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Abstract: A growing body of experimental evidence suggests that microRNAs (miRNAs) are closely
associated with specific human diseases and play critical roles in their development and progression.
Therefore, identifying miRNA related to specific diseases is of great significance for disease screening
and treatment. In the early stages, the identification of associations between miRNAs and diseases
demanded laborious and time-consuming biological experiments that often carried a substantial
risk of failure. With the exponential growth in the number of potential miRNA-disease association
combinations, traditional biological experimental methods face difficulties in processing massive
amounts of data. Hence, developing more efficient computational methods to predict possible
miRNA-disease associations and prioritize them is particularly necessary. In recent years, numerous
deep learning-based computational methods have been developed and have demonstrated excellent
performance. However, most of these methods rely on external databases or tools to compute various
auxiliary information. Unfortunately, these external databases or tools often cover only a limited
portion of miRNAs and diseases, resulting in many miRNAs and diseases being unable to match with
these computational methods. Therefore, there are certain limitations associated with the practical
application of these methods. To overcome the above limitations, this study proposes a multi-view
computational model called MVNMDA, which predicts potential miRNA-disease associations by
integrating features of miRNA and diseases from local views, global views, and semantic views.
Specifically, MVNMDA utilizes known association information to construct node initial features.
Then, multiple networks are constructed based on known association to extract low-dimensional
feature embedding of all nodes. Finally, a cascaded attention classifier is proposed to fuse features
from coarse to fine, suppressing noise within the features and making precise predictions. To validate
the effectiveness of the proposed method, extensive experiments were conducted on the HMDD v2.0
and HMDD v3.2 datasets. The experimental results demonstrate that MVNMDA achieves better
performance compared to other computational methods. Additionally, the case study results further
demonstrate the reliable predictive performance of MVNMDA.

Keywords: miRNA–disease association; multi-view network; cascade attention; meta-path

1. Introductions

MicroRNA are endogenous non-coding RNA, approximately 20–24 nucleotides in
length, that play a crucial regulatory role in numerous biological processes [1,2]. Since
the discovery of the first miRNA in 1993, they have garnered significant attention from
researchers, prompting investigations into their functions and mechanisms [3]. Recent
studies have confirmed a causal relationship between miRNA dysregulation and the onset
of diseases, with specific miRNA potentially acting as suppressors of certain cancers. For
instance, miR-17-92 has been associated with diseases such as colorectal cancer, B-cell lym-
phoma, gastric cancer, and small-cell lung cancer [4–6]. The expression levels of miR-195
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and miR-497 are inversely correlated with the malignancy of breast cancer, and research
indicates their effectiveness in inhibiting cancer cell proliferation [7]. Furthermore, studies
reveal that miRNA-19b is positively correlated with tumor size, miRNA-17a overexpression
is associated with lymph node metastasis, and miRNA-18a expression is linked to tumor
staging [8]. Therefore, unveiling more potential associations between miRNA and diseases
is of paramount importance for understanding the mechanistic operations of diseases in
the human body and for the development of more effective treatment strategies. Never-
theless, traditional biological experimental methods are often time-consuming, costly, and
come with a significant risk of failure. There is an urgent need for a simple and efficient
computational approach to predict disease-associated miRNA from a wealth of known
associations and prioritize them for further validation and testing by researchers.

In recent years, numerous computational methods have been developed for predicting
associations between miRNAs and diseases. Ji et al. [9] developed a computational
method called AEMDA, a deep autoencoder with no negative samples, designed to identify
potential associations between miRNAs and diseases. AEMDA derives dense and high-
dimensional representations of diseases and miRNAs from disease semantic similarity,
miRNA functional similarity, and heterogeneous interaction data. Subsequently, it utilizes
reconstruction errors to predict disease-associated miRNAs. Wang et al. [10] proposed a
computational method named SAEMDA. SAEMDA employs stacked autoencoders for
unsupervised pre-training on all miRNA-disease samples. It then fine-tunes the model in
a supervised learning manner using positive and negative samples. Its advantage lies in
effectively utilizing information from both known and unknown samples. Zhao et al. [11]
developed adaptive augmentation for miRNA-disease association prediction (ABMDA)
to predict potential associations between diseases and miRNAs by balancing positive and
negative samples using k-means clustering-based random sampling on negative samples.
Similarly, the GBDT-LR proposed by Zhou et al. [12] used k-means clustering to screen
out negative samples from unknown miRNA disease associations. The gradient boosting
decision tree (GBDT) model is then used to extract features, as it has an inherent advantage
in discovering many distinguishing features and feature combinations. Finally, the newly
extracted features from the GBDT model are incorporated into a logistic regression (LR)
model for predicting the final miRNA-disease association score.

Subsequently, influenced by the significant advances achieved by graph neural net-
works in other domains, several computational methods based on graph neural networks
have been introduced. Li et al. [13] devised a novel algorithm based on two pieces of
integrated similarity data and named it GAEMDA. By aggregating neighborhood informa-
tion of nodes, GAEMDA obtains low-dimensional embeddings for miRNA and disease
nodes. These embeddings are then fed into a bilinear decoder to identify potential asso-
ciations between miRNAs and diseases. Ding et al. [14] introduced a variational graph
autoencoder model (VGAEMDA) for predicting miRNA-disease associations. VGAEMDA
derives feature expressions for miRNA and disease from a heterogeneous network, fol-
lowed by calculating the miRNA-disease association probabilities using two variational
graph autoencoders (VGAE). Furthermore, Lou et al. [15] developed a computational
method that constructs multiple association networks from multiple information sources
and obtains feature representations by combining neighborhood information from these
networks. These multimodal feature representations are then fed into a multi-layer percep-
tron for predicting potential miRNA-disease associations. Most recent work has employed
additional datasets or tools to compute various similarity information as Supplementary
Data. However, many miRNAs or diseases lack such information, imposing limitations on
the use of these computational methods. To address this issue, Qu et al. [16] proposed a
computation method based on deep matrix factorization, which utilizes only known asso-
ciation information as an initial feature to predict unknown miRNA-disease associations,
thereby mitigating the shortcomings of previous work.

