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Abstract: This work aimed to find new inhibitors of the CYP3A4 and JAK3 enzymes, which are
significant players in autoimmune diseases such as rheumatoid arthritis. Advanced computer-aided
drug design techniques, such as pharmacophore and 3D-QSAR modeling, were used. Two strong
3D-QSAR models were created, and their predictive power was validated by the strong correlation
(R2 values > 80%) between the predicted and experimental activity. With an ROC value of 0.9, a
pharmacophore model grounded in the DHRRR hypothesis likewise demonstrated strong predictive
ability. Eight possible inhibitors were found, and six new inhibitors were designed in silico using
these computational models. The pharmacokinetic and safety characteristics of these candidates
were thoroughly assessed. The possible interactions between the inhibitors and the target enzymes
were made clear via molecular docking. Furthermore, MM/GBSA computations and molecular
dynamics simulations offered insightful information about the stability of the binding between
inhibitors and CYP3A4 or JAK3. Through the integration of various computational approaches, this
study successfully identified potential inhibitor candidates for additional investigation and efficiently
screened compounds. The findings contribute to our knowledge of enzyme–inhibitor interactions and
may help us create more effective treatments for autoimmune conditions like rheumatoid arthritis.

Keywords: drug discovery; 3D-QSAR; structure-based design; small molecule inhibitors; computational
chemistry

1. Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory disease that significantly impacts
the immune system [1]. It is characterized by persistent inflammation of the synovial joint
lining, leading to substantial financial burdens, premature mortality, and a progressive
decline in quality of life [2,3] This condition predominantly affects women and tends to
manifest in older individuals [4]. Early identification of RA within the onset of symptoms
is crucial for achieving optimal therapeutic outcomes, including limiting joint damage,
preserving joint function, and minimizing radiological progression [5]. RA is the result
of a combination of genetic and environmental factors, including variants of the major
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histocompatibility complex class II, tumor necrosis factor associated with factor 1 receptor,
exposure to silica dust, and smoking, among others [6]. The underlying mechanisms of
this disease remain partially understood, with autoimmune responses known to develop
several years before the clinical symptoms become apparent [7].

Among the relevant molecular targets, Janus kinases (JAKs) are promising targets
due to their essential role in regulating the JAK signal transducer and activator of the
transcription (STAT) signaling pathway, which is associated with inflammation and im-
munity [8]. JAK inhibitors, including JAK1, JAK2, JAK3, and TYK2, have emerged as
potential treatments for RA, with some of them receiving approval for use in this disease [9].
These medications modulate JAK signaling, reducing inflammation and alleviating symp-
toms while preserving joint integrity in RA patients [10]. Understanding the interactions
between JAK inhibitors, with JAK3, and CYP3A4 is essential for developing safer and
more effective treatments for RA [11]. Docking molecular studies have provided crucial
preliminary information, but experimental validation remains imperative to ensure the
efficacy and safety of JAK inhibitor-based treatments [12,13]. JAK enzymes are integral to
transmitting signals from various cytokines and growth factors [14]. Recently, attention
has focused on JAK3 (Janus kinase 3) as an important target in the treatment of RA, given
its specific role in the cytokine signaling pathway [15]. In the context of RA, cytokine
signaling plays a central role in chronic inflammation and joint damage, making JAK3 a
preferred target [16]. It is noteworthy that some JAK inhibitors target both JAK3 and JAK1,
but selectively targeting JAK3 offers potential advantages in terms of specificity and the
profile of adverse effects [17]. It is essential to emphasize that decisions regarding the use
of JAK-targeting medications for RA treatment should be made by qualified healthcare
professionals, considering each patient’s individual needs and the associated risks and
benefits of these drugs [10,18].

The metabolism of JAK inhibitors can also be influenced by other enzymes, including
cytochrome P450 3A4 (CYP3A4), which is a cytochrome P450 enzyme found in the liver [19].
This enzyme plays a crucial role in the metabolism of many drugs, including some JAK
inhibitors [20,21]. Inhibition of CYP3A4 can impact the efficacy and safety of treatment by
altering the plasma concentrations of drugs metabolized by this enzyme [22]. Tofacitinib is
a selective inhibitor of JAK3 that is used to treat certain autoimmune diseases, including
rheumatoid arthritis, which helps reduce the activity of the immune system [15]. Tofacitinib
is primarily metabolized by the enzyme CYP3A4 [23], and the inhibition of CYP3A4
can impact the tofacitinib metabolism, potentially leading to drug interactions [12,20,21].
Inhibition of CYP3A4 can potentially affect the metabolism and efficacy of tofacitinib,
highlighting the importance of considering drug interactions when using it [24–26].

Herein, in this study, a series characterized by the presence of 1,4 Michael groups was
investigated. The QSAR model allows for the design of molecules with groups that favor
the Michael 1,4 reaction, while the DHRRR pharmacophore model is used to identify groups
associated with α,β-unsaturated ketones through screening a database from PubChem,
including JAK3 inhibitors. The α,β-unsaturated ketone is a functional group found in
organic molecules, characterized by the presence of a carbonyl group (C=O) next to a double
bond. The α,β-unsaturated ketones can undergo various chemical reactions, including the
Michael 1,4 addition. This reaction involves the nucleophilic addition of a nucleophile to
an acceptor enone, forming a bond between the β-carbon of the enone and the nucleophile.
Table 1 provides a summary of the advantages and limitations of each reaction. It highlights
the positive aspects, such as wide applicability and structural diversity in the case of
covalent bond formation with a α,β-unsaturated ketone, as well as the selective formation
of C-C bonds and simple reaction steps in the case of the Michael 1,4 reaction [27,28].
However, it also emphasizes limitations such as the limited reactivity of certain substrates
and competitive reactions in the case of the Michael 1,4 reaction, as well as the formation
of undesired by-products in the case of covalent bond formation with an α,β-unsaturated
ketone [29].
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Table 1. Advantages and disadvantages of the α,β-Unsaturated ketones and Michael 1,4 reaction.

Formation of a Covalent Bond with α,β-Unsaturated Ketone:

Advantages Disadvantages

1. Wide applicability 1. Limited reactivity of some α,β-unsaturated
ketones

2. Generally efficient reaction 2. Incompatibility with certain functional
groups

3. Structural diversity 3. Formation of undesired by-products

Michael 1,4 Reaction:

Advantages Disadvantages

1. Formation of C-C bonds 1. Limited reactivity of some nucleophiles

2. Simple reaction steps 2. Competitive side reactions

3. Wide range of acceptor enones 3. Sensitivity to steric effects

Today, the significance of computer-aided drug design (CADD) in chemistry for
the discovery of new medications is undeniable [30–33]. This approach plays a pivotal
role in identifying promising pharmaceutical compounds for the treatment of various
diseases, including rheumatoid arthritis (RA). In this study, diverse CADD methodologies
have facilitated the design and identification of a series of molecules exhibiting potent
experimental inhibitory activity against JAK3, positioning them as potential candidates
for potent RA treatments [34,35]. Three-dimensional models have guided the design and
identification of these novel JAK3 and CYP3A4 inhibitory molecules, while both field-based
and atom-based quantitative structure–activity relationship (QSAR) approaches, as well
as pharmacophore modeling, have yielded significant results, with favorable validation.
Furthermore, molecular dynamics (MD) simulations and MM/GBSA solvation energy
have corroborated the findings from molecular docking, demonstrating that these newly
designed molecules can form irreversible covalent bonds with Cys909 and reversible bonds
with CYP3A4. These new molecules can thus be regarded as promising targets for the
development of novel medications aimed at treating rheumatoid arthritis.

2. Results and Discussion
2.1. Static Results of QSAR Models
Static Analysis of Field-Based and Atom-Based Models

The field-based QSAR model was generated based on a training set of 59 molecules
used to build the model (Table 2). As shown in Table 2, the best model (PLS factor = 4)
offered good predictive power. The Leave-One-Out (LOO) method of cross-validation was
adopted for the assessment of the predictive abilities of the models. The cross-validated
value R2

CV was 0.53. The R2 for the regression was 0.80, and the stability value was 0.80.
The P value (6.13 × 10−15) also suggested a greater degree of confidence. The reliability
of the model was tested via an external test set of 16 compounds. The RMSE (0.44), Q2

(0.763), and Pearson-r (0.88) models all further confirmed their robustness (Table 2). Activity
residual values for the training set and the test set are shown in Table S1.

The atom-based QSAR model was generated based on a training set of 59 molecules that
was used to build the model (Table 3). As shown in Table 3, the best model (PLS factor = 4)
offered good predictive power. The Leave-One-Out (LOO) method of cross-validation was
adopted for the assessment of the predictive abilities of the models. The cross-validated value
R2

CV was 0.56. The R2 for the regression was 0.87, and the stability value was 0.60. The p
value (2.91 × 10−20) also suggested a greater degree of confidence. The reliability of the model
was tested via an external test set of 13 compounds. The RMSE (0.66), Q2 (0.66), and Pearson-r
(0.82) of the model all further confirmed its robustness (Table 3). The correlation between the
experimental and predicted activities for the dataset is displayed in Figure 1.
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Table 2. The statistical data for the field-based QSAR model.

Factors SD R2 R2
CV R2 Scramble Stability F P RMSE Q2 Pearson-r

1 0.7667 0.4738 0.3882 0.1235 0.99 44.1 2.38 × 10−8 0.59 0.5667 0.8013

2 0.6364 0.6449 0.4337 0.2443 0.936 43.6 1.62 × 10−11 0.52 0.6729 0.8383

3 0.5389 0.7506 0.4161 0.3818 0.818 47.2 3.24 × 10−14 0.52 0.6686 0.8181

4 0.5023 0.7880 0.5334 0.4656 0.805 42.7 6.13 × 10−15 0.44 0.7630 0.8775

Table 3. The statistical data for the atom-based QSAR model.

Factors SD R2 R2
CV R2 Scramble Stability F P RMSE Q2 Pearson-r

1 0.6463 0.5585 0.47 0.1595 0.987 62 3.00 × 10−10 1.04 0.2246 0.4915

2 0.535 0.7037 0.5033 0.2836 0.909 57 2.10 × 10−13 0.91 0.4079 0.6392

3 0.4215 0.8199 0.4942 0.4679 0.810 71.3 1.61 × 10−17 0.77 0.5738 0.7576

4 0.3533 0.8761 0.5683 0.5665 0.655 81.3 2.91 × 10−20 0.69 0.6633 0.818
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2.2. Contour Maps

The significance of steric, hydrophobic, electrostatic, and hydrogen bond interactions
(both as acceptor and donor) in explaining the studied properties is emphasized in field-
based Model 4. This finding is consistent with the order of importance for increasing
inhibitory activity, indicated by the coefficients reported in Table 4. The coefficients reveal
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that the steric group has the highest value, followed by hydrophobic, hydrogen bond
acceptor, hydrogen bond donor, and electrostatic interactions, respectively, as presented
in Table 4. In Figure 2, it is observed that the inhibitory activity is enhanced with groups
that can generate electrostatic effects, favoring regions b3 and b4 with larger contours,
suggesting their importance in these regions. The blue cubes represent regions where
activity is favored, while the red regions correspond to disfavored regions for activity
enhancement in regions a2 and a3. Regarding steric effects, it is noted that in regions a1–a5,
increased biological activity is favored in the presence of more substituted groups. H-bond
acceptor groups, depicted by larger contours in b1–b3, suggest the importance of H-bond
donor groups in these regions, while the pink groups in a1–a4 disfavor the enhancement of
inhibitory activity in these regions. For H-bond donor groups, all b1 groups in purple favor
an increase in inhibitory activity, whereas the groups in cyan in regions a1–a2 disfavor the
enhancement of inhibitory activity in the presence of H-bonds. In terms of hydrophobicity,
the yellow contours suggest that in regions a1–a3, substituted hydrophobic groups favor
an increase in inhibitory activity.

Table 4. Statistical analysis of atom-based model in 3D-QSAR.

Factors Steric Electrostatic Hydrophobic H-Bond Acceptor H-Bond Donor

1 0.41 0.115 0.149 0.261 0.066

2 0.287 0.095 0.223 0.29 0.105

3 0.319 0.122 0.219 0.19 0.149

4 0.333 0.125 0.209 0.184 0.149
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Figure 2. The contour maps generated for the test set compounds depict different fields. Specifically,
(a) Gaussian electrostatic fields are represented by blue color for favored electropositive regions and
red color for disfavored electronegative regions. (b) Gaussian hydrogen bond acceptor fields are
depicted using red color for favored regions and magenta color for disfavored regions. (c) Gaussian
hydrogen bond donor fields are shown in purple for favored regions and cyan for disfavored regions.
(d) Gaussian steric fields are displayed in green for favored regions and yellow for unfavorable
regions. (e) Gaussian hydrophobic fields are represented by yellow color for favored regions and
white color for disfavored regions.

The importance of hydrophobic/nonpolar and electron-withdrawing interactions
in the atom-based Model 4 is highlighted by these factors. According to the important
coefficients presented in Table 4, the groups that most favor an increase in inhibitory activity,
in descending order, are hydrophobic/nonpolar, electron-withdrawing, and hydrogen bond
donor. The analysis of Figure 3 for electron-withdrawing in the indicated regions shows a
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distribution with similarities of blue/red cubes, suggesting that the corresponding electron-
withdrawing groups correspond to favorable/unfavorable inhibition activity. Regarding
H-bond donors, it can be observed from the distribution of blue/red cubes that in regions
a1, b1, b2, and b4, the presence of groups with H-bonds favor/disfavor an increase in
inhibitory activity. For hydrophobic nonpolar groups, it is evident that regions b2 and b3
favor an increase in inhibitory activity in the presence of hydrophobic groups compared to
other regions, which exhibit a similar distribution of blue/red cubes.
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2.3. Design of New Molecules Based on QSAR Models

Based on the best models obtained from field-based and atom-based, the scheme in
Figure 4 facilitates the analysis for designing new molecules presented in Table 5.
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Table 5. Newly designed compounds with their predicted pIC50 for QSAR models.

Compound 2D Affinity (Kcal/mol) pIC50 (Pred)
Field-Based

pIC50 (Pred)
Atom-Based

D1
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2.4. Pharmacophore Model Analysis

The results of the pharmacophore hypothesis analysis include different scores for
several models. These scores are utilized to assess the quality of pharmacophore models
and their relevance for the identification of active chemical compounds. In this section,
the results for the DDHRR_1 model will be discussed, along with global scores for other
models for comparison (Figure 5).

For the DDHRR_1 model, a survival score of 6.265 is achieved, a site score of 0.837 is
attained, a vector score of 0.951 is recorded, a volume score of 0.765 is registered, a BEDROC
score of 0.932 is obtained, and a PhaseHypoScore of 1.308 is measured (Tables 6 and 7).
The survival score results from a combination of these scores with adjustable weights
determined by the user. Scoring is executed on ligands within the active set, constituting
ligands utilized in hypothesis development, for all selected variants listed in the variants
table within the find common pharmacophores step. The vector score represents the
average of the cosines of the angles between the vectors of each aligned ligand and those
of the reference ligand. A good survival score is achieved by this model, indicating that
active compounds can be effectively identified by it. A notably high site score is also
achieved, suggesting precision in locating active sites. Furthermore, a high BEDROC
score is recorded, indicating that active compounds can be rapidly retrieved by this model.
Among models with comparable survival scores, DDHRR_1 stands out due to its high site
score, implying that active site prediction is conducted exceptionally well by it. Additionally,
when compared to similar models, DDHRR_1 boasts a high vector score, indicating that
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better discrimination between different spatial orientations of molecules is achieved. In
terms of volume and BEDROC, DDHRR_1 is also competitive when compared to other
models.

Molecules 2024, 29, x FOR PEER REVIEW 9 of 32 
 

 

EF* inf inf 1.6 2 2 
EF’ inf inf 1.6 2.5 2.5 
DEF n/a n/a n/a n/a n/a 
DEF* n/a n/a n/a n/a n/a 
DEF’ n/a n/a n/a n/a n/a 
Eff −1 −1 −1 0.0204 0.329 
Enrichment factors concerning N% actives recovered. 
% Actives 40% 50% 60% 70% 80% 
EF 1.1 1.1 1.1 1.1 1.1 
EF* 3 1.5 1.3 1.3 1.3 
EF’ 2.5 2.1 1.9 1.7 1.7 
FOD 0.07 0.1 0.2 0.2 0.3 
EF (Enrichment Factor): it represents the absolute enrichment factor of the model. It corresponds to 
the ratio between the active fraction in the selected model and the known active fraction in the entire 
chemical library. The higher it is, the better the model. EF’ (Normalized Enrichment Factor): it nor-
malizes the EF relative to the expected random enrichment given the sample size and the rate of 
actives in the chemical library. It is the most significant factor for comparing models to each other. 
EF* (Robust Enrichment Factor): it integrates the statistical uncertainty related to the sample size in 
the enrichment calculation. It is therefore more robust when samples are small. DEF* (Diverse Ro-
bust Enrichment Factor): similar to EF*, it integrates the uncertainty related to the sample size. The 
difference is that it considers chemical diversity (scaffold, physico-chemical properties) within the 
hits. It therefore allows evaluating the enrichment in terms of chemical diversity. DEF’ (Normalized 
Diverse Enrichment Factor): analogous to DEF*, it normalizes DEF relative to the expected random 
enrichment given the N% sample size, the rate of actives in the chemical library and the chemical 
diversity. 

 
Figure 5. (A) Pharmacophore features of DHRRR_1; (B) alignment of studied compounds; (C) dis-
tance between features; and (D) angles between features. Yellow circles represent aromatic rings. 
The blue balls indicate donor groups, while the green balls indicate hydrophobic groups. 

Validation of Pharmacophore Models 
It is essential to consider several metrics to evaluate the performance of a binary clas-

sification model. ROC (alpha) and RI (alpha) provide an overall assessment of the model’s 
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between features; and (D) angles between features. Yellow circles represent aromatic rings. The blue
balls indicate donor groups, while the green balls indicate hydrophobic groups.

Table 6. Various pharmacophore hypotheses were generated by utilizing the compounds and their
corresponding activities.

Model Survival Score Site Score Vector Score Volume Score Score PhaseHypoScore

DHRRR_2 6.102 0.776 0.908 0.754 0.973 1.339

DHRRR_1 6.168 0.794 0.927 0.777 0.972 1.342

DHRR_2 5.773 0.861 0.954 0.761 0.804 1.150

DHRR_1 5.813 0.897 0.973 0.765 0.961 1.310

DDRRR_2 5.985 0.764 0.933 0.793 0.948 1.307

DDRRR_1 6.033 0.792 0.929 0.812 0.956 1.318

DDHRR_2 6.225 0.825 0.963 0.737 0.945 1.318

DDHRR_1 6.265 0.837 0.951 0.765 0.932 1.308

DDHR_1 5.772 0.895 0.948 0.760 0.765 1.111

AHRR_1 5.742 0.895 0.977 0.729 0.812 1.156

ADRR_1 5.674 0.941 0.975 0.782 0.950 1.290

ADHRR_3 6.003 0.751 0.913 0.730 0.886 1.246

ADHRR_2 6.152 0.844 0.979 0.729 0.906 1.276

ADHRR_1 6.255 0.904 0.983 0.743 0.948 1.324

ADHR_3 5.665 0.885 0.951 0.722 0.920 1.260

ADHR_2 5.717 0.901 0.957 0.726 0.815 1.158

ADDHR_1 5.980 0.845 0.956 0.777 0.928 1.286
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Table 7. Evaluation metrics for hypothesis DHRR_1.

Hypothesis PhaseHypoScore EF1% BEDROC160.9 Matches

DHRR_1 1.3 1.31 1 4 of 4

BEDROC:1

alpha*Ra alpha

160.9, 122.5905

BEDROC: 0.940

alpha*Ra alpha

15.2381 20.0

BEDROC: 0.874

alpha*Ra alpha

6.0952 8.0

ROC 0.66

Count and percentage of actives in top N% of decoy results.

% Decoys 1% 2% 5% 10% 20%

# Actives 0 0 0 5 19

% Actives

Count and percentage of actives in top N% of results.

% Results 1% 2% 5% 10% 15%

# Actives 0 1 3 5 11

% Actives 0 2.1 6.2 10.4 11

Enrichment factors concerning N% sample size.

% Sample 0.01 0.02 0.05 0.1 0.2

EF 1.3 1.3 1.3 1.1 1.2

EF* inf inf 1.6 2 2

EF’ inf inf 1.6 2.5 2.5

DEF n/a n/a n/a n/a n/a

DEF* n/a n/a n/a n/a n/a

DEF’ n/a n/a n/a n/a n/a

Eff −1 −1 −1 0.0204 0.329

Enrichment factors concerning N% actives recovered.

% Actives 40% 50% 60% 70% 80%

EF 1.1 1.1 1.1 1.1 1.1

EF* 3 1.5 1.3 1.3 1.3

EF’ 2.5 2.1 1.9 1.7 1.7

FOD 0.07 0.1 0.2 0.2 0.3
EF (Enrichment Factor): it represents the absolute enrichment factor of the model. It corresponds to the ratio
between the active fraction in the selected model and the known active fraction in the entire chemical library.
The higher it is, the better the model. EF’ (Normalized Enrichment Factor): it normalizes the EF relative to the
expected random enrichment given the sample size and the rate of actives in the chemical library. It is the most
significant factor for comparing models to each other. EF* (Robust Enrichment Factor): it integrates the statistical
uncertainty related to the sample size in the enrichment calculation. It is therefore more robust when samples
are small. DEF* (Diverse Robust Enrichment Factor): similar to EF*, it integrates the uncertainty related to the
sample size. The difference is that it considers chemical diversity (scaffold, physico-chemical properties) within
the hits. It therefore allows evaluating the enrichment in terms of chemical diversity. DEF’ (Normalized Diverse
Enrichment Factor): analogous to DEF*, it normalizes DEF relative to the expected random enrichment given the
N% sample size, the rate of actives in the chemical library and the chemical diversity.
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Validation of Pharmacophore Models

It is essential to consider several metrics to evaluate the performance of a binary
classification model. ROC (alpha) and RI (alpha) provide an overall assessment of the
model’s discriminatory ability, but it is also important to consider other metrics such as
precision, recall, and F-measure. These metrics allow us to assess the model’s performance
at different classification thresholds and account for the imbalance between positive and
negative classes. The results indicate that the pharmacophore model DHRR_1 achieved
good performance scores, with an EF1% of 1.31. BEDROCK (alpha) and RI (alpha) are
performance evaluation metrics for a binary classification model. ROC (alpha) is the area
under the ROC curve using the alpha threshold for classification, and RI (alpha) is the true
positive rate at a false positive rate corresponding to the alpha threshold (Table 7). These
metrics are often used to evaluate a model’s ability to discriminate between positive and
negative classes. It suggests that the ranking and scoring method used in the DHRR_1
analysis successfully captured all the known activities in the ranked list.

Among the 75 evaluated ligands, including both actives and decoys, a total of
58 molecules are identified as actives. This means that all known active molecules are
included in the ranked list of ligands. These results suggest that the ranking method used
for the DHRR_1 analysis effectively identified all known active molecules in the ranked list.
The provided results suggest that the hypothesis phase achieved a high hypothesis Phase-
HypoScore, strong enrichment (EF1%) in the top 1% of the results, and perfect matches for
all expected targets. The high BEDROC160.9 score further indicates good early enrichment
performance. The percentage of actives increases as we consider a larger percentage of
decoys. In the top 10% of decoys, there are five actives, representing 10.4% of the total
actives. The top 20% of decoys have 19 actives, representing 39.6% of the total actives. As
we consider a larger percentage of results, the count and percentage of actives increase.
In the top 2% of results, one active represents 2.1% of the total actives. In the top 5% of
results, three actives represent 6.2% of the total actives. In the top 10% of results, five actives
represent 10.4% of the total actives. In the top 20% of results, 11 actives represent 22.9% of
the total actives. The enrichment factors (EFs) indicate a modest enrichment of actives in
the sampled data, with EF values ranging from 1.1 to 1.3 depending on the sample size or
the percentage of actives recovered.

The results demonstrate that the DHRR_1 model achieved strong performance in
capturing known active molecules. The hypothesis phase showed high scores and strong
enrichment, indicating its effectiveness in identifying active compounds. Additionally,
the analysis revealed an increasing percentage of actives as larger result percentages were
considered, suggesting a promising enrichment trend. These findings highlight the model’s
ability to discriminate between positive and negative classes and its potential for identifying
active compounds.

In Figure 6, it appears that the screen results curve behaves in a stair-step fashion in
the true positive rate (TPR) zone, remaining above the random curve on an ROC graph. The
fact that the screen results curve stays above the random curve in the TPR zone indicates
that model DHRRR_1 performs better than mere random chance for detecting true positives.
In other words, it can reliably detect positive examples. This configuration suggests that
the pharmacophore or screening model strongly detects true positives while maintaining a
relatively low false positive rate. This can be a good indicator of the ability to discriminate
between positive and negative. Interpreting the relationship between the percentage of
active compounds found (percent active found) and the percentage of screening (percent
screen) about the screen results and random curves will help evaluate the pharmacophore
model’s ability to identify actives in each screening set. Better performance is indicated
by the screen results curve being above random and a rapid increase in the percentage of
active compounds found as the percentage of screening increases.
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2.5. Identification of Compounds Using Pharmacophore Model DHRRR_1

The newly identified molecules obtained through the utilization of the DHRRR_1
pharmacophore model by screening a database of JAK3 inhibitor structures obtained from
the literature and PubChem comprise a total of 568 compounds. The new compounds are
identified based on the pharmacophore model in Figure 5, provided that the molecules
exhibit a low RMSD of less than 0.5 Å and the structures of the compounds show a com-
parable similarity with the identified characteristic groups in the DHRR pharmacophore
module (Table 8).

Table 8. Newly identified compounds with their predicted pIC50 for QSAR models.

Compounds ID Affinity
(kcal/mol) Smiles pIC50 (Pred)

Field-Based
pIC50 (Pred)
Atom-Based

I1 BDBM50117501 −8.72

Molecules 2024, 29, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure 6. (A) Relationship between percent active found and percent screen in model evaluation. 
(B) ROC curve analysis for pharmacophore model. 

2.5. Identification of Compounds Using Pharmacophore Model DHRRR_1 
The newly identified molecules obtained through the utilization of the DHRRR_1 

pharmacophore model by screening a database of JAK3 inhibitor structures obtained from 
the literature and PubChem comprise a total of 568 compounds. The new compounds are 
identified based on the pharmacophore model in Figure 5, provided that the molecules 
exhibit a low RMSD of less than 0.5 Å and the structures of the compounds show a com-
parable similarity with the identified characteristic groups in the DHRR pharmacophore 
module (Table 8). 

Table 8. Newly identified compounds with their predicted pIC50 for QSAR models. 

Compounds ID 
Affinity  

(kcal/mol) Smiles 
pIC50 (Pred)  
Field-Based 

pIC50 (Pred)  
Atom-Based 

I1 BDBM50117501 −8.72 

 

8.51 7.98 

I2 SCHEMBL20184389 −5.63 

 

7.16 7.49 

I3 SCHEMBL645138 −8.62 

 

7.19 6.90 

I4 BDBM50117502 −8.52 

 

8.46 7.88 

8.51 7.98

I2 SCHEMBL20184389 −5.63

Molecules 2024, 29, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure 6. (A) Relationship between percent active found and percent screen in model evaluation. 
(B) ROC curve analysis for pharmacophore model. 

2.5. Identification of Compounds Using Pharmacophore Model DHRRR_1 
The newly identified molecules obtained through the utilization of the DHRRR_1 

pharmacophore model by screening a database of JAK3 inhibitor structures obtained from 
the literature and PubChem comprise a total of 568 compounds. The new compounds are 
identified based on the pharmacophore model in Figure 5, provided that the molecules 
exhibit a low RMSD of less than 0.5 Å and the structures of the compounds show a com-
parable similarity with the identified characteristic groups in the DHRR pharmacophore 
module (Table 8). 

Table 8. Newly identified compounds with their predicted pIC50 for QSAR models. 

Compounds ID 
Affinity  

(kcal/mol) Smiles 
pIC50 (Pred)  
Field-Based 

pIC50 (Pred)  
Atom-Based 

I1 BDBM50117501 −8.72 

 

8.51 7.98 

I2 SCHEMBL20184389 −5.63 

 

7.16 7.49 

I3 SCHEMBL645138 −8.62 

 

7.19 6.90 

I4 BDBM50117502 −8.52 

 

8.46 7.88 

7.16 7.49

I3 SCHEMBL645138 −8.62

Molecules 2024, 29, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure 6. (A) Relationship between percent active found and percent screen in model evaluation. 
(B) ROC curve analysis for pharmacophore model. 

2.5. Identification of Compounds Using Pharmacophore Model DHRRR_1 
The newly identified molecules obtained through the utilization of the DHRRR_1 

pharmacophore model by screening a database of JAK3 inhibitor structures obtained from 
the literature and PubChem comprise a total of 568 compounds. The new compounds are 
identified based on the pharmacophore model in Figure 5, provided that the molecules 
exhibit a low RMSD of less than 0.5 Å and the structures of the compounds show a com-
parable similarity with the identified characteristic groups in the DHRR pharmacophore 
module (Table 8). 

Table 8. Newly identified compounds with their predicted pIC50 for QSAR models. 

Compounds ID 
Affinity  

(kcal/mol) Smiles 
pIC50 (Pred)  
Field-Based 

pIC50 (Pred)  
Atom-Based 

I1 BDBM50117501 −8.72 

 

8.51 7.98 

I2 SCHEMBL20184389 −5.63 

 

7.16 7.49 

I3 SCHEMBL645138 −8.62 

 

7.19 6.90 

I4 BDBM50117502 −8.52 

 

8.46 7.88 

7.19 6.90

I4 BDBM50117502 −8.52

Molecules 2024, 29, x FOR PEER REVIEW 11 of 32 
 

 

 
Figure 6. (A) Relationship between percent active found and percent screen in model evaluation. 
(B) ROC curve analysis for pharmacophore model. 

2.5. Identification of Compounds Using Pharmacophore Model DHRRR_1 
The newly identified molecules obtained through the utilization of the DHRRR_1 

pharmacophore model by screening a database of JAK3 inhibitor structures obtained from 
the literature and PubChem comprise a total of 568 compounds. The new compounds are 
identified based on the pharmacophore model in Figure 5, provided that the molecules 
exhibit a low RMSD of less than 0.5 Å and the structures of the compounds show a com-
parable similarity with the identified characteristic groups in the DHRR pharmacophore 
module (Table 8). 

Table 8. Newly identified compounds with their predicted pIC50 for QSAR models. 

Compounds ID 
Affinity  

(kcal/mol) Smiles 
pIC50 (Pred)  
Field-Based 

pIC50 (Pred)  
Atom-Based 

I1 BDBM50117501 −8.72 

 

8.51 7.98 

I2 SCHEMBL20184389 −5.63 

 

7.16 7.49 

I3 SCHEMBL645138 −8.62 

 

7.19 6.90 

I4 BDBM50117502 −8.52 

 

8.46 7.88 8.46 7.88

I6 SCHEMBL5253185 −7.80

Molecules 2024, 29, x FOR PEER REVIEW 12 of 32 
 

 

I6 SCHEMBL5253185 −7.80 

 

8.60 7.99 

I7 ZGEWVZMORUOOMV −6.85 

 

8.03 7.60 

I8 60118026 −7.93 

 

7.38 7.23 

2.6. ADMET Analysis 
According to ADMET rules [36,37], for designing new compounds (Tables 9 and 10), 

the value of logS reflects the drug’s solubility. The smaller the value, the less soluble the 
compound is in water. When logS are less than −6.0, the compounds are considered poorly 
soluble and insoluble. A molecule with less than 30% absorption is considered weakly 
absorbed, while molecules with an absorption greater than 30% are considered to have 
high absorption. The unit of BBB penetration is cm/s. Molecules with logBB greater than 
−1 are classified as BBB+ (Category 1), while molecules with logBB less than or equal to −1 
are classified as BBB− (Category 0). BBB− indicates that the molecule has a low capacity to 
penetrate the blood–brain barrier (BBB) or does not penetrate at all. This may be desirable 
for certain drugs targeting the central nervous system (CNS) to minimize side effects or 
undesirable interactions with the brain. BBB+ indicates that the molecule has a high capac-
ity to penetrate the BBB. This may be desirable for certain drugs that require direct access 
to the brain to be effective in treating CNS diseases. The output value represents the prob-
ability of being BBB+, ranging from 0 to 1. Molecules D1, D2, D3, and D6 did not show 
BBB penetration, whereas D4 and D5 demonstrated BBB penetration, suggesting a risk to 
the CNS. Since the inhibition of CYP3A4 remains a therapeutic target for diseases, espe-
cially rheumatoid arthritis, the results suggest that compounds D1, D2, and D5 could in-
hibit CYP3A4. The total clearance constant (TC), which indicates the drug’s clearance, is 
used to evaluate the drug’s half-life time. A low TC value indicates a long half-life time of 
the drug. It encompasses both hepatic and renal clearance and is important for bioavaila-
bility and determining dosage rates to achieve steady-state concentrations. All com-
pounds exhibit low total clearance, ranging from −0.059 to 0.19 mL/min/kg, indicating a 
long half-life. For toxicity, the molecules did not show a positive AME test result. 

Similarly, in the ADMET analysis of the identified compounds, all molecules with 
logS greater than −6 suggest solubility. For absorption, all molecules exhibit high absorp-
tion rates above 30%. Regarding penetration, all molecules, except I7, penetrate the BBB 
and are classified as BBB−. In contrast, the other molecules are not classified as BBB+ and 
do not penetrate the BBB (Figure 7). For the inhibition of CYP3A4, molecules I1, I4, I5, and 
I6 demonstrate CYP3A4 inhibition. Regarding total clearance, the molecules show low 
clearance values ranging from 0.48 to 0.70 mL/min/kg. As for toxicity, molecules I1, I2, I4, 
I5, I7, and I8 do not yield a positive AMES test result compared to the other molecules. 

8.60 7.99



Molecules 2024, 29, 23 12 of 30

Table 8. Cont.

Compounds ID Affinity
(kcal/mol) Smiles pIC50 (Pred)

Field-Based
pIC50 (Pred)
Atom-Based

I7 ZGEWVZMORUOOMV −6.85
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2.6. ADMET Analysis

According to ADMET rules [36,37], for designing new compounds (Tables 9 and 10),
the value of logS reflects the drug’s solubility. The smaller the value, the less soluble the
compound is in water. When logS are less than −6.0, the compounds are considered poorly
soluble and insoluble. A molecule with less than 30% absorption is considered weakly
absorbed, while molecules with an absorption greater than 30% are considered to have
high absorption. The unit of BBB penetration is cm/s. Molecules with logBB greater than
−1 are classified as BBB+ (Category 1), while molecules with logBB less than or equal to −1
are classified as BBB− (Category 0). BBB− indicates that the molecule has a low capacity to
penetrate the blood–brain barrier (BBB) or does not penetrate at all. This may be desirable
for certain drugs targeting the central nervous system (CNS) to minimize side effects or
undesirable interactions with the brain. BBB+ indicates that the molecule has a high capacity
to penetrate the BBB. This may be desirable for certain drugs that require direct access to the
brain to be effective in treating CNS diseases. The output value represents the probability
of being BBB+, ranging from 0 to 1. Molecules D1, D2, D3, and D6 did not show BBB
penetration, whereas D4 and D5 demonstrated BBB penetration, suggesting a risk to the
CNS. Since the inhibition of CYP3A4 remains a therapeutic target for diseases, especially
rheumatoid arthritis, the results suggest that compounds D1, D2, and D5 could inhibit
CYP3A4. The total clearance constant (TC), which indicates the drug’s clearance, is used to
evaluate the drug’s half-life time. A low TC value indicates a long half-life time of the drug.
It encompasses both hepatic and renal clearance and is important for bioavailability and
determining dosage rates to achieve steady-state concentrations. All compounds exhibit
low total clearance, ranging from −0.059 to 0.19 mL/min/kg, indicating a long half-life.
For toxicity, the molecules did not show a positive AME test result.

Table 9. ADMET evaluation of newly designed compounds.

Compound

Adsorption Distribution Metabolism
Excretion Toxicity

Water
Solubility

(Logs)

Intestinal
Absorption

(Human)

Permeability Substrate Inhibitor

BBB 2D6 3A4 1A2 2C19 2C9 2D6 3A4 Total
Clearance

AMES
Toxicity

D1 −3.376 76.324 −0.726 No Yes No No No No Yes 0.078 No

D2 −3.931 88.657 −0.796 No Yes No Yes Yes No Yes 0.02 No

D3 −4.456 89.197 −0.024 No Yes Yes Yes Yes No No −0.057 No

D4 −3.825 92.308 −0.007 No Yes Yes Yes No No No −0.059 No

D5 −3.748 85.635 −0.764 No Yes No Yes Yes No Yes 0.19 No

D6 −3.599 92.597 0.146 No Yes Yes Yes No No No −0.004 No



Molecules 2024, 29, 23 13 of 30

Table 10. ADMET assessment of newly identified molecules.

Compound

Adsorption Distribution Metabolism
Excretion Toxicity

Water
Solubility

(Logs)

Intestinal
Absorption

(Human)

Permeability Substrate Inhibitor

BBB 2D6 3A4 1A2 2C19 2C9 2D6 3A4 Total
Clearance

AMES
Toxicity

I1 −3.055 81.075 −1.028 No Yes No No No No Yes 0.589 No

I2 −2.889 60.562 −1.433 No No No No No No No 0.709 No

I3 −2.919 95.844 −1.132 No No Yes No No No No 0.62 Yes

I4 −3.055 81.075 −1.028 No Yes No No No No Yes 0.589 No

I5 −3.084 81.619 −1.022 No Yes No No No No Yes 0.598 No

I6 −4.614 89.092 −1.017 No Yes No Yes Yes No Yes 0.477 Yes

I7 −2.899 97.033 −0.104 No No Yes Yes No No No 0.931 No

I8 −2.995 92.516 −0.859 No Yes Yes No No No Yes 0.834 No

Similarly, in the ADMET analysis of the identified compounds, all molecules with logS
greater than −6 suggest solubility. For absorption, all molecules exhibit high absorption
rates above 30%. Regarding penetration, all molecules, except I7, penetrate the BBB and
are classified as BBB−. In contrast, the other molecules are not classified as BBB+ and do
not penetrate the BBB (Figure 7). For the inhibition of CYP3A4, molecules I1, I4, I5, and
I6 demonstrate CYP3A4 inhibition. Regarding total clearance, the molecules show low
clearance values ranging from 0.48 to 0.70 mL/min/kg. As for toxicity, molecules I1, I2, I4,
I5, I7, and I8 do not yield a positive AMES test result compared to the other molecules. D1,
D2, and I1 have been identified as the top compounds for the MD based on the ADMET
rules, as well as their strong affinity.
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2.7. Analysis Docking of Selected Molecules (Covalent Docking between Identified and
Designed Molecules)

Today, covalent docking has emerged as an irreversible method with great potential
for targeting autoimmune diseases, specifically focusing on the protein JAK3 (ID: 4Z16).
JAK3 is one of the pioneering proteins that exhibit remarkable resolution and demonstrates
a superior fit to experimental data through the better ligand structure. A co-crystallized
ligand (4LH) has been identified, which forms a strong covalent bond with Cys909 by
employing an acrylaldehyde moiety through a 1,4 Michael addition reaction. In this context,
ligands D1 and D2 have been carefully selected and designed, incorporating a similar
acrylaldehyde moiety (Figure 8). On the other hand, ligand I1 utilizes an ester group and
undergoes covalent docking to establish its binding (Figure 8).
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Figure 8. Binding interactions of new compounds D1, D2, and I1 with JAK3 (PDB ID: 4Z16),
illustrated in 3D and 2D diagrams.

For D1, residues Arg953 and Leu905 form hydrogen bonds with distances of 1.86
and 2.17 Å. Leu828, Ala853, Leu956, and Ala966 form π–alkyl interactions with distances
ranging from 3.96 to 4.89 Å. In the case of D2, Arg953, and Leu905 once again form
hydrogen bonds, with distances of 1.87 and 2.26 Å, respectively. A sulfur–X interaction
is observed towards Leu905, Leu828, and Leu956 at distances of 3.26, 4.58, and 4.79,
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respectively. The same π–alkyl-type interactions are observed toward residues Leu828,
Ala853, Leu956, and Ala966, with similar distances to D1. Finally, I1 formed a salt bridge
interaction with Arg911, with 3.23 Å. I1 forms two hydrogen bonds with Leu905, with
respective distances of 2.12 and 1.95 Å. The π–alkyl and VdW interactions are observed
between aromatic residues up to 3 Å. In Figure 9, tofacitinib formed multiple hydrogen
bonds with Leu828 and Leu906 at distances of 3.04, 2.75, 2.08, and 3.78 Å. Additionally,
hydrophobic interactions were observed between tofacitinib and residues Leu956, Ala966,
Leu828 (4.35 Å), Ala853 (4.56 Å), and Leu956 (4.39 Å).
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diagrams.

Compared to the tofacitinib drug, compounds D1, D2, and I1 all form key hydrogen
bonding and electrostatic interactions with the target protein, explaining their affinity. In
the presence of covalent bonds with Cys909 and hydrogen bonds, non-covalent interactions
increase, thereby enhancing affinity and promoting ligand binding.

2.8. Molecular Docking with CYP3A4

The metabolism of the enzyme CYP3A4, involving compounds D1, D2, and I2, was
investigated (Figure 10). The enzyme (ID: 5VCC) selected for this study also exhibits a
high resolution and good fit to experimental data through the better ligand structure. This
protein choice provides valuable insights into the metabolic processes within the enzyme.
Notably, a co-ligand, HEM, remains a target of interest due to its ability to activate CYP3A4.
Consequently, there is a focus on inhibiting this enzyme as a potential strategy to modulate
its activity.

D1: The shortest hydrogen bond is formed between Arg212 and Hem601, with 3.24 Å.
Other hydrogen bonds are observed with Ala305 (2.66 Å), Ile369 (2.73 Å), and Ser119
(3.49 Å). Carbon–hydrogen bond interactions are also present with Ala305, Ser119, and
Ala370. The π–cation interactions between Arg212 and Hem601/Hem601 are observed,
with distances ranging from 3.58 to 4.22 Å. Several stacked π–π and T-shaped interactions
between Hem601/Hem601 and aromatic residues of CYP3A4, such as Phe215 and Phe304.
Finally, alkyl interactions are present between Hem601 and Ile369, Ile120 and Ala305, as
well as between Arg212 and Hem601. D2: Similar to D1, the shortest hydrogen bond
involves Arg212 and Hem601, with 3.14 Å. Another bond of this type is formed with Ile369
(4.24 Å). The π–cation and alkyl interactions are observed between Arg212 and Hem601.
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Numerous stacked π–π and π–alkyl interactions are found between Hem601 and aromatic
residues Phe and Ala. D3 The shortest carbon–hydrogen bonds are established between
Edo612/Gol602 and Hem601, with distances of 1.99 and 1.65 Å, respectively. The π–cation
interactions (3.52–3.75 Å), π–H-bond donor (3.42 Å), and T-shaped π–π interactions are
present between Arg212, Ser119, Ala370, and Hem601. Finally, alkyl interactions involve
the residues Hem601, Ala305, and Ala370.
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Figure 10. Binding Interactions of new compounds D1, D2, and I1 with CYP3A4 (PDB ID: 5VCC),
illustrated in 3D and 2D diagrams.

D1 and D2 inhibitors, as well as I1, target the Hem molecule to decrease its activity,
which in turn affects the activity of CYP3A4. The shortest hydrogen bond in both D1 and D2
inhibitors involves Arg212 and Hem601. This interaction suggests a strong binding between
the inhibitor and the target molecule. Additionally, other hydrogen bonds are observed
with different residues, such as Ala305, Ile369, and Ser119, indicating multiple binding
sites and potential stability of the inhibitor Hem complex. Both D1 and D2 inhibitors
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exhibit π–cation interactions between Arg212 and Hem601, indicating the presence of
positive charges in the inhibitor that interact with the π–electron system of Hem601. These
interactions contribute to the binding affinity between the inhibitor and Hem.

Furthermore, alkyl interactions are observed between the inhibitor and various
residues, suggesting hydrophobic interactions that can enhance the stability of the inhibitor–
Hem complex. D1 specifically shows stacked π–π and T-shaped interactions between
Hem601 and aromatic residues of CYP3A4, such as Phe215 and Phe304. These interac-
tions indicate potential binding between the inhibitor and the aromatic residues of the
target enzyme, which can affect the enzyme’s activity by interfering with its active site
or substrate binding. In D2, numerous stacked π–π and π–alkyl interactions are found
between Hem601 and aromatic residues Phe and Ala. These interactions suggest a strong
binding between the inhibitor and the target molecule, potentially disrupting the activity
of CYP3A4. Overall, these inhibitors (D1, D2, and I1) exhibit various interactions with the
Hem molecule, including hydrogen bonds, π–cation interactions, and alkyl interactions.
These interactions contribute to the inhibition of Hem activity and subsequently impact the
activity of CYP3A4, a crucial enzyme in drug metabolism.

2.9. Molecular Dynamics Simulation Analysis
2.9.1. RMSD, RMSF, RoG, and SASA Analyses

The analyses of RMSD, RMSF, RoG, SASA, flexibility, and PCA provide crucial insights
into different aspects of the studied complexes. RMSD measures the average deviations of
atomic positions between initial and final structures, enabling the assessment of stability
and conformational variations in the complexes. RMSF quantifies the average fluctuations
of atomic positions during the simulation, revealing the flexibility of residues and their
relative stability. RoG measures the three-dimensional compactness of a molecule, pro-
viding information about the size and shape of the studied complex. SASA evaluates the
solvent-accessible surface of a molecule, giving insights into the accessibility of residues
and their exposure to the environment. FEL measures a molecule’s ability to deform or
change conformation, thus revealing its structural plasticity. PCA analysis is a statistical
technique that reduces data complexity by identifying the main modes of variation in the
studied structures. These parameters yield results that enable the assessment of stabil-
ity, flexibility, compactness, solvent accessibility, interactions, and variation modes of the
studied complexes, contributing to a better understanding of their structural behavior and
properties.

The analyses of RMSD, RMSF, RoG, and SASA in Figure 11 provide the following
results: The RMSD analysis for the three compounds, D1, D2, and I1, with JAK3 and
CYP3A4, shows RMSD values of 1.5 Å, 2 Å, 2.2 Å, 2.6 Å, 2.5 Å, 2.4 Å, and 2 Å, respectively.
The RMSD analysis, compared to tofacitinib, demonstrates favorable stability, with some
exceptions in the RMSD changes. For D1-JAK3, there is a fluctuation ranging from 1.5 Å
to 2 Å between 115 ns and 125 ns. D2-JAK3 exhibits a variation between 2 Å and 3.5 Å
between 190 ns and 200 ns. I3-JAK3 experiences an increase in RMSD between 80 ns and
100 ns, with a variation ranging from 1.5 Å to 2.5 Å, indicating stability. D1-CYP3A4
shows an increase between 30 ns and 40 ns, with an RMSD variation reaching up to 2.5 Å,
followed by stability until 200 ns. D2-CYP3A4 undergoes an increase between 20 ns and
40 ns, with an RMSD variation up to 2.5 Å, followed by stability. I1-CYP3A4, after 5 ns,
exhibits favorable stability up to 200 ns. The RMSD analyses of the compounds D1, D2,
and I1 with JAK3 and CYP3A4 reveal overall stability, indicating promising stabilities.
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The analyses of RoG and SASA for the compounds with JAK3 and CYP3A4 in inter-
action show a stable RoG ranging from 19 to 20 Å for the compounds with JAK3 and a
similarly stable RoG ranging from 23 to 23.3 Å during the 200 ns simulation. Likewise,
for SASA, with JAK3 present, a stable SASA ranging from 14,985 to 15,060 Å2 is observed,
while with CYP3A4, it is situated between 22,990 and 23,225 Å2. These results indicate good
structural complementarity and a robust binding between the protein and the ligand. The
stability of the solvent-accessible surface also suggests that the ligand is well-positioned
and protected from the aqueous environment, which is generally beneficial for efficient and
specific interaction with the target protein.

The H-bonds for the three compounds interacting with JAK3 and CYP3A4 reveal
H-bonds ranging from a maximum of seven to a minimum of one. Compared to tofacitinib,
the H-bond results for D1, D2, and I1 in interaction with JAK3 and CYP3A4 show consistent
H-bond interactions without any disruptions, with a minimum of one H-bond observed.
In contrast, tofacitinib experiences H-bond disruptions between 80 ns and 200 ns. The
H-bond analysis indicates stable and favorable interactions between the compounds and
JAK3/CYP3A4, consistent with H-bonds throughout the simulation. This suggests that the
studied compounds exhibit strong binding affinity and potential for effective interaction
with the target proteins. The comparison to tofacitinib highlights the stability of the
observed H-bond interactions, further supporting the potential of the studied compounds
as promising candidates for further drug design and development exploration.

The analysis of RMSF for the compounds D1, D2, and I1 in interaction with JAK3,
considering 275 residues, reveals rigid flexibility and overall stability of the residues.
Compared to tofacitinib, there are exceptions for certain residues where the RMSF values



Molecules 2024, 29, 23 19 of 30

exceed three, indicating relatively higher fluctuation and lower stability. However, the
superposition of the RMSF values suggests a generally stable RMSF pattern for the studied
complexes. Furthermore, when analyzing the RMSF with 450 residues for D1, D2, and
I1 in interaction with CYP3A4, a similar stable RMSF pattern is observed compared to
tofacitinib. The RMSF analysis indicates that the compounds D1, D2, and I1, in interaction
with JAK3, exhibit rigid flexibility and overall stability of the residues. Although there
are exceptions with higher RMSF values for specific residues, the superposition analysis
suggests a stable RMSF pattern for the studied complexes. Additionally, when considering
the interaction with CYP3A4, the compounds D1, D2, and I1 also show a stable RMSF
comparable to tofacitinib.

The comprehensive analyses of RMSD, RoG, SASA, H-bonds, and RMSF provide
valuable insights into the stability and structural characteristics of D1, D2, and I1 in
interaction with JAK3 and CYP3A4. The RMSD analysis reveals overall stability with some
exceptions, indicating promising stability for the studied complexes. The RoG and SASA
analyses demonstrate good structural complementarity and robust binding between the
proteins and ligands. The H-bond analysis indicates stable and consistent interactions,
suggesting strong binding affinity. Moreover, the RMSF analysis highlights the residues’
generally stable and rigid flexibility with some exceptions.

2.9.2. PCA and FEL Analyses

The results of PCA and FEL in Figures 12 and 13 provide the following. First, the PCA
results are as follows: D1-JAK3 experienced a PCA for PC1 and PC2 ranging from −10–15
to 0–20, respectively. D2-JAK3 experienced a PCA for PC1 and PC2 ranging from −10–15
to 0–20, respectively. I1-JAK3 experienced a PCA for PC1 and PC2 ranging from −2–10 to
−2–2, respectively. D1-CYP3A4 experienced a PCA for PC1 and PC2 ranging from −2–3 to
−3–3, respectively. D2-CYP3A4 experienced a PCA for PC1 and PC2 ranging from −2–2 to
−2–4, respectively. I1-CYP3A4 experienced a PCA for PC1 and PC2 ranging from −1–3 to
−2–3, respectively. Secondly, FEL: D1-JAK3 had a stable conformation energy minimum
between an RMSD of 0.19 nm and an RoG of 1.94 nm. D2-JAK3 had a stable conformation
energy minimum between an RMSD of 0.19 nm and an RoG of 1.95 nm. I1-JAK3 had two
stable confirmation energy minima located between an RMSD of 0.15 nm and an RoG
of 1.94 nm and between an RMSD of 0.24 nm and an RoG of 1.95 nm. D1-CYP3A4 had
two stable confirmation energy minima located between an RMSD of 0.3 nm and an RoG
of 2.27 nm. D2-CYP3A4 had two stable confirmation energy minima located between an
RMSD of 0.2209 nm and an RoG of 2.29. I1-CYP3A4 had two stable confirmation energy
minima located between an RMSD of 0.15 nm and an RoG of 2.27 nm.

The results of the PCA analysis indicate the principal components (PC1 and PC2) for
each protein (D1-JAK3, D2-JAK3, I1-JAK3, D1-CYP3A4, D2-CYP3A4, and I1-CYP3A4) and
their corresponding ranges. On the other hand, the FEL analysis provides information about
the stable conformation energy minima for each protein, as indicated by their respective
RMSD and RoG values. These findings contribute to a better understanding of the structural
characteristics and dynamics of the proteins under investigation.

The analyses of FEL and PCA allow for the extraction of stable conformations corre-
sponding to each divergent minimum during the 200 ns simulation on the target. The results
in Figure 14 suggest that the new compounds can adopt multiple stable conformations in
the active site to achieve inhibition of the studied proteins, JAK3 and CYP3A4.
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2.10. MM/GBSA Analysis

The results of MM/GBSA analysis can be used to prioritize compounds for further
optimization or guide the design of new ligands with improved binding affinity. The
MM/GBSA analysis is a valuable tool for understanding and predicting the binding
energetics of molecular complexes, aiding in structure-based drug design and optimization.

The results of the MM/GBSA analysis show the energy contributions of different
components and complexes (Table 11). ∆TOTAL represents negative values that indicate
favorable binding, while positive values suggest unfavorable binding. In this case, D1-JAK3,
D2-JAK3, and I1-JAK3 show negative ∆TOTAL values, indicating favorable binding to JAK3.
On the other hand, D1-CYP3A4, D2-CYP3A4, and I1-CYP3A4 exhibit positive ∆TOTAL
values, suggesting less favorable binding to CYP3A4. ∆GSOLV represents the change in
solvation energy upon complex formation. Positive values indicate an increase in solvation
energy, while negative values suggest a decrease. Notably, I1-JAK3 shows a significantly
positive ∆GSOLV value, indicating a substantial increase in solvation energy upon complex
formation.
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Table 11. Energy contributions and binding characteristics of complexes.

Delta Energy
Component
(Kcal/mol)

D1-JAK3 D2-JAK3 I1-JAK3 D1-CYP3A4 D2-CYP3A4 I1-CYP3A4 Tofacitinib-
JAK3

∆TOTAL −21.60 −25.96 −36.51 6.53 −15.83 −29.68 −3.20

∆GSOLV 33.97 26.49 110.50 −63.87 56.84 −14.72 52.55

∆GGAS −55.57 −52.45 −147.00 70.40 −72.67 −14.96 −55.75

∆ESURF −4.94 −5.18 −5.88 −4.63 −4.23 −5.77 −3.34

∆EGB 38.91 31.67 116.38 −59.24 61.07 −8.95 55.89

∆EEL −20.91 −14.37 −109.57 103.24 −46.97 22.66 −32.93

∆VDWAALS −34.66 −38.08 −37.44 −32.84 56.84 −37.62 −22.82

∆GGAS represents the change in the gas–phase interaction energy upon complex
formation. Negative values indicate favorable interactions, while positive values suggest
unfavorable interactions. In this case, D1-JAK3, D2-JAK3, and I1-JAK3 exhibit negative
∆GGAS values, indicating favorable gas–phase interactions with JAK3. ∆ESURF represents
the change in the surface energy upon complex formation. Negative values suggest a
decrease in surface energy, indicating favorable binding. All complexes show negative
∆ESURF values, indicating favorable changes in surface energy. ∆EGB represents the change
in the generalized Born energy upon complex formation. Positive values indicate an
increase in the generalized Born energy, while negative values suggest a decrease. Notably,
I1-JAK3 shows a significantly positive ∆EGB value, indicating a substantial increase in
the generalized Born energy upon complex formation. ∆EEL represents the change in
the electrostatic energy upon complex formation. Negative values indicate favorable
electrostatic interactions, while positive values suggest unfavorable interactions. In this
case, D1-JAK3 and D2-JAK3 exhibit negative ∆EEL values, indicating favorable electrostatic
interactions with JAK3. ∆VDWAALS represents the change in the van der Waals energy upon
complex formation. Negative values indicate favorable van der Waals interactions, while
positive values suggest unfavorable interactions. Notably, D2-CYP3A4 and I1-CYP3A4
show negative ∆VDWAALS values, indicating favorable van der Waals interactions with
CYP3A4.

3. Methods and Materials
3.1. Dataset

The dataset used in this study was collected based on previous work and included
75 inhibitors of JAK3 (Table S1, Supplementary Materials), along with their experimentally
determined inhibitory biological activity values [38,39]. These biological activity values
were converted into pIC50 using the formula −log (IC50 × 10−9). The dataset was randomly
divided without any specific rule for this type of study. Fifty-nine molecules were included
in the training set, with consideration given to the most active molecule in the training set.
Sixteen molecules were reserved for the test set. The table below presents the predicted
pIC50 values by both field-based and atom-based QSAR models, along with the residual
errors compared to the experimental pIC50 values.

3.2. Building Robust Models: Exploring Three-Dimensional QSAR in Development
3.2.1. Preparation of Ligands

The accurate alignment of compounds is crucial for ensuring the quality and predicted
activity of both the 3D-QSAR and pharmacophore models [40]. Initially, the molecular
structures were in the 2D-SDF format and subsequently converted into 3D structures
(Figure 5).
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The LigPrep module of Schrödinger version 2021-3 was used to prepare the ligands,
ensuring the generation of high-quality structures with appropriate ionization states, tau-
tomeric forms, ring conformations, and stereochemistry. All the molecules underwent
energy minimization using the OPLS_2005 force field to optimize their structures. The align-
ment of the molecules was achieved using the alignment tool in Schrödinger version 2021-3
into Maestro using the Flexible Ligand Alignment Panel, which provided the capability to
execute a versatile alignment for the selected entries in the Project Table. The initial selected
entry functioned as a template and remained unchanged. Subsequent ligands underwent
a ligand torsional search utilizing ConfGen [41]. The conformers generated by ConfGen
were then sequentially aligned with the reference ligand, and the conformer exhibiting the
optimal overlap with the reference ligand was selected. This chosen conformer replaced
the existing entry, so it was essential to duplicate the original structures if you wished to
retain them. It is recommended to employ well-minimized structures as input for flexible
ligand alignment. The structures must contain hydrogens, and implicit hydrogens are not
allowed [42], taking into consideration the template molecule with the highest pIC50 value.

3.2.2. Field-Based and Atom-Based 3D-QSAR

Researchers have favored quantitative structure–activity relationships (QSARs) for
optimizing lead compounds over the years. Nevertheless, conventional QSAR models usu-
ally involve only rough approximations of 3D structures. There are two methods available
in Maestro for QSAR modeling: atom-based QSAR utilizes atom types and their occupancy
within a grid of cubes as independent variables for fitting and predicting properties, and
field-based QSAR implements the ComFA/ComSIA approach, using potential values on a
grid for fitting and predicting properties. In Maestro, make your selection accordingly.

The PHASE module from Maestro, an interface of Schrödinger’s version 2021-3 utility,
was utilized to develop 3D-QSAR models. To better understand the correlation between
structural features and biological activity, we aimed to develop both atom-based and field-
based 3D-QSAR models. The models were developed by randomly selecting a training
set and a test set, following the 80:20 split recommended in the literature, and widely
adopted [43,44]. However, we took steps to ensure that the developed models were not
the result of random chance, and they were further evaluated for internal and external
validation to determine their statistical significance. To ensure the reliability of the devel-
oped models, both active and inactive molecules were included in both the training and
test sets. The same strategy was used for MLR-based QSAR models, and in all cases, we
thoroughly assessed the robustness of our models. The dataset was randomly divided into
an 80% training set and a 20% test set, with a PLS factor of 4 applied to both 3D-QSAR
models. The random selection made by software was visually verified to ensure diversity
among the molecules in the training and test sets. We maintained a 1 Å grid spacing
for the selected hypothesis. We developed four atom-based 3D-QSAR models and four
field-based models (Tables 2–5 and 12). For both the field-based and atom-based models,
the training set consisted of 75 molecules, while the test set consisted of 13 molecules
(Table S1). The Gaussian field-based 3D-QSAR models incorporated descriptors such as
Gaussian steric, electrostatic, hydrophobic, hydrogen bond donor, and hydrogen bond
acceptor. In the field-based models, Gaussian intensities were considered as independent
variables. Finally, the best-selected 3D-QSAR models were developed to visualize the 3D
contour maps associated with structural features (Figure 1). The visualization of QSAR
models is important for optimizing the scaffolds.
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Table 12. Statistical analysis of field-based model in 3D-QSAR.

Factors H-Bond Donor Hydrophobic/Nonpolar Electron-Withdrawing

1 0.031 0.63 0.338

2 0.035 0.598 0.366

3 0.043 0.575 0.383

4 0.053 0.555 0.392

3.2.3. Evaluating the Predictive Power of 3D-QSAR Models: A Comparative Analysis

The essential metrics used for evaluating three-dimensional quantitative structure–
activity relationship (3D-QSAR) models will be explored. These metrics provide a crucial
insight into the quality and reliability of models, guiding the compound optimization
process. R2 (coefficient of determination): The proportion of the variance in the dependent
variable explained by the independent variables is measured. An optimal fit is indicated
by an R2 close to R2

CV (cross-validated coefficient of determination): As with R2, this is
calculated using cross-validation methods, assessing the model’s ability to generalize to
independent data. RMSE (root mean square error): The average of errors between predicted
and observed values is indicated, providing an overall measure of model accuracy. Q2

(cross-validated coefficient of determination): Similar to R2
CV, it evaluates how well the

model predicts new, unseen data using cross-validation methods. These metrics, when
employed, offer a comprehensive understanding of the predictive power and reliability
of 3D-QSAR models, contributing to informed decision making in compound design and
optimization.

The evaluation of the 3D-QSAR model involved the assessment of key statistical
parameters, including the squared cross-validation coefficient (Q2), squared non-cross-
validation coefficient (R2), predictive R2, and standard error of estimate (SEE). To determine
the internal quality of the developed model, the Q2 value was considered, with a criterion of
>0.5 deemed statistically significant. The R2 value was utilized as a relative measure of the
regression fit, with a value close to 1.0 indicating a solid fit. Additionally, the standard error
of estimate provided insights into the variation in residuals or the regression line [45,46].

3.3. Pharmacophore Hypothesis Generation

The pharmacophore hypothesis is a widely used approach in pharmaceutical chem-
istry that aims to identify and model the essential interactions between a drug molecule and
its biological target. This method is based on the understanding that specific structural or
chemical characteristics of the molecule are crucial for its biological activity [12,47,48]. Ad-
vanced Schrödinger software version 2021 provides sophisticated tools for generating and
validating pharmacophore hypotheses by utilizing information on molecular interactions,
such as hydrogen bonds, electrostatic interactions, and hydrophobic interactions [42].

To prepare the structure data file for our test compounds, we utilized the LigPrep
panel integrated within Schrödinger software version 2021-3. The ligand chemistry was
appropriately normalized and extrapolated for pharmacophore modeling using PHASE,
an automated process that aligns the ligands based on their optimal arrangement and
shared properties (Figure 5B). The geometrical optimization through condensed Newton
conjugate gradient (TNCG) minimization employed the OPLS_2005 force field. Ligands
were prepared using LigPrep (Schrödinger version 2021-3) with Epik, adjusting the pH to
7 ± 2.0 units to account for protonation and tautomeric states and utilizing the OPLS_2005
force field. Subsequently, the prepared ligands were imported into the Maestro workspace,
and their experimental binding affinities (pIC50) were used to categorize them as active or
inactive. The pIC50 values were calculated using the equation pIC50 = −log (IC50), where an
IC50 affinity of ≤50 nM corresponded to a pIC50 value greater than 7.5. Inactive molecules
were identified using a threshold of 10 µM or a pIC50 value below 7.5. The assumption
requirement was set to match at least 50% of the active compounds, and a minimum of five
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features were preferred for a successful match. The assumption difference criteria remained
at their default settings, except for donor and negative molecules, where ionic features were
assigned a value of 1 to ensure compatibility between the acceptor and negative features.

3.4. Molecular Docking

Irreversible (covalent) docking and reversible (non-covalent) docking are two distinct
approaches used in the field of molecular docking, a computational technique employed to
predict the binding affinity and orientation of a small molecule (ligand) within a receptor
or target protein [49].

Irreversible (Covalent Docking)

Irreversible (covalent) docking involves the formation of a covalent bond between the
ligand and the target protein. In this approach, the ligand is designed to contain a reactive
functional group that can form a stable covalent bond with specific amino acid residue in
the target protein, typically a nucleophilic residue such as a cysteine or a serine. Once the
covalent bond is formed, it is generally irreversible, meaning that the ligand cannot easily
dissociate from the target protein. Irreversible docking is often used when designing drugs
that require long-lasting or irreversible inhibition of their target proteins [50,51].

3.5. Protein Structure Preparation

The protein structures of JAK3 (PDB ID: 4Z16) were obtained from the RCSB Protein
Data Bank. They were imported into the Maestro program for further processing using the
Protein Preparation Wizard in Schrödinger software. The aim was to optimize the protein
structure, maximize H-bond interactions of side chains, and perform energy minimization
using the OPLS_2005 force field [52]. In the case of the model protein 4Z16, the ligands
were covalently bound to Cys909. Two approaches were taken for treatment: one involved
disconnecting the co-crystallized ligand from Cys909, minimizing the protein, and saving
it as a non-covalent model; the other involved maintaining the covalent bond between the
ligand and Cys909 during minimization for covalent docking.

The selection of proteins for this study is driven by several factors: superior resolution
compared to other proteins, absence of mutations, and a more favorable alignment of
the ligand structure with experimental data. Specifically, JAK3 (4Z16) was employed in
the research due to its distinction as the first protein featuring a co-crystallized ligand
containing an acrylaldehyde group. This structural attribute facilitates the formation of
a covalent bond with Cys909, effectively inhibiting JAK3. The decision to use JAK3 (ID:
4Z16) is rooted in its recognition as one of the primary proteins capable of elucidating
the presence of the covalent bond between JAK3 and the Cys909 residue. Moreover, the
co-crystallized ligand in the study is identified as an EGFR inhibitor, underscoring its
efficacy in treating autoimmune diseases. Furthermore, JAK3 (ID: 4Z16) is acknowledged
as one of the target proteins with superior resolution compared to other types found on
UniProt and PDB. The requisite metrics are also available on PDB, and JAK3 (ID: 4Z16)
does not manifest any mutations. Similarly, for CYP3A4 (ID: 5VCC), an in-depth search
was conducted among proteins that could yield desired results with high resolution and
the metrics available on PDB, taking into consideration the presence of mutation(s).

3.6. Schrödinger Covalent Docking

To study the effect of covalent docking, ligand JAK3 inhibitors were docked to the
model protein 4Z16 using the covalent dock program within Schrödinger software suite.
The setup process involved specifying Michael addition or Ketone-Cysteine as the reaction
type for the new compounds designed, and the scoring function was set to Extra Precision.
Default parameters were used for all other settings.
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Reversible (Non-Covalent)

Reversible (non-covalent) docking involves the prediction of the non-covalent interactions
between the ligand and the target protein. These interactions can include hydrogen bonding,
van der Waals forces, hydrophobic interactions, and electrostatic interactions. Reversible
docking predicts the most favorable binding pose and affinity of the ligand within the target
protein without the formation of a covalent bond. Reversible docking is widely used in drug
discovery and virtual screening to identify potential lead compounds that can bind to the
target protein with high affinity and specificity. One of the advantages of reversible docking
is the possibility of ligand dissociation, which allows for the development of drugs with
desirable pharmacokinetic properties and reduced toxicity risks.

Before conducting molecular docking, the ligands intended for docking were opti-
mized using Avogadro software 2.0. Subsequently, we obtained the structures of JAK3
and CYP3A4 from the RCSB database (PDB ID:4Z16 and 5VCC). The crystal complex of
4Z16 comprises water molecules and the co-crystallized ligand 4LH bound to the protein
4Z16. To prepare the protein, we eliminated all water molecules and 4LH and added polar
hydrogens to the JAK3 protein structure using Discovery Studio software 2021. Similar
steps were followed for 5VCC, except that the included ligands were not deleted because
they are an important part of the metabolism of CYP3A4. After preparing the ligands and
protein, molecular docking was carried out using AD4 and AutoVina to explore the active
site of 4Z16 and 5VCC, which is determined by the region encompassing the co-crystallized
ligands (4LH and HEM) [53]. The three-dimensional grid was established using the AUTO-
GRID algorithm, which calculates the binding energy between ligands and their receptor.
The default grid size for JAK3 with tofacitinib and CYP3A4 with new compounds was set
to x = 60, y = 60, and z = 60, with a spacing of 0.375 Å between grid points. The center
of the grid corresponds to the active site of the receptors JAK3-4LH and CYP3A4 HEM,
with coordinates (x = −6.68875 Å, y = −14.7757 Å, and z = 1.89597 Å) and (x = −19.3381 Å,
y = −30.475 Å, and z = 17.7174 Å), respectively. The docking results obtained from AD4
and Vina were visualized using Discovery Studio software 2021.

3.7. Predictive Toxicity Analysis and Bioactivity Assessment

ADMET analysis, medicinal chemistry, and the assessment of lead-like and drug-
like properties were conducted using readily accessible online tools. These tools, such as
SwissADME (http://www.swissadme.ch/ (accessed on 22 April 2022)) [54] and pkCSM
(http://structure.bioc.cam.ac.uk/pkcsm (accessed on 23 April 2022)) [36], evaluate drug
candidates and compounds to determine their potential toxicity for human use.

3.8. Molecular Dynamics Simulation

The newly created compounds, which exhibited enhanced binding affinity with JAK3
and CYP3A4, underwent all-atom molecular dynamics simulations using GROMACS 2021
(Groningen Machine for Chemical Simulation) software [55,56]. Before initiating the MD
simulations, the CHARMM-GUI web server [57] was employed to generate the initial
input parameters, implementing the CHARMM36 force field [58–61]. The simulation was
conducted at a pH of 7. Before entering the production phase, each complex was solved
within a rectangular grid box, surrounded by TIP3P water molecules, and supplemented
with the requisite counter-ions (Na+, Cl−) to maintain a salt concentration of 0.15 M,
achieved through Monte Carlo ion displacement. Energy minimization was executed for
each system using the steepest descent algorithm, encompassing a maximum of 50,000 steps
and a maximum force of 10.0 kJ/mol. The temperature and atmospheric pressure were
set to 310 K and 1.01325 bar, respectively. For NVT equilibration, two stages were carried
out, each lasting 10 ns. Canonical (NVT) and isothermal-isobaric (NPT) ensembles were
utilized for equilibrating each system. Subsequently, MD simulations were conducted for a
duration of 200 nanoseconds. To assess the structural stability of the designed molecules,
various parameters, including root mean square deviation (RMSD), the radius of gyration

http://www.swissadme.ch/
http://structure.bioc.cam.ac.uk/pkcsm
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(RoG), solvent accessible surface area (SASA), and root mean square flexibility (RMSF),
were analyzed based on the dynamics trajectory results.

3.9. Evaluating Binding Free Energy with Molecular Mechanics/Generalized Born Surface Area
(MM/GBSA)

The Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method is an
efficient force field technique employed to evaluate the binding free energy of a system,
specifically in kcal/mol [62]. For more information, free binding energy ([12]) can be visited.
These calculations were conducted by utilizing the last 200 frames and were determined
through the application of the following equations.

∆Gbind = Gcomplex − Gprotein − Gligand (1)

∆Gbind = ∆Ggas + ∆Gsol − T∆S (2)

∆Ggas = Bond + Angle + Dihed + EEL + VdW (3)

∆Gsol = ∆EGB + ∆ESURF (4)

∆Gbind represents the total binding free energy of the system, as elucidated in Equation
(1), and is determined through the utilization of Equation (2). T∆S denotes the change in
conformational entropy that arises from the binding of the ligand at a specific temperature.
∆Ggas encompasses the combined contributions stemming from bond, angle, dihedral, EEL
(the electrostatic element of internal energy), and van der Waals energies, as expounded
in Equation (3). The internal energy relates to the oscillations and rotations of individual
bond torsional angles. Solvation-free energy (∆Gsol) is composed of both ∆EGB (the polar
component of solvation energy) and ∆ESURF (the nonpolar component of solvation energy),
as detailed in Equation (4).

4. Conclusions

In conclusion, this 3D-QSAR study utilizing field-based and atom-based approaches
and the DHRRR pharmacophore model has provided valuable insights into the design
and identification of JAK3 and CYP3A4 inhibitor compounds. The favorable validation
results have instilled confidence in using these models for in silico prediction of compound
activity. The study has led to the discovery of novel compounds by applying 3D-QSAR on
a collected series of molecules with known activity. Screening of a database of molecules,
based on their inhibitory activity against JAK3, has resulted in identifying three hits
exhibiting strong affinity and favorable non-toxicity. These hits were further evaluated
using molecular docking and ADMET analysis to assess their pharmaceutical properties.
To validate the potential of these compounds, confirmation was sought through MD
simulation and MM/GBSA analysis. These simulations’ results support the identified
compounds’ promising nature, indicating their potential as candidates for drug design and
development. These findings highlight the importance of utilizing 3D-QSAR techniques in
designing novel compounds, which can lead to the discovery of potent inhibitors. Further
exploration and experimental validation are warranted to fully exploit the potential of
these compounds and progress them toward becoming viable drug candidates.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules29010023/s1, Table S1. Activity Experimental, Prediction,
and Error Analysis for Series of Cys909 Linkage Agents.

Author Contributions: A.F. conducted analysis and investigation, designed compounds, and wrote,
and prepared the manuscript. R.A. conducted analysis, reviewed, and edited the manuscript. J.G.
and A.A. conducted analysis, reviewed, and edited the manuscript. M.H.A.M. and M.A. conducted
analysis, reviewed, and edited the manuscript. M.E. conducted analysis, edited the manuscript,
supervised the entire research, and revised the manuscript. All authors have read and agreed to the
published version of the manuscript.

https://www.mdpi.com/article/10.3390/molecules29010023/s1
https://www.mdpi.com/article/10.3390/molecules29010023/s1


Molecules 2024, 29, 23 28 of 30

Funding: The authors extend their appreciation to the Deanship of Scientific Research at King
Khalid University for funding this work through a small group research project under grant number
RGP1/312/44.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article and Supplementary Materials.

Acknowledgments: The authors wish to express their gratitude to the UM6P University, with special
recognition extended to Rachid EL FATIMY and Bouchra CHAOUNI for their invaluable technical
assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liu, J.; Liu, Z.; Pang, Y.; Zhou, H. The interaction between nanoparticles and immune system: Application in the treatment of

inflammatory diseases. J. Nanobiotechnol. 2022, 20, 127. [CrossRef] [PubMed]
2. Gautam, S.; Kumar, U.; Dada, R. Yoga and its impact on chronic inflammatory autoimmune arthritis. Front. Biosci. Elite 2020, 13,

77–116. [CrossRef]
3. Sangha, P.S.; Thakur, M.; Akhtar, Z.; Ramani, S.; Gyamfi, R.S. The Link between Rheumatoid Arthritis and Dementia: A Review.

Cureus 2020, 12, e7855. [CrossRef] [PubMed]
4. de Jong, T.A.; Semmelink, J.F.; Denis, S.W.; van de Sande, M.G.H.; Houtkooper, R.H.L.; van Baarsen, L.G.M. Altered lipid

metabolism in synovial fibroblasts of individuals at risk of developing rheumatoid arthritis. J. Autoimmun. 2023, 134, 102974.
[CrossRef] [PubMed]

5. Haville, S.; Deane, K.D. Pre-RA: Can early diagnosis lead to prevention? Best Pract. Res. Clin. Rheumatol. 2022, 36, 101737.
[CrossRef] [PubMed]

6. Padyukov, L. Genetics of rheumatoid arthritis. Semin. Immunopathol. 2022, 44, 47–62. [CrossRef] [PubMed]
7. Franklin, R.J.M.; Simons, M. CNS remyelination and inflammation: From basic mechanisms to therapeutic opportunities. Neuron

2022, 110, 3549–3565. [CrossRef]
8. Godoi, M.A.; Camilli, A.C.; Gonzales, K.G.A.; Costa, V.B.; Papathