitory activity evaluation of compound 34a (R = Ph, IC50 = 0.089 ± 0.005 µM)
achieved a better result than that of SAHA (IC50 = 0.15 ± 0.02 µM), similarly to in cases 34c
and 34d; in contrast, 34b was >5 µM.

Other compounds bearing 1,3,4-thiadiazole ring as the surface recognition motif,
obtained with a sequence very similar to that depicted in Scheme 2, were compounds 34e–y
(Figure 5) [29].

Among them, only 34g (R = 4-OCH3), 34i (R = 4-CH3), 34v (R = pyridin-3-yl), 34w
(R = pyridin-4-yl), 34x (furan-2-yl), and 34y (thiophen-2.yl) showed IC50 values IC50 of
HDACs close to that of SAHA.

5.2. 4-Anilinothieno [2,3-d]pyrimidine Derivatives in the CAP Group

The inhibitory activity of compounds 26c–g, synthesized as depicted in Scheme 5, was
tested for HDAC1, HDAC3, and HDAC6. In all cases, it was higher than that of SAHA, as
reported in Table 4 [27].
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Table 4. ‘In vitro’ inhibitory activity against HDACs of compounds 26c–26g.

Compound R HDAC1
IC50 (nM)

HDAC3 IC50
(nM)

HDAC6 IC50
(nM)

26c 3-Cl, 4-F 35.89 ± 16.34 37.67 ± 1.61 23.99 ± 0.72

26d 3-CF3, 4-Cl 40.84 ± 8.23 48.26 ± 1.78 30.00 ± 1.14

26e H 11.77 ± 0.50 20.77 ± 0.64 26.99 ± 4.95

26f 4-CH3 14.01 ± 1.32 9.33 ± 0.10 19.68 ± 1.96

26g 3-CH3, 4-CH3 29.82 ± 11.51 14.74 ± 0.03 16.87 ± 3.02

SAHA 93.34 ± 2.78 158.17 ± 6.66 78.98 ± 13.19

5.3. Indazole Nucleus in the CAP Group

Indazolyl compound 16c (Figure 6) was obtained through the synthetic sequence
depicted in Scheme 3 when n = 5 and R = 3-methoxyphenyl [25].

Molecules 2024, 29, x FOR PEER REVIEW 9 of 24 
 

 

Table 4. ‘In vitro’ inhibitory activity against HDACs of compounds 26c-26g. 

Compound R 
HDAC1  

IC50 (nM) 

HDAC3 

IC50(nM) 
HDAC6 IC50(nM) 

26c 3-Cl, 4-F 35.89 ± 16.34 37.67 ± 1.61 23.99 ± 0.72 

26d 3-CF3, 4-Cl 40.84 ± 8.23  48.26 ± 1.78 30.00 ± 1.14 

26e H 11.77 ± 0.50  20.77 ± 0.64 26.99 ± 4.95 

26f 4-CH3 14.01 ± 1.32  9.33 ± 0.10 19.68 ± 1.96 

26g 3-CH3, 4-CH3 29.82 ± 11.51  14.74 ± 0.03 16.87 ± 3.02 

SAHA  93.34 ± 2.78 158.17 ± 6.66 78.98 ± 13.19 

5.3. Indazole Nucleus in the CAP Group 

Indazolyl compound 16c (Figure 6) was obtained through the synthetic sequence de-

picted in Scheme 3 when n = 5 and R = 3-methoxyphenyl [25]. 

This compound showed activity towards HDAC1 (IC50 = 2.6 nM), HDAC2 (IC50 = 6.3 

nM), and HDAC8 (IC50 = 4.5 nM) that was higher than that observed for the corresponding 

homologues 16a and 16b, thus indicating a strong effect of the chain length in inducing 

biological activity. 

 

Figure 6. Indazolyl SAHA analog 16c. 

6. Six-Carbon Linker Chain (6-C Spacer) 

6.1. 2-Amino-1,3,4-thiadiazoles in the CAP Group 

Compounds 35a–d (Figure 7) were obtained as shown in Scheme 2, using, in this case, 

8-chloro-8-oxohexanoic acid as acyl chloride [24], and the relevant data on their HDAC 

inhibitory activity are summarized in Table 5. Compounds 35 e–q were obtained in a sim-

ilar manner [29]. 

 

Figure 7. 2-amino-1,3,4-thiadiazoles connected to a C-6 spacer through an amide bond, with hy-

droxamic acid as the ZBG group. 

Table 5. HDAC inhibitory activity of compounds 35a–d. 

Compound 
HDAC  

IC50 (μM) 

35a 0.27 ± 0.004 

34b 3.21 ± 0.10 

34c 0.26 ± 0.05 

34d 0.32 ± 0.05  

SAHA 0.15 ± 0.02 

Figure 6. Indazolyl SAHA analog 16c.

This compound showed activity towards HDAC1 (IC50 = 2.6 nM), HDAC2 (IC50 = 6.3 nM),
and HDAC8 (IC50 = 4.5 nM) that was higher than that observed for the corresponding
homologues 16a and 16b, thus indicating a strong effect of the chain length in inducing
biological activity.

6. Six-Carbon Linker Chain (6-C Spacer)
6.1. 2-Amino-1,3,4-thiadiazoles in the CAP Group

Compounds 35a–d (Figure 7) were obtained as shown in Scheme 2, using, in this case,
8-chloro-8-oxohexanoic acid as acyl chloride [24], and the relevant data on their HDAC
inhibitory activity are summarized in Table 5. Compounds 35 e–q were obtained in a
similar manner [29].
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Figure 7. 2-amino-1,3,4-thiadiazoles connected to a C-6 spacer through an amide bond, with hydrox-
amic acid as the ZBG group.

Moreover, among compounds 35e–q, only 35n (R = pyridin-3-yl), 35o (R = pyridin-
4-yl), and 35q (R = thiophen-2-yl) showed an IC50 (referred to HDACs) value lower that
that found for SAHA. This recalls the behavior found for 34v, 34w, and 34y, bearing the
same CAP group but with a 5-C spacer, indicating the efficacy of pyridine and thiophene
derivatives. The viability of cancer cells MDA-MB-231, K562, and PC3 was measured by
MTT assay for compounds 34v, 34w, 34y, 35n, 35o, and 35q. The results showed that 35q
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had higher efficacy than SAHA on all cell lines tested, whereas 35o only had higher efficacy
on MDA-MB-231 cells.

Table 5. HDAC inhibitory activity of compounds 35a–d.

Compound HDAC
IC50 (µM)

35a 0.27 ± 0.004

34b 3.21 ± 0.10

34c 0.26 ± 0.05

34d 0.32 ± 0.05

SAHA 0.15 ± 0.02

Thiadiazole derivatives 40a–o were synthesized as depicted in Scheme 7 starting from
benzaldehyde 36a (or differently substituted benzaldehydes 36b–o) and thiosemicarbazide
followed by cyclization to thiadiazole derivatives 38a–o. The latter were reacted with 1,10-
carbodiimidazole (CDI) and suberic monomethyl ester acid to obtain derivatives 39a–o,
from whose final hydroxamates 40a–o were obtained [30].
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Scheme 7. Synthetic pathway for N1-hydroxy-N8-(5-substituted phenyl-1,3,4-thiadiazol-2-
yl)octandiamides 40a–o.

In this series, compounds 40b, 40c, and 40d were found to possess potent anticancer
cytotoxicity and HDAC inhibition effects. They were generally two- to five-fold more
potent in terms of cytotoxicity compared to SAHA against five cancer cell lines tested
(SW620, colon cancer; MCF-7, breast cancer; PC3, prostate cancer; AsPC-1, pancreatic
cancer; and NCI-H460, lung cancer). Docking studies revealed that these hydroxamic acids
displayed higher affinities than SAHA towards HDAC8.

6.2. Thiazoles in the CAP Group

Phenylthiazole-bearing hydroxamates [31] Ortho- and meta-amino-substituted phenylth-
iazole derivatives 41–49 were synthesized starting from commercial 4-(2-nitrophenyl)thiazol-
2-ylamine and 4-(3-nitrophenyl)thiazol-2-ylamine (Scheme 8).
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In the same paper, phenylthiazoles 50–55 bearing an amide or urethane residue on the
benzene ring in linkage with a bulkier alkyl group have been reported. They were synthe-
sized starting from compounds 43a and 43b through the sequence shown in Scheme 9.
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The inhibitory activity of the above compounds has been tested towards HDAC1,
HDAC2, HDAC3, HDAC8, HDAC10, and HDAC6. In comparison with the unsubsti-
tuted phenylthiazole analog, the introduction of an amino group as in 45a and 45b or a
glycineamide residue as in 47 did not produce significant changes in both activity and
isoform selectivity. The ortho-nitro compound 44a is almost 10-fold less potent than the
corresponding amine analog 45a. The meta-substituted ethyl carbamate 49 showed an ac-
tivity against HDAC1 and HDAC2 very close to that of its amine analog 45b, but it showed
a 3-fold improvement in its HDAC6 inhibitory activity. Ongoing from the ethyl- (49) to
the tert-butyl- (50b) carbamate, an increase in HDAC6 inhibitory activity was observed,
but there were no changes in inhibitory activity towards HDAC1 and HDAC2. Moreover,
the introduction of a Boc-protecting group led to an enhancement in the inhibitory activity
towards HDAC6 (>15-fold in 51b in comparison with 45b). Interestingly, replacement of
the tert-butyloxy group of 51b by a cyclohexyl group as in 55 leads to subnanomolar po-
tency against both HDAC2 and HDAC3 (IC50 values 200-fold increase against HDAC2 and
>20-fold increase against HDAC3), while the IC50 value for HDAC6 was still below 0.2 nM.
Compound 51a showed a 2-fold decrease in activity towards HDAC1 and HDAC2, with
similar inhibitory potency against HDAC6 relative to the unprotected ortho-NH2 ligand
45a. Also, conversion of 51b to the pivaloyl derivative 53 produced a >10-fold decrease in
HDAC6 inhibition. Inhibitory data of compound 44b have been also reported in a previous
study [32].

Compounds 44a, 45a, 45b, and 49 have been also tested towards five pancreatic cancer
cell lines, and their antiproliferative activity was compared with that of SAHA and showed
similar or improved potencies relative to SAHA. Among them, the meta-amino-substituted
phenylthiazole 45b gave the best IC50 value against the Mia Paca-2 cell line (IC50 = 10 nM),
while its carbamate analog 49 showed the best overall inhibitory activity against all five
pancreatic cancer cell lines.

In another study [33], the phenylthiazole-based probe 57, with an azide group on
the phenyl ring, was designed to mimic the scaffold of SAHA. The synthesis is shown in
Scheme 10.
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Compound 57 resulted in 6.1-fold less activity in inhibiting HDAC8 compared to
SAHA, and this behavior has been attributed to an increase in the lipophilic nature of the
solvent exposed surface binding group that influences to the overall binding affinity.

Finally, hydroxamic derivatives bearing both unsubstituted- and p-N-pyrrolidinyl-
substituted phenylthiazole amide functionality showed better HDAC potency and cellular
activity (towards HT1080 and MDA435 cells) with respect to SAHA [34].

6.3. Pyrazole Nucleus in the CAP Group

HDACIs bearing pyrazole and isoxazole derivatives in the CAP group have been
synthesized and studied by Petukhov et al. [35,36].

In particular, compounds with pyrazole nucleuses 61, 67, and 68a–d have been synthe-
sized according to Scheme 11 starting from commercially available 4-nitropyrazole (58). The
synthetic strategy involves, as the first step, an amide coupling between 4-aminopyrazole,
obtained from 58 through hydrogenolysis, and monomethyl suberate to give (59). Alkyla-
tion of 59 with toluene-4-sulfonic acid 3-azido-5-azidomethylbenzyl ester in the presence
of K2CO3 obtained compound 60. Compounds 62 and 63 were obtained by alkylation of 59
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with benzyl bromide or 4-nitrobenzyl bromide in the presence of NaH in DMF, respectively.
A reduction in the nitro group of 63 gave aniline 64, a key intermediate for compounds 65
and 66. Diazotization of the amino group of the aniline derivative 64 followed by an azide
displacement reaction with NaN3 gave the corresponding azido compound 65. Treatment
of 64 with Boc anhydride furnished the carbamate 66. Compound 67 was obtained by an
amide coupling between 64 and 3-azido-5-azidomethylbenzoic acid followed by treatment
with KOH/NH2OH in MeOH. The same treatment on the methyl esters 60, 62, 63, 65, and
66 gave the corresponding hydroxamates 61 and 68a-d, respectively.
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CAP group.

Pyrazoles 61, 67, and 68a–d were tested for the inhibition of HDAC3 and HDAC8 iso-
forms. The inhibition of HDAC8 was measured using the fluorescent acetylated HDAC sub-
strate Fluor de Lys and the commercially available recombinant human HDAC8, whereas
the inhibition of HDAC3 was measured using the fluorescent HDAC substrate Boc-L-
Lys(Ac)-AMC and the commercial recombinant human HDAC3/NCoR2.

The results are summarized in Table 6.
The simplest benzyl substituted pyrazole 68a inhibited HDAC3 and HDAC8 with IC50s

of 44 and 76 nM, respectively. Introduction of a nitro group at the 4-position of the benzyl
group of 68a gave compound 68b that showed slightly lower activity for both isoforms,
whereas the corresponding azido compound 68c exhibited a 2.0- and 2.7-fold better potency,
with its IC50 values being 22 and 28 nM for HDAC3 and HDAC8, respectively. Overall,
compounds 68a–c exhibited an inhibitory activity against HDAC3 comparable to that of
SAHA but exhibited a better double digit nanomolar activity against HDAC8. Introduction
of a bulky Boc-protected amino group in 68d decreased the HDAC activity by about 10-fold.
Replacement of the Boc group with a lipophilic aromatic diazide as in 67 further decreased
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the activity for both HDAC3 and HDAC8 to 432 and 487 nM, respectively. Comparison of
the activity data of 68b,c with 68d and 67 shows that the presence of the bulky substituent
in the para position of the terminal phenyl ring leads to the lower activities for both HDAC3
and HDAC8 isoforms. The replacement of the phenyl group with a 3-azido-5-azidomethyl
phenyl group, resulting in 61, revealed that this compound was 8-fold more active towards
HDAC8 than for HDAC3, with IC50s equal to 17 and 128 nM, respectively. The activity of
the methyl ester 60 towards HDAC8 was 36.0 ± 2.20 µM [37].

Compound 61, also called SAHA diazide, was also tested against HDAC1 and HDAC4;
compared with the activity of SAHA (Ki = 0.051 and >30 µM for HDAC1 and HDAC4,
respectively), Ki values for 61 were Ki = 0.14 and 13.05 µM for HDAC1 and HDAC4,
respectively.

Table 6. Inhibition of HDAC3 and HDAC8 isoforms by pyrazoles 61, 67, and 68a–d compared with
that of SAHA.

Compound HDAC3
IC50 ± SD (nM)

HDAC8
IC50 ± SD (nM)

SAHA 27 ± 1.0 440 ± 21

61 128 ± 9.8 17 ± 3

67 432 ± 52 487 ± 80

68a 44 ± 5.8 76 ± 5.0

68b 59 ± 1.0 82 ± 9.0

68c 22 ± 1.3 28 ± 3.0

68d 191 ± 18 147 ± 15

6.4. Pyridine and Pyrimidine Nucleus in the CAP Group

The synthesis and biological activity of compounds 69a–c, bearing a pyridinyl sub-
stituent in the CAP group (Figure 8), have been reported, but their activity towards HDAC1
was much lower than that of SAHA [38].
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Similar behavior was also found for the pyrimidine derivative 70.
The simpler pyridinyl derivatives 71a–c (Figure 8) were profiled using a partially

purified HDAC enzyme obtained from H1299 cell lysate in antiproliferative assays (towards
H1299 and HCT116) and in a p21 promoter induction assay [39].

In these cases, the activity towards enzyme was comparable to that of SAHA. The
2-pyridyl isomer 71a was essentially equipotent to SAHA in the promoter assay, but 3-fold
less potent in HCT116 growth inhibition and >10 µM in H1299 growth inhibition. The 3-
and 4-pyridyl isomers 71b and 71c were less potent than SAHA. The difference in cellular
activity of these positional isomers has been hypothesized due to differences in cellular
permeability or intracellular metabolism of the compounds.
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6.5. Thienopyrimidine Nucleus in the CAP Group

The biological activity of thienopyrimidine derivatives 26h–y, synthesized as reported
in Ref. [18] and depicted in the above Scheme 5, have been tested as inhibitors of HDAC1,
HDAC3, and HDAC6, and of proliferation of RMPI8226 and HCT-116 cancer cells. In all
cases, the activity found was comparable with that of SAHA.

In the same paper, the biological activity of compound 72 (Figure 9) was also tested
and the results showed poor inhibitory activity in many cases, suggesting that the presence
of the 4-aniline fragment could increase the lipophilic interaction with HDACs to induce
good inhibitory activities against them.
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Figure 9. Structure of compound 72.

The above cited paper was followed by a second [40], only focused on the C-6 spacer,
in which the fifteen novel compounds 76a–o, bearing the thienopyrimidine fragment
on the CAP group were synthesized from methyl 3-aminothiophene-2-carboxylate that,
after cyclization with formamidine acetate under microwave conditions, gave the thieno
pyrimidin-4(3H)-one (20) in similar conditions to those already reported in Scheme 5. The
latter was subjected to nitration and subsequent chlorination then coupled with a series
of anilines to give compounds 73a–o. A reduction in the nitro group to the amino group
afforded the key precursors 74a–o. After treatment with acyl chlorides amides, 75a–o were
obtained. Lastly, the target products 76a–o were obtained after reaction with hydroxylamine
hydrochloride (Scheme 12).
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The ability of compounds 76a–o to inhibit recombinant human HDAC1, HDAC3,
and HDAC6 isoforms and ‘in vitro’ activity against cancer cell lines RMPI 8226 and HCT
116 was tested. Most of them displayed good inhibitory and anticancer activities, partic-
ularly compound 76j that showed IC50 values (29.81 ± 0.52 nM, 24.71 ± 1.16 nM, and
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21.29 ± 0.32 nM for HDAC1, HDAC3, and HDAC6, respectively) much lower than those
found for SAHA (195.00 ± 16.12 181.05 ± 28.92 105.10 ± 25.46). Moreover, the IC50 values
of compound 76j against RPMI 8226 and HCT 116 proliferation were 0.97 ± 0.072 mM and
1.01 ± 0.033 mM, respectively, and it up-regulated the level of histone H3 acetylation at the
concentration of 0.3 mM.

6.6. Indazole Nucleus in the CAP Group

In Figure 10, indazolyl derivatives 16d–s are shown, synthesized through the approach
depicted above in Scheme 3 [25].
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Figure 10. Indazolyl SAHA analogs 16d–s.

Among compounds 16d–s, compounds 16n and 16p emerged as excellent inhibitors
of HDAC1 (IC50 = 2.7 nM and IC50 = 3.1 nM), HDAC2 (IC50 = 4.2 nM and IC50 = 3.6 nM),
and HDAC8 (IC50 = 3.6 nM and IC50 = 3.3 nM). Antiproliferation assays revealed that
these compounds also showed antiproliferative activities against HCT-116 and HeLa cells
better than SAHA. Moreover, compounds 16n and 16p up-regulated the level of acetylated
α-tubulin and histone H3 and promoted cell apoptosis.

According to a similar synthetic route similar to that of Scheme 3, 1H-pyrazolo [3,4-b]
pyridine derivatives 77a,b (Figure 11), bioisosters of compounds 16e and 16n, respectively,
were obtained from 2,6-dichloronicotinonitrile through a multistep sequence [25].
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Figure 11. Structure of compounds 77a,b.

The inhibitory activities of 77a and 77b towards HDACs slightly decreased, indicat-
ing that the presence of the 6-phenyl-1H-indazole scaffold is important to affecting the
biological activity.

6.7. Benzothiazole Moiety in the CAP Group

Compounds 78a–f (Figure 12) were obtained from 2-aminobenzothiazole derivatives
with the sequence depicted in Scheme 4, with the difference to use suberic acid monomethyl
ester instead of adipic acid monomethyl ester [26].
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It was observed that several compounds showed good inhibition against HDAC3 and
HDAC4. The amount of enhanced acetylation of histone-H3 and -H4 in SW620 cells by
78a–c and 78f was similar to that found for SAHA.

Moreover, all six compounds displayed cytotoxicity against five cancer cell lines
(SW620, colon cancer; MCF-7, breast cancer; PC3, prostate cancer; AsPC-1, pancreatic
cancer; NCI-H460, lung cancer), with average IC50 values ranging from 0.59 to 11.08 µg/mL.

Homologues 4C-bridged compounds showed slight or no increase in histone acetyla-
tion, suggesting that the linker length between the benzothiazol and hydroxamic moieties
required for good HDAC inhibition of this compound series was similar to that of SAHA.
In addition, the size of the 6-substituents on the benzene ring rather than their electronic
effects was important for HDAC binding; for example, 78d and 78e bearing relatively larger
substituents (–OC2H5 and –SO2CH3) compared to the other compounds in the series did
not inhibit HDAC activity. Actually, compounds 78c (bearing –OCH3, an electron-donating
group) and 78f (bearing –NO2, an electron-withdrawing group) showed similar HDAC
inhibitor power and were almost equally cytotoxic.

6.8. Benzoxazole Moiety in the CAP Group

From the reaction between 2-aminobenzoxazole and suberic acid monomethyl ester
and the subsequent transformation of the methyl ester to hydroxamic group, compound 80,
which can be considered a bioisoster of 78a, was obtained (Scheme 13) [41].

Molecules 2024, 29, x FOR PEER REVIEW 18 of 24 
 

 

Moreover, all six compounds displayed cytotoxicity against five cancer cell lines 

(SW620, colon cancer; MCF-7, breast cancer; PC3, prostate cancer; AsPC-1, pancreatic can-

cer; NCI-H460, lung cancer), with average IC50 values ranging from 0.59 to 11.08μg/mL.  

Homologues 4C-bridged compounds showed slight or no increase in histone acety-

lation, suggesting that the linker length between the benzothiazol and hydroxamic moie-

ties required for good HDAC inhibition of this compound series was similar to that of 

SAHA. In addition, the size of the 6-substituents on the benzene ring rather than their 

electronic effects was important for HDAC binding; for example, 78d and 78e bearing rel-

atively larger substituents (–OC2H5 and –SO2CH3) compared to the other compounds in 

the series did not inhibit HDAC activity. Actually, compounds 78c (bearing –OCH3, an 

electron-donating group) and 78f (bearing –NO2, an electron-withdrawing group) showed 

similar HDAC inhibitor power and were almost equally cytotoxic. 

6.8. Benzoxazole Moiety in the CAP Group 

From the reaction between 2-aminobenzoxazole and suberic acid monomethyl ester 

and the subsequent transformation of the methyl ester to hydroxamic group, compound 

80, which can be considered a bioisoster of 78a, was obtained (Scheme 13) [41].  

 

Scheme 13. Benzoxazole analog of SAHA from 2-aminobenzoxazole. 

Compound 80 was an inhibitor of human HDAC1; HDAC2 more potent than vori-

nostat and was also comparable as an inhibitor of HDAC6. It was a slightly more potent 

inhibitor than vorinostat on the growth of A549, Caco-2, and SF268 cells and was chosen 

for further studies against two colon cancer cell lines, HCT116 GNAS R201C/+ and LS174T 

cells, that genetically resemble PMP tumor cells, and it proved to be a more potent anti-

proliferative compound than vorinostat in both cases. 

6.9. Isoquinoline Moiety in the CAP Group 

Novel HDACIs bearing isoquinoline fragments in CAP groups have been synthe-

sized starting from 2-methyl-5-nitrobenzoic acid (81) [42]. After esterification to 82 fol-

lowed by treatment with DMA-DMF and cyclization with 3,4-dimethoxylbenzylamine, 

intermediate 84 was obtained. The latter was deprotected to 85 then chlorinated to 86, 

which was coupled with a series of anilines to generate compounds 87. A reduction in the 

nitro group followed by reaction with 8-methoxy-8-oxooctanoic acid afforded the amides 

89 which, after treatment with freshly prepared hydroxylamine, gave compounds 90a–h. 

(Scheme 14) [42]. 

Scheme 13. Benzoxazole analog of SAHA from 2-aminobenzoxazole.

Compound 80 was an inhibitor of human HDAC1; HDAC2 more potent than vorino-
stat and was also comparable as an inhibitor of HDAC6. It was a slightly more potent
inhibitor than vorinostat on the growth of A549, Caco-2, and SF268 cells and was cho-
sen for further studies against two colon cancer cell lines, HCT116 GNAS R201C/+ and
LS174T cells, that genetically resemble PMP tumor cells, and it proved to be a more potent
antiproliferative compound than vorinostat in both cases.

6.9. Isoquinoline Moiety in the CAP Group

Novel HDACIs bearing isoquinoline fragments in CAP groups have been synthesized
starting from 2-methyl-5-nitrobenzoic acid (81) [42]. After esterification to 82 followed by
treatment with DMA-DMF and cyclization with 3,4-dimethoxylbenzylamine, intermediate
84 was obtained. The latter was deprotected to 85 then chlorinated to 86, which was
coupled with a series of anilines to generate compounds 87. A reduction in the nitro group
followed by reaction with 8-methoxy-8-oxooctanoic acid afforded the amides 89 which, after
treatment with freshly prepared hydroxylamine, gave compounds 90a–h. (Scheme 14) [42].
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Scheme 14. Synthetic way to SAHA analogs 89 and 90 with isoquinoline scaffold in the CAP group.

Compounds 90a–h were tested against HDAC1, HDAC3, and HDAC6 and all showed
better activity than SAHA, which was used as a positive control. The best active compound
was 90c, showing IC50 values 4.17 nM, 4.00 nM, and 3.77 nM against HDAC1, HDAC3,
and HDAC6, respectively. Furthermore, the antiproliferative activity of compounds 90a–h
against multiple myeloma cell line RPMI 8226 was tested and the more active were 90a,
90f, and 90g with IC50 values 0.46 µM, 0.52 µM, and 0.47 µM, respectively.

When intermediate 86 was reacted with aliphatic amines under microwaves conditions,
after a reduction in the nitro group to amino group and subsequent treatment as reported
in steps h and i of Scheme 14, isoquinolines 91a–d (Figure 13) were obtained.
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Figure 13. Isoquinoline derivatives 91a–d.

Compound 91a with a large substituent at the C-1 position of the isoquinoline ring
significantly decreased with respect to 91b–d inhibitory activities against HDACs as well
as the proliferation of RPMI 8226 cells. Compounds 91b–d displayed similar enzymatic
activities, suggesting that small aliphatic amines at the C-1 position do not significantly
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affect the inhibitory activities against HDACs enzyme in vitro and the proliferation of
the cancer cells with respect to compounds 90a–h, bearing an aromatic substituent at the
C-1 position.

Finally, to test the effects of the spatial orientation of the N-substituents, compound
83 depicted in Scheme 14 was reacted with different aliphatic amines in toluene at 110 ◦C
and the obtained intermediate subjected to steps g, h, and i (reported Scheme 14), thus
obtaining isoquinoline-1(2H)-one derivatives 92a–d (Figure 14)
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Figure 14. Isoquinoline-1(2H)-one derivatives 92a–d.

The inhibitory activity of the series 92a–d towards HDAC1, HDAC3, and HDAC6
isoforms and cancer cell proliferation were evaluated. These compounds exhibited weaker
inhibitory activities against HDACs, indicating that the binding affinity between the N-
substituent isoquinoline-1-one scaffold and the HDAC surface was decreased with respect
to the 91a–d series.

In a paper focused on the study of the influence of the substitution of the phenyl
SAHA capping group with various substituents [43], two compounds bearing heterocyclic
rings have been reported, one (93) with a isoquinolinyl group and the other (94) with a
pyrimidin-2(1H)-one moiety (Figure 15), but both displayed a very weak antiproliferative
and histone deacetylation activities.
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6.10. Quinazoline Moiety in the CAP Group

Taking into account the known role of hydroxamic acids as HDAC inhibitors and
that of quinazolines as EGFR/HER2 inhibitors, some authors synthesized compounds
bearing both functionalities in order to find efficient multitarget inhibitors [44]. Thus,
among various compounds, they prepared quinazoline derivative 101 starting from 95 with
the multistep procedure depicted in Scheme 15.
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Scheme 15. Synthetic scheme to quinazoline derivative 101.

The HDAC inhibitory activity of the quinazoline SAHA analog 101 was determined
using the Biomol Color de Lys system and the IC50 value was 15.3 nM. This compound also
exhibited EGFR and HER2 kinase activity.

7. Seven-Carbon Linker Chain (7-C Spacer)
Pyridine and Pyrimidine Moiety in the CAP Group

A series of compounds bearing pyridine or pyrimidine moiety bound to an azelayl scaf-
fold through Schotten–Bauman-like reaction was synthesized as reported in Scheme 16 [45].
The series was subjected to biological screening on a panel of tumor cell lines: noticeably,
none of the compounds induced cytotoxicity in the normal fibroblast cell line, while only
osteosarcoma cells (U2OS) appeared to be sensitive to compound 106a.
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Scheme 16. Synthesis of pyridine and pyrimidine derivatives 105 and 106.

Compound 106a was studied ‘in silico’, by using histone deacetylases as molecular
target, which revealed that it is able to interact with HDAC 7, which is in agreement with
studies which have disclosed an unexpected function for HDAC7 in osteoclasts.

8. Conclusions

This review is focused on the synthesis and biological activity, in terms of HDAC
inhibition, of SAHA analogs bearing as a linker a linear aliphatic chain of different lengths.
The CAP group was selected among those in which the amide was directly bound to a
heterocycle. Heterocycles present in the CAP group herein considered belonging to the
classes of 1,3,4-thiadiazoles, indazoles, thiazoles, and their benzoderivatives, benzoxa-
zoles, 4-anilinothienopyrimidines, pyrazoles, pyridines, pyrimidines, isoquinolines, and
quinazolines. The ZBG is the ester, carboxylic, or hydroxamic acid group. Biological data
reported in the considered literature mainly referred to hydroxamic acid derivatives, and
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the data were usually compared to the SAHA activity chosen as a reference. In some papers,
‘in vitro’ activity towards selected cancer cell lines was also evaluated.

In agreement with the knowledge that HDACIs often suffer from their multi-directional
selectivity, in many of the cases herein, the selectivity towards a single HDAC isoform
were poor.

The influence of the aliphatic chain length of the linker is evident in compounds
bearing the same cap and ZGB groups. Thus, by comparing data of Tables 1–3 and 5, it
can be deduced that compounds with the linker composed of five or six methylene units
inhibited HDAC more efficiently than those characterized by C-2, C-3, and C-4 linker.

Analogous behavior was observed for compounds bearing indazoles as the CAP
group, whose biological data are summarized in Table 7.

Table 7. Biological activity of indazoles 16a–d towards some HDAC isoforms and cancer cell lines.

Comp. Alkyl Chain
Linker n

HDAC1
IC50 (nM)

HDAC2
IC50 (nM)

HDAC8
IC50 (nM)

HCT-116
IC50
(µM)

MCF-7
IC50 (µM)

HeLa
IC50 (µM)

SAHA 13 70 44

16a n = 3 76 168 54 >50 41.5 >50

16b n = 4 13 62 41 23.5 4.4 5.8

16c n = 5 2.6 6.3 4.5 10.6 7.4 20.1

16d n = 6 1.9 3.9 3.0 4.9 0.8 5

The linker between the CAP group and zinc-binding group strongly affects the in-
hibitory activity on HDACs: on increasing the length of the linker, the better inhibitory
activity was obtained for a methylene chain with six carbon atoms. The authors think that
the linker might affect the orientation of the CAP group and zinc-binding group, influenc-
ing the binding affinity between the protein and ligand. Through molecular docking and
dynamic studies, the authors stated that the potent HDAC inhibitory activities are mainly
caused by van der Waals and electrostatic interactions with the HDACs.

The table also reports the ‘in vitro’ biological activity against the proliferation of a panel
of cancer cell lines: the behavior reflects what was observed for HDAC inhibition activity.

Because of the growing importance to develop selective HDAC inhibitors, many
studies are also investigating this area, and in our introduction we reported some recent
papers on this topic.
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