Although some progress has been made in miRNA-disease association prediction tasks
using the aforementioned computational methods, there are still limitations in previous
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models. Firstly, in most previous studies, external databases were utilized to calculate
miRNA functional similarity, disease semantic similarity, and other auxiliary information as
aids in predicting the association between miRNAs and diseases. However, many miRNAs
and diseases lack such information, thus limiting the scalability of these methods. Secondly,
some computational methods only focus on the direct associations between miRNAs and
diseases, neglecting the complex interactions and network structures between them. This
leads to the extraction of shallow features and a failure to fully utilize the rich structural
information present in known miRNA-disease associations. Additionally, some GNN-based
computational methods rely solely on local information from neighboring nodes in known
associations without extracting higher-order information, resulting in insufficient structural
information being extracted. To overcome the aforementioned limitations of existing
methods, we propose a novel computational method named MVNMDA for predicting
associations between miRNAs and diseases. The proposed model solely utilizes known
association information as input, constructs multiple views, and learns embedding features
of different types of nodes. The architecture of the MVNMDA model consists of the
following four components: (1) a local view based on known association information,
employing graph convolution networks to aggregate features of first-order neighboring
nodes; (2) a global view based on the assumption of full connectivity, aiming to mitigate
the limitation of graph convolution networks, which rely solely on local relationships
and lack the capability to aggregate node features at a higher level view; (3) a semantic
view that captures semantic relationship information between different types of nodes
in the heterogeneous graph through metapaths; (4) a cascaded attention classifier, which
fuses multi-layer features through cascaded attention to reveal inter-layer and inter-feature
correlations, suppress noise in features, and predict the probability of miRNA-disease
associations.

1. A general framework that does not require extra data is proposed for predicting
associations between miRNA and disease. This framework effectively extracts and
integrates embedding between miRNA and disease from multiple views.

2. Based on predefined metapaths, miRNA–miRNA networks and disease–disease net-
works are constructed to complement the embedding information of different nodes.
Unlike similarity-based computational methods, metapaths can illustrate how two
entities are connected through specific semantic paths, thereby mining rich semantic
information within the network.

3. We devised a cascaded attention classifier designed to eliminate redundant infor-
mation and progressively integrate features, thereby obtaining more precise feature
representations.

2. Results
2.1. Cross-Validation and Evaluation Metrics

Cross-validation is an essential method used to evaluate and statistically analyze
models. It involves partitioning the dataset into multiple subsets, allowing the model to
be trained and tested on different subsets multiple times. This approach enables a more
comprehensive and objective assessment of the performance of the model. Taking five-fold
cross-validation as an example, the dataset is divided into five equally sized subsets, with
four of them used for model training, and the remaining one employed for model testing.
Five-fold cross-validation is repeated five times, with a different subset chosen as the
testing set in each iteration while the others serve as the training sets. Cross-validation is
instrumental in reducing the randomness of model performance evaluations, enhancing the
reliability of the assessment results. Furthermore, every sample in the dataset is included
in both training and testing during cross-validation, thereby maximizing the utilization of
available data, particularly when dealing with limited datasets. By considering various
combinations of training and testing sets, a more comprehensive evaluation of the model
generalization performance is attained.
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Six common evaluation metrics are employed to assess the performance of models,
including the area under the ROC curve (AUC), the area under the precision-recall curve
(AUPR), accuracy, precision, recall, and F1 score. In the ROC curve, the x-axis represents
the false positive rate (FPR), and the y-axis represents the true positive rate (TPR). The ROC
curve is constructed based on different thresholds and their corresponding FPR and TPR
values. In contrast, the PR curve depicts the relationship between the precision and recall
metrics at different threshold settings. Both AUC and AUPR serve as two crucial indicators
for evaluating the effectiveness of prediction models, with larger values indicating better
model performance. The calculations for each metric are as follows:

Accuracy =
TP + FN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 = 2 × Precision × Recall
Precision + Recall

(4)

where TP is the number of correctly identified positive samples, and FN is the number
of incorrectly identified positive samples. FP represents the number of falsely identified
negative samples, and TN represents the number of correctly identified negative samples.

2.2. Experiment Setup

In this experiment, we constructed the MVNMDA using the PyTorch deep learning
framework and the PyG graph deep learning framework. The latent feature dimension
of the graph autoencoder, in different views, was set to 128, the training epoch was set to
30, and the training batch size was set to 256. To optimize the model, we chose the Adam
optimizer and set the learning rate to 1e-5. Furthermore, referring to previous work [15],
the HMDD v2.0 [17] and HMDD v3.2 [18] datasets were obtained. To mitigate the impact
of overfitting and computational errors, 5-fold and 10-fold cross-validation were employed
on both datasets to train and evaluate the model. In the 5-fold cross-validation experiment,
an equal number of negative samples as positive samples were randomly selected from
unknown associations, and these samples were then divided into five mutually exclusive
subsets. In each experiment, one subset was used as the test set, while the remaining four
subsets comprised the training set. Similarly, in 10-fold cross-validation, all samples were
evenly divided into ten mutually exclusive subsets to ensure the accuracy and reliability of
the validation results.

2.3. Comparison with Other Methods

In the section, we compare the proposed MVNMDA with twelve other computational
models, namely, AEMDA [9], ABMDA [11], GBDT-LR [12], EDTMDA [19], VAEMDA [20],
NIMCGCN [21], ERMDA [22], GAEMDA [13], SAEMDA [10], VGAEMDA [14], MIN-
IMDA [15], and GCNMDA [23].

• AEMDA initially extracts high-dimensional and high-density features of miRNAs and
diseases. Subsequently, the reconstruction error is utilized to represent the probability
of miRNA-disease associations. Furthermore, AEMDA is a computational method
that does not require negative samples.

• ABMDA generates balanced positive and negative samples and employs a decision
tree classifier to infer the associations between miRNAs and diseases.

• GBDT-LR employs the gradient boosting decision tree (GBDT) model to obtain effec-
tive embeddings, which are then utilized to predict the final miRNA-disease associa-
tion scores through a logistic regression (LR) model.
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• EDTMDA comprehensively learns the embeddings of miRNA–disease pairs through
the integration of statistical metrics, graph-theoretical measures, and matrix factoriza-
tion results.

• VAEMDA trains the variational autoencoder (VAE) based on two spliced matrices and
obtains final predicted association scores between miRNAs and diseases obtained by
integrating the scores from the two trained VAE models.

• NIMCGCN employed a graph convolutional network (GCN) to learn latent feature rep-
resentations of miRNAs and diseases from two similarity networks and then applied a
neural inductive matrix completion (NIMC) model to predict their latent association.

• ERMDA is the ensemble learning method to learn the feature representation of miR-
NAs and disease by integrating similarity from multiple balanced training subsets and
using multiple independent learners to predict miRNA-disease associations jointly.

• GAEMDA employs graph autoencoders to learn the low-dimensional embeddings of
miRNAs and diseases. Subsequently, these embeddings of miRNA and disease nodes
are fed into a bilinear decoder to identify the potential associations between miRNAs
and diseases.

• SAEMDA initially pretrains the stacked autoencoders in an unsupervised manner. Sub-
sequently, it fine-tunes them in a supervised approach to predict potential associations.

• VGAEMDA obtains the features of miRNAs and diseases from the heterogeneous
network, and subsequently utilizes two variational graph autoencoders (VGAE) to
compute the miRNA-disease association scores.

• MINIMDA is a computational approach that constructs multiple information networks
leveraging multiple sources of information. This network neighborhood information
is then blended to derive the feature representations of miRNAs and diseases.

• GCNMDA utilizes graph convolutional networks (GCN) to extract deeply embedded
features of miRNAs and diseases. These embedded features are then processed using
multi-layer perceptrons (MLP) by GCNMDA to predict the association probabilities
between miRNAs and diseases.

To comprehensively assess the predictive performance of the proposed model and
the compared models, 5-fold and 10-fold cross-validation are conducted on two publicly
available datasets, HMDD v2.0 [17] and HMDD v3.2 [18], respectively. These extensive
experiments facilitate a more comprehensive evaluation of the model performance across
diverse data subsets, thereby enhancing the robustness and reliability of the validation
results. Figure 1 illustrates the performance results of the proposed model on the HMDD
v2.0 dataset. In 5-fold cross-validation, an AUC of 0.9509 and an AUPR of 0.9491 were
achieved by MVNMDA. In the case of 10-fold cross-validation, similar precision was
exhibited by MVNMDA, with an AUC value of 0.9504 and an AUPR value of 0.9488. These
results highlight the robustness of MVNMDA under different cross-validation settings.
A detailed performance comparison between MVNMDA and other methods in both 5-
fold and 10-fold cross-validation is presented in Table 1. The findings indicate that the
proposed method outperformed other models in terms of AUC, AUPR, and precision
metrics. Specifically, in 5-fold cross-validation, the proposed model achieved an AUC
of 0.9509, representing a 0.65 improvement over the second-best model (MINIMDA).
The AUPR metric reached 0.9491, which was 1.28 higher than the second-best model
(VAGEMDA). The accuracy metric attained the second-best value of 0.8768, slightly lower
than the best model (MINIMDA) by 0.2. The precision metric was 0.8651, demonstrating a
1.05 improvement over the second-best model (MINIMDA). In ten-fold cross-validation,
MVNMDA attained an AUC of 0.9504, showing a 0.98 improvement over the second-best
model (MINIMDA). The AUPR metric was 0.9488, marking a 1.27 increase over the second-
best model. The accuracy metric reached 0.8787, representing a 0.4 improvement over the
second-best model. The precision metric was 0.8828, exhibiting an increase of 3 over the
second-best model (ERMDA).
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(a) (b)

(c) (d)

Figure 1. ROC and PR curves performed by MVNMDA on the HMDD v2.0 dataset. (a,b) The
performance of the proposed MVNMDA in terms of ROC curve and PR curve based on 5-fold CV.
(c,d) The performance of the proposed MVNMDA in terms of the ROC curve and PR curve based on
10-fold CV.

Table 1. The performance comparison of different methods on the HMDD v2.0 dataset.

Method AUC (%) AUPR (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

5-
fo

ld
C

V

AEMDA 91.34 91.27 83.71 81.02 88.05 84.38
ABMDA 87.60 86.20 80.69 76.69 88.48 82.08
GBDT-LR 86.18 85.56 80.15 76.90 86.34 81.30
EDTMDA 91.37 91.60 84.23 83.53 85.35 84.40
VAEMDA 92.06 92.15 83.82 80.45 89.38 84.66

NIMCGCN 91.72 91.86 84.38 81.62 88.86 85.04
ERMDA 90.13 90.43 83.00 80.96 86.39 83.56

GAEMDA 93.07 92.67 85.22 82.29 89.88 85.88
SAEMDA 91.54 91.16 83.91 80.65 89.23 84.72

VGAEMDA 93.85 93.63 87.13 84.45 91.03 87.06
MINIMDA 94.44 92.96 87.89 85.45 91.60 88.39
GCNMDA 93.62 92.66 86.51 82.88 91.07 87.22
MVNMDA 95.09 94.91 87.68 86.51 89.37 87.88
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Table 1. Cont.

Method AUC (%) AUPR (%) Accuracy (%) Precision (%) Recall (%) F1 (%)

10
-f

ol
d

C
V

AEMDA 91.59 91.69 84.11 82.13 87.25 84.54
ABMDA 88.11 87.25 81.15 77.32 88.47 82.43
GBDT-LR 86.69 86.45 80.77 78.09 85.73 86.18
EDTMDA 91.93 91.98 84.16 81.38 88.78 84.85
VAEMDA 92.15 92.04 84.96 82.37 89.08 85.54

NIMCGCN 91.88 91.92 84.94 83.31 87.63 85.23
ERMDA 90.52 90.88 83.90 85.28 86.05 84.24

GAEMDA 93.28 92.80 85.87 83.03 90.22 86.44
SAEMDA 91.57 91.22 83.99 81.43 88.16 84.61

VGAEMDA 93.88 93.60 87.18 85.11 90.12 87.53
MINIMDA 94.06 92.76 87.46 84.08 92.46 88.04
GCNMDA 93.59 92.72 86.65 83.14 91.98 87.31
MVNMDA 95.04 94.88 87.87 88.28 87.42 87.81

Bold indicates best performance, underline indicates second best.

The experimental results of MVNMDA on the HMDD v3.2 dataset are depicted in
Figure 2. The results demonstrate that during 5-fold cross-validation, MVNMDA achieved
an AUC of 0.9613 and an AUPR of 0.9599. With 10-fold cross-validation, it yielded an AUC
value of 0.9600 and an AUPR value of 0.9579. These experimental findings serve to further
substantiate the resilience of the proposed model across various datasets.

(a) (b)

(c) (d)

Figure 2. ROC and PR curves performed by MVNMDA on HMDD v3.2 dataset. (a,b) The performance
of the proposed MVNMDA in terms of the ROC curve and PR curves based on 5-fold CV. (c,d) The
performance of proposed MVNMDA in terms of the ROC curve and PR curve based on 10-fold CV.

We opted for AUC and AUPR as the primary performance metrics when comparing
the proposed model with other models on the HMDD v3.2 dataset to assess the predic-
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tive accuracy of different models. In the 5-fold cross-validation, as illustrated in Figure 3,
the proposed model outperformed its counterparts in both the AUC and AUPR metrics.
The AUC metric exhibits a 0.79 improvement compared to the second-best model (MIN-
IMDA), while the AUPR metric shows a 0.61 increase compared to the second-best model
(VGAEMDA). The comparative results for 10-fold cross-validation are presented in Figure 4,
where the MVNMDA model surpassed the second-best model (MINIMDA) by 0.37 in AUC
and improved AUPR by 0.48 compared to the second-best model (VGAEMDA).

Figure 3. The performance comparison of different methods on the HMDD v3.2 dataset by 5-CV.

Figure 4. The performance comparison of different methods on the HMDD v3.2 dataset by 10-CV.
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2.4. Ablation Studies

In this subsection, ablation experiments are conducted to evaluate the contributions of
each module within the proposed model. We also investigate whether the classifier incor-
porates the cascaded attention module. In MVNMDA, node feature updates encompass
three types of views: local view, global view, and semantic view. These views differ in
their receptive fields. The local view entails that, during message propagation in the graph
convolutional layer, only first-order neighbors are taken into consideration, rendering this
operation inherently local [24]. The global view posits that every node in the graph is fully
interconnected, with the aim of extracting more advanced features. The semantic view
entails the generation of multiple walk-paths based on known association information, and
message propagation and aggregation rely on the association information furnished by
these paths. Table 2 provides the results of the ablation experiments for different views and
the cascaded attention.

Table 2. The performance of ablation experiments.

Local
View

Global
View

Semantic
View AUC (%) AUPR

(%)
Accuracy

(%)
Precision

(%)
Recall

(%) F1 (%)

W
it

h
A

tt
en

ti
on

✓ 95.66 95.28 88.84 87.61 90.49 89.02
✓ 94.24 94.27 87.01 87.06 86.96 87.01

✓ ✓ 95.84 95.41 89.11 88.32 90.15 89.22
✓ ✓ 95.82 95.22 88.94 87.49 90.91 89.15

✓ ✓ 94.20 94.29 86.92 86.95 86.89 86.91
✓ ✓ ✓ 96.13 95.99 89.42 88.02 91.28 89.61

W
it

ho
ut

A
tt

en
ti

on ✓ 95.55 95.24 88.53 87.86 89.41 88.62
✓ 93.82 93.89 86.41 85.57 87.62 86.57

✓ ✓ 95.61 95.28 88.59 87.52 90.01 88.74
✓ ✓ 95.85 95.63 88.88 88.07 89.93 88.99

✓ ✓ 94.12 94.18 86.89 85.84 88.37 87.07
✓ ✓ ✓ 95.87 95.68 89.01 89.40 88.51 88.95

Bold indicates best performance; underline indicates second best.

Table 2 presents an intuitive comparison of the contributions of different views to
predictions. The results demonstrate that, despite the localized nature of the local view, it
remains a predominant contributor to predictions. In the presence of the cascaded attention
module, the MVNMDA model attains an AUC value of 0.9566 and an AUPR value of
0.9528. This achievement surpasses previous work and can be attributed to the role of
the GCN-MLP block of the graph autoencoder in the local view, effectively addressing
over-smoothing issues. Without cascaded attention, the AUC and AUPR values are 0.9555
and 0.9524, respectively, indicating an acceptable decrease in performance. Furthermore,
the local view with cascaded attention yields improvements in accuracy, recall, and F1
scores, affirming the effectiveness of cascaded attention.

In addition, the results show that the performance of the semantic view alone is
inferior to the local view. The AUC and AUPR values of the semantic view with cascaded
attention are 0.9424 and 0.9427, while the values of the semantic view without cascaded
attention are 0.9382 and 0.9389, indicating performance differences of 0.0042 and 0.0038,
further validating the cascaded attention module.

The subsequent analysis focuses on the performance of combining two types of views,
which include (1) the fusion of the local and global views, (2) the fusion of the local and
semantic views, and (3) the fusion of the global and semantic views. In the presence of
cascaded attention, (1) and (2) show no significant differences in AUC and AUPR scores. In
the absence of cascaded attention, the differences in AUC and AUPR between (1) and (2)
are 0.0024 and 0.0035, while (3) exhibits relatively poorer performance.

After the fusion of all views, models with cascaded attention achieve AUC and AUPR
values of 0.9613 and 0.9599, while models without cascaded attention have values of 0.9587
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and 0.9568, both achieving the best results. The comparative results indicate that the local
view dominates predictions, while the global view and semantic view can serve as non-local
complementary information to enhance the model’s predictive accuracy.

2.5. Parameter Analysis

Hyperparameters are essential elements in deep learning models, and they can signifi-
cantly influence the performance of a model. In this study, the selection of hyperparameters
is equally critical and can have a substantial impact on prediction accuracy and stabil-
ity. Therefore, to ensure the optimal performance of MVNMDA, we conducted a 5-cv
experiment on the HMDD v3.2 dataset, carefully exploring four hyperparameters: feature
embedding dimension, training epoch, batch size, and learning rate.

The evaluation scores for different embedding feature dimensions of miRNA and
diseases are illustrated in Figure 5, where the embedding feature dimensions are {8, 16, 32,
64, 128}. As indicated by Figure 5, variations exist in the results across different embedding
feature dimensions, particularly in terms of recall and F1 metrics. To ensure both model
accuracy and computational efficiency, we set the embedding feature dimensions for
miRNA and disease nodes to 128 in this experiment. This decision is grounded in the
analysis and trade-off considerations of evaluation metrics, aiming to strike a balance
between model performance and computational efficiency. Furthermore, we conducted
an independent exploration of the train epoch, batch size, and learning rate. Figure 6a
displays the scores across various metrics as the train epoch parameter varies {5, 15, 20,
25, 30}. The results indicate that, although the model exhibits some minor fluctuations,
it is generally insensitive to this parameter. Subsequently, Figure 6b demonstrates the
performance differences for different batch sizes {8, 16, 32, 64, 128, 256}. The scores for
AUC and AUPR metrics remain stable, suggesting that batch size has a minimal impact on
the model’s performance. Finally, Figure 6c reveals the model’s sensitivity to the learning
rate, spanning {1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7}. The model shows greater sensitivity to this
parameter, with the highest scores for AUC and AUPR metrics achieved when the learning
rate is set to 1e-5. Performance sharply declines when the learning rate is set below 1e-5. In
conclusion, based on the experimental results of parameter analysis, the embedding feature
dimensions for miRNA and disease nodes were set to 128, while the Train epoch was set to
30. Additionally, the batch size was set to 256, and the learning rate was set to 1e-5 in order
to achieve optimal model performance.

0.86

0.88

0.90

0.92

0.94

0.96

0.98

Recall

Precision

Accuracy

AUPR

AUC

 8
 16
 32
 64
 128

F1

Figure 5. Parameter analysis for feature embedding dimensions.
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0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AUC
AUPR
accuracy
precision
recall
f1

(a)

8 16 32 64 128 256
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

AUC
AUPR
accuracy
precision
recall
f1

(b)

1e-2 1e-3 1e-4 1e-5 1e-6 1e-7
0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96
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Figure 6. The metric scores under different hyperparameters. (a) The impact of training epochs on
performance. (b) The influence of batch sizes on performance, and (c) the effect of different learning
rates on performance.

2.6. Case Studies

To assess the predictive capabilities of MVNMDA for unknown miRNA-disease as-
sociations, we conducted case studies involving three diseases: breast cancer, esophageal
cancer, and lung cancer. Specifically, the model is trained using all known associations from
the HMDD v2.0 dataset. Following the training phase, the model is employed to estimate
the probability of associations between all miRNAs and specific diseases. Subsequently, the
known associations were removed, and the prediction results were ranked in descending
order. The top 30 candidate miRNAs, based on their prediction scores, were subjected to
validation using the most recent HMDD database and the dbDEMC database [25].

The first case study is breast cancer, a malignant tumor and a significant health concern
for women worldwide. It primarily affects the breast tissue in females. Although men
can also develop breast cancer, their incidence is notably lower than in women. It is
estimated that there will be over 2.26 million new cases and 685,000 deaths in 2020 [26].
The incidence and mortality rates of breast cancer are closely associated with the level of
development in a given region, with higher-developed countries showing significantly
improved 5-year survival rates compared to lower-developed nations. Therefore, despite
the rapid increase in the global incidence of breast cancer, relatively high mortality is not
inevitable. Regular breast cancer screenings and self-examinations are pivotal in early
detection, with early discovery and timely treatment effectively reducing patient mortality
rates [27,28]. Table 3 presents the candidate miRNAs predicted by MVNMDA related to
breast cancer, and among the top 30 predicted results, 29 miRNAs have been validated
using the latest HMDD database, resulting in a prediction accuracy of 96.66%.

Table 3. Case study for breast cancer.

Rank miRNA Score Evidence Rank miRNA Score Evidence

1 hsa-mir-212 0.9410 I,II 16 hsa-mir-130b 0.9090 I,II
2 hsa-mir-142 0.9404 I,II 17 hsa-mir-134 0.9083 I,II
3 hsa-mir-106a 0.9383 I,II 18 hsa-mir-520e 0.9048 I,II
4 hsa-mir-99a 0.9365 I,II 19 hsa-mir-650 0.9022 I,II
5 hsa-mir-130a 0.9346 I,II 20 hsa-mir-503 0.9020 I,II
6 hsa-mir-138 0.9293 I,II 21 hsa-mir-432 0.9016 I,II
7 hsa-mir-372 0.9272 I,II 22 hsa-mir-181c 0.9012 I,II
8 hsa-mir-150 0.9269 I,II 23 hsa-mir-98 0.9008 I,II
9 hsa-mir-378a 0.9267 I,II 24 hsa-mir-216a 0.8999 I,II

10 hsa-mir-184 0.9218 I,II 25 hsa-mir-362 0.8995 I,II
11 hsa-mir-198 0.9214 II 26 hsa-mir-330 0.8981 I,II
12 hsa-mir-517a 0.9206 I,II 27 hsa-mir-449b 0.8968 I,II
13 hsa-mir-381 0.9201 I,II 28 hsa-mir-370 0.8965 I,II
14 hsa-mir-15b 0.9189 I,II 29 hsa-mir-1224 0.8964 I,II
15 hsa-mir-192 0.9180 I,II 30 hsa-mir-483 0.8942 I,II

I denotes verification through HMDD v3.2, and II signifies validation via dbDEMC3.0.
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The second case study is esophageal cancer, which is a malignant tumor. The esopha-
gus is the tube that connects the throat to the stomach and is responsible for transporting
ingested food from the throat to the stomach for digestion. Esophageal cancer typically
forms cancer cells in the cells lining the inner wall of the esophagus. It may initially appear
as small ulcers or polyps and gradually grow and spread [29]. Table 4 presents the predic-
tion results of the esophageal cancer. Among the top 30 miRNAs predicted by the model,
28 have been validated using the latest HMDD database.

Table 4. Case study for esophageal cancer.

Rank miRNA Score Evidence Rank miRNA Score Evidence

1 hsa-mir-16 0.9332 I,II 16 hsa-mir-182 0.8856 I,II
2 hsa-mir-125b 0.9203 I,II 17 hsa-mir-107 0.8844 I,II
3 hsa-mir-221 0.9167 I,II 18 hsa-mir-9 0.8805 I,II
4 hsa-mir-1 0.9135 I,II 19 hsa-mir-29a 0.8804 I,II
5 hsa-mir-181a 0.9130 I,II 20 hsa-mir-195 0.8776 I,II
6 hsa-mir-133b 0.8991 I,II 21 hsa-mir-125a 0.8775 I,II
7 hsa-mir-222 0.8957 I,II 22 hsa-mir-106a 0.8728 I,II
8 hsa-mir-181b 0.8943 I,II 23 hsa-mir-103a 0.8716 II
9 hsa-mir-106b 0.8935 I,II 24 hsa-mir-199b 0.8688 II

10 hsa-mir-146b 0.8926 I,II 25 hsa-mir-30c 0.8685 I,II
11 hsa-mir-124 0.8905 I,II 26 hsa-mir-93 0.8679 I,II
12 hsa-mir-10b 0.8887 I,II 27 hsa-mir-127 0.8677 I,II
13 hsa-mir-200b 0.8880 I 28 hsa-mir-24 0.8672 I,II
14 hsa-mir-142 0.8875 I,II 29 hsa-mir-30a 0.8670 I
15 hsa-mir-218 0.8863 I,II 30 hsa-mir-17 0.8663 I

I denotes verification through HMDD v3.2, and II signifies validation via dbDEMC3.0.

The third case study is lung cancer, one of the most common and deadliest types of can-
cer worldwide [30]. Lung cancer is closely associated with factors such as smoking and air
pollution. It often exhibits no obvious symptoms in the early stages, but as the tumor grows,
patients may experience chronic cough, coughing up blood-streaked sputum, difficulty
breathing, chest pain, hoarseness, sore throat, and recurrent infections. MVNMDA predicts
unknown miRNAs related to lung cancer based on known miRNA-disease associations and
validates them using additional datasets. The prediction results are presented in Table 5.
Among the top 30 results, 28 have been validated through HMDD3.2.

Table 5. Case study for lung cancer.

Rank miRNA Score Evidence Rank miRNA Score Evidence

1 hsa-mir-16 0.9415 I,II 16 hsa-mir-20b 0.8917 I,II
2 hsa-mir-106b 0.9254 I,II 17 hsa-mir-302b 0.8916 I,II
3 hsa-mir-15a 0.9210 I,II 18 hsa-mir-429 0.8907 I,II
4 hsa-mir-122 0.9180 I,II 19 hsa-mir-194 0.8906 I,II
5 hsa-mir-141 0.9120 I,II 20 hsa-mir-378a 0.8874 I,II
6 hsa-mir-195 0.9112 I,II 21 hsa-mir-193b 0.8856 I,II
7 hsa-mir-15b 0.9098 I,II 22 hsa-mir-129 0.8848 I,II
8 hsa-mir-296 0.9061 I,II 23 hsa-mir-149 0.8830 I,II
9 hsa-mir-99a 0.9059 I,II 24 hsa-mir-302c 0.8776 II

10 hsa-mir-204 0.8996 I,II 25 hsa-mir-23b 0.8769 I,II
11 hsa-mir-152 0.8994 I,II 26 hsa-mir-625 0.8766 I,II
12 hsa-mir-451a 0.8952 I,II 27 hsa-mir-708 0.8723 I,II
13 hsa-mir-151a 0.8949 I,II 28 hsa-mir-342 0.8718 I,II
14 hsa-mir-130a 0.8936 I,II 29 hsa-mir-367 0.8627 I,II
15 hsa-mir-10a 0.8923 I,II 30 hsa-mir-302a 0.8622 II

I denotes verification through HMDD v3.2, and II signifies validation via dbDEMC3.0.
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2.7. Survival Analysis

To validate the miRNAs predicted by MVNMDA and obtain confirmation from clinical
data, we conducted a Kaplan–Meier survival analysis using clinical data from breast cancer
sourced from the Cancer Genome Atlas (TCGA) database [31]. This analysis aimed to
assess the prognostic value of these miRNAs in breast cancer patients, and the results are
depicted in Figure 7. We selected the top six miRNAs with the highest predicted scores for
breast cancer by MVNMDA, namely miRNA-212, miRNA-142, miRNA-106a, miRNA-99a,
miRNA-130a, and miRNA-138. Specifically, breast cancer patients with higher expression
levels of miRNA-212 and miRNA-142 exhibit a slightly higher overall survival rate com-
pared to those with lower expression levels. Furthermore, overexpression of miRNA-106a
and miRNA-99a is positively correlated with the overall survival rate, as patients with
overexpression have higher survival rates than those with lower expression levels. Studies
have suggested that miRNA-99a acts as a suppressor in various cancers, including breast
cancer [32]. Overexpression of miRNA-99a exerts multiple inhibitory effects on breast
cancer cells, reducing their vitality and inhibiting proliferation and metastasis, potentially
slowing down tumor growth. On the other hand, miRNA-99a induces apoptosis in cancer
cells, aiding in the removal of abnormal cells. This highlights the critical role of miRNA-99a
in impeding the development of breast cancer, making it a potential therapeutic target to
improve patient survival rates. Patients with higher miRNA-130a expression levels are
more likely to have a better prognosis. Further research has indicated that miRNA-130a
plays a role in suppressing the migration and invasion of breast cancer cells [33]. This
miRNA effectively inhibits the migration and invasion of breast cancer cells, limiting tu-
mor spread and metastasis. MiRNA-130a shows promise in breast cancer research and
treatment, potentially offering improved survival and recovery opportunities for breast
cancer patients. However, overexpression of miRNA-138 leads to a significant decrease
in the overall survival rate of breast cancer patients. As shown in Table 6, patients with
lower expression levels have a median survival period of 215.2 months, whereas those with
overexpression have a median survival period of only 115.4 months.

Table 6. Median survival of top 6 predictive miRNA in breast cancer (months).

miRNA-212 miRNA-142 miRNA-106a miRNA-99a miRNA-130a miRNA-138

Low-expression 130.87 129.1 124.53 113.63 129.1 215.2
High-expression 131.97 131.5 131.5 142.23 142.23 115.4

The results of the survival analysis using breast cancer cases indicate that the miRNA
predicted by the proposed model, which is associated with breast cancer, may play a
significant role in early prevention, early diagnosis, and prognosis assessment of breast
cancer. This suggests that these miRNAs hold the potential to provide support in breast
cancer research and treatment, offering valuable information for physicians to develop
more personalized treatment plans. Additionally, this underscores the potential of deep
learning in the field of biomedical science, as it can assist in better understanding disease
mechanisms and improving early disease diagnosis and treatment outcomes.
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Figure 7. Survival analysis of top 6 predictive miRNA in breast cancer.

3. Discussion

The experimental results demonstrate that MVNMDA exhibits better performance
compared to twelve other computational methods. We conducted a thorough analysis of
the impact of different feature combinations and dimensionality settings on the results.
Furthermore, through case studies on three specific diseases, we validated the accuracy
of the proposed method and provided strong support using clinical data from the TCGA
dataset. Overall, MVNMDA significantly improves prediction performance by extracting
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non-linear representations of miRNAs and diseases through multi-view learning and fusing
these features using a cascade attention and based on known miRNA-disease network
information to more comprehensively reveal the complex associations between miRNAs
and diseases. However, there are limitations to our work. Firstly, the limited number of
experimentally validated miRNA-disease associations and the difficulty in determining
whether a specific miRNA is not associated with a particular disease pose challenges
in selecting negative samples. Secondly, for isolated miRNA or disease nodes lacking
known association information, effectively learning their embedded features is challenging.
Additionally, known association networks are often discrete and incomplete, which can bias
the model towards nodes with more associations during feature extraction, overlooking
nodes with fewer associations and reducing prediction accuracy for specific miRNAs or
diseases. Future research can further explore more effective strategies for selecting negative
samples and addressing isolated nodes using methods such as unsupervised learning.
Simultaneously, incorporating advanced techniques such as graph neural networks can be
considered to more comprehensively capture complex patterns in association networks,
thereby enhancing the predictive performance of the model.

4. Materials and Methods
4.1. Datasets

The Human microRNA Disease Database (HMDD) is a database used for studying
the associations between human miRNAs and diseases. It collects a substantial amount
of experimentally verified data, including information regarding the correlation between
miRNAs and various diseases. Following previous work, we have downloaded two bench-
mark datasets, namely HMDD v2.0 and HMDD v3.2 (https://github.com/chengxu123
/MINIMDA (accessed on 13 December 2023)). Among these, the HMDD v2.0 dataset com-
prises 5430 associations between human miRNAs and diseases, encompassing 495 miRNAs
and 383 distinct diseases. The HMDD v3.2 dataset contains 8968 associations, involving
788 miRNAs and 374 different diseases. More detailed information is provided in Table 7.
Based on this information, the association network of miRNA-disease can be represented
using an adjacency matrix A, where m is the number of miRNAs, n is the number of
diseases. If a known association exists between miRNA(mi) and disease(dj), then Aij = 1;
otherwise, Aij = 0.

Table 7. The statistics for each dataset.

Dataset miRNAs Diseases Known
Associations

Unknown
Associations Sparse Ratio

HMDD v2.0 495 383 5430 184,155 0.0286
HMDD v3.2 788 374 8968 285,744 0.0304

4.2. MVNMDA

In this subsection, we will first outline the proposed MVNMDA architecture and
then provide a comprehensive overview of each component. As depicted in Figure 8,
MVNMDA employs multiple views, including the local view, global view, and semantic
view, to acquire embedded features for all nodes. Subsequently, a coarse-to-fine approach
is employed, utilizing a cascade attention predictor to learn composite features for various
node types. The cascade attention predictor comprises the layer correlation module, feature
correlation module, and prediction head, each responsible for focusing on interrelations
among multi-layer features, refining relationships between feature elements, and making
association predictions. In the following, we will delve into the detailed computational
processes of each module.

https://github.com/chengxu123/MINIMDA
https://github.com/chengxu123/MINIMDA
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Figure 8. The framework of our proposed MVNMDA for predicting miRNA-disease association.

4.2.1. Local-View

In the local-view, we employ a graph convolutional network (GCN) as an encoder
to learn low-dimensional embeddings of all nodes. The decoder is used to reconstruct
the structural information, namely the graph adjacency matrix. Subsequently, the graph
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autoencoder is optimized by minimizing the gap between the real adjacency matrix and
the reconstructed adjacency matrix.

The GCN takes the graph as input and aggregates the neighboring embedding features
of each node based on the structure of the graph. This aggregation strategy for node
features enables the GCN to efficiently learn both the features of nodes within the graph
and the association relationships between these nodes. GCN and its variations have found
widespread applications in various biological link prediction tasks, significantly enhancing
prediction accuracy. These applications include predicting miRNA-disease associations
and drug affinity, as documented in previous studies [34–36]. The graph autoencoder
utilizes known associations as the structure of the graph to aggregate neighboring nodes
and generate node embedding features with local receptive fields. To obtain the embedding
for each node based on the graph’s structural information, the adjacency matrix Alocal ∈
R(m+n)×(m+n) is described as follows:

Alocal =

(
Em A
AT En

)
(5)

where AT is the transpose of known association matrix A ∈ Rm×n. Em and En is the identity
matrix of m×m and n×n, respectively. Then, we adopt GCN to extract the node embedding
in Alocal . Meanwhile, in order to mitigate the over-smoothing problem, we combined the
GCN layer with a fully connected layer, defined as:

Hl = σ(GCN(Alocal , Hl−1) + MLP(Hl−1)) (6)

GCN(Alocal , Hl−1) = σ(D̃
1
2
local Ãlocal D̃

1
2
local H

l−1W l−1) (7)

In Equation (3), it is noted that Ãlocal = I + Alocal , where I is the identity matrix, D̃
is the degree matrix of Alocal , and W l−1 denotes the trainable weight matrix. GCN takes
node embedding Hl−1 of the previous layer to compute embedding Hl of the current layer.
In order to mitigate the over-smoothing problem, we introduce a multi-layer perceptron
to assist GCN in extracting embedding features. Lastly, the ReLU nonlinear function is
adopted to activate the latent embedding feature, and the flowchart of the local-view graph
autoencoder is shown in Figure 9.

Figure 9. Graph autoencoder based on local-view.

The encoder in our study consists of three layers of graph convolutional network–
multi layer perceptron (GCN-MLP) blocks. The decoder utilizes inner product operation
between latent embedding features for identifying potential associations, defined as:

Âlocal = σ(z · zT) (8)

Losslocal =
1
N

n

∑
i=1

(Alocal log(Âlocal) + (1 − Alocal)log(1 − Âlocal)) (9)
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where z is the last layer node embedding of the encoder and ylocal denotes the reconstructed
adjacency matrix. During training, the model is optimized by minimizing the loss between
the real and reconstructed adjacency matrix.

4.2.2. Global-View

In contrast to the local-view, the global-view assumes that known graph structures are
fully connected graphs, meaning that each node is connected to other nodes. Therefore,
we construct a based global-view graph adjacent matrix Aglobal ∈ 1(m+n)×(m+n) filled with
scalar value 1.

As shown in Figure 10, same as for the local view, we stacked GCN-MLP block as the
encoder to extract the embedding features of all nodes based on the fully connected graph,
defined as:

Hl = σ(GCN(Aglobal , Hl−1) + MLP(Hl−1)) (10)

GCN(Aglobal , Hl−1) = σ(D̃
1
2
global Ãglobal D̃

1
2
global H

l−1W l−1) (11)

Similarly, in Equation (6), Ãglobal denotes the adjacency matrix with identity matrix
I added. Dglobal is the degree matrix of Ãglobal , and W l−1 denotes a learnable weight
matrix. After three layers of GCN-MLP Block computation, the non-local node feature H3

is obtained and used as latent feature z. Subsequently, we use latent features to reconstruct
the adjacency matrix and iteratively supervise the loss between the reconstructed adjacency
matrix and the true adjacency matrix, which is calculated as follows:

Âglobal = σ(z · zT) (12)

Losslocal =
1
N

n

∑
i=1

(Aglobal log(Âglobal) + (1 − Aglobal)log(1 − Âglobal)) (13)

Figure 10. Graph autoencoder based on global-view.

4.2.3. Semantic-View

A meta-path is a walking path that contains multiple node types and is denoted in the
form of {A1 − A2 − ... − An}, where start node A1 and end node An are the same type. A
meta-path can better model the task in the real world and can better help to analyze and
understand the semantic information in the complicated network [37].

Two examples of meta-paths are presented in Figure 9, which represent different
semantic information by a sequence of nodes in the path. The existing message-passing
mechanism cannot directly capture the implicit relation between nodes of the path, but
the meta-path can provide the implicit link so that the features can be updated by the
message-passing mechanism. For a detailed explanation, take miRNA-disease association
prediction as an example. Given a set of miRNA node M = {m1, m2, ..., mM} and a set
of disease node D = {d1, d2, ..., dD}, the validated miRNA-disease association is defined
A ∈ 0, 1M×N , where Aij = 1 if ith miRNA mi is associated with jth disease dj, otherwise
Aij = 0. Subsequently, we define p1 as a meta-path denoted as (m − d − m) and p2 as
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another meta-path denoted as (d − m − d), where m and d represent miRNA nodes and
disease nodes, respectively.

In the semantic view provided by the metapaths, when updating node features in
the graph, for any node vi, it first obtains a subgraph formed by the walk-path and then
uses the GCN-MLP Block to perform message passing and aggregation on the features of
node vi based on the subgraph. Taking node m1 in the p1 path as an example, the metapath
p1 constructs implicit relationships with m2 and m3. When performing message passing,
m1 no longer relies solely on the features of d1 nodes, expanding the receptive field. This
allows the model to better extract complex relationships and information transfer between
nodes, thereby improving performance and representational capability, contributing to a
more comprehensive and accurate understanding of complex relationships and data.

4.2.4. Cascade Attention Predictor

After obtaining low-dimensional feature representations from different types of views,
we employed a cascaded attention mechanism to fuse features from shallow to deep
layers. In the neural network, shallow-level feature vectors are often redundant. To
preserve essential layer-specific information, a hierarchical attention mechanism is applied
to assign distinct weights to different layers and facilitate inter-layer information exchange,
with the aim of filtering out redundant information and obtaining high-quality semantic
representations. Simultaneously, feature attention is employed to suppress noise among
deep-layer semantic feature elements. The process of the cascade attention predictor is
as follows:

F = Concat(zmi
mdm, z

mi ,dj
local + z

mi ,dj
global , z

dj
dmd) (14)

where zmi
mdm represents the semantic features of miRNA (mi) extracted through the metapath

p1 = {(m, d, m)|m ∈ M, d ∈ D}, z
mi ,dj
local and z

mi ,dj
global represent the features of miRNA (mi)

and disease (dj) extracted after local and global feature extraction, and z
dj
dmd represents the

semantic features of the disease (dj) extracted through the metapath p2 = {(d, m, d)|m ∈
M, d ∈ D}.

The feature F undergoes three sets of fully connected layers to obtain hierarchical
features H0, H1, and H2. Subsequently, a cascaded attention mechanism is employed to
supervise inter-layer information interaction and eliminate redundant information.

h0 = MLP(H0), h1 = MLP(H1), h2 = MLP(H2) (15)

h = stack(h0, h1, h2) (16)

LayerAttention = So f tmax(h × Win) (17)

h̃ = (h + (h × LayerAttention))× Wout (18)

where multi-layer features are unified and stacked along the dimension for computational
convenience. Two trainable weight matrices, Win and Wout, are employed to construct the
inter-layer attention matrix and the Softmax activation function is employed to determine
the correlation coefficients between layers. Wout is used to obtain the multi-layer fused
deep semantic representation, denoted as h̃.

Subsequently, a gate-structured feature attention mechanism is employed to establish
the correlation between feature elements.

FeatureAttention = So f tmax((h̃ × W1) · (h̃ × W2)) (19)

Out = (h̃ + (h̃ × FeatureAttention)) (20)

The key advantage of cascaded attention lies in its capability to identify which features
or feature elements in each layer of the model are crucial for prediction. This mechanism
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assists the model in better understanding and leveraging the input data, thereby enhancing
performance and generalization ability.

5. Conclusions

MiRNA plays an important role in various biological processes. When the expression
of miRNA is abnormal, these biological processes may be affected, leading to the occur-
rence of diseases. Therefore, studying the relationship between abnormal expression of
miRNA and diseases is of great significance for understanding the pathogenesis of diseases,
discovering new therapeutic targets, and developing new treatment methods.

In this work, we propose a novel computational method named MVNMDA for the
prediction of associations between miRNA and disease. Specifically, our proposed method
utilizes known associations to construct initial node features and subsequently extracts
low-dimensional node features through the integration of two homogeneous graph views
and one heterogeneous graph view. During the association prediction phase, we employ
cascade attention to enhance feature correlations across different layers and reduce noise
within the features, ultimately enhancing the predictive performance of the model. To
assess the performance of the proposed model, we compare MVNMDA with twelve other
computational methods. The results demonstrate that our proposed model achieved the
highest AUC and AUPR on both HMDD v2.0 and HMDD v3.2 datasets. To further evaluate
the performance of MVNMDA, we conduct case studies on three human diseases, including
breast cancer, esophageal cancer, and lung cancer. The results of the case studies indicate
the reliability and effectiveness of MVNMDA.

However, despite the progress made by MVNMDA in miRNA-disease association
prediction, it still faces challenges from practical issues. Firstly, although the currently
known miRNA-disease association data is richer than ever before, the number of unknown
associations still far exceeds the experimentally validated known associations. Therefore,
accurately selecting reliable negative samples is an urgent problem to be solved. Secondly,
the semantic view of MVNMDA relies on manually designed meta-paths to extract se-
mantic information between nodes, which may limit the model’s ability to obtain optimal
prediction results. In future research, we plan to introduce an adaptive structure that
can autonomously extract features from multi-type node networks in order to improve
the performance of the model further. In addition, we are also keenly interested in ap-
plying MVNMDA to other related fields, such as protein–protein interactions or drug
repositioning [38–40].
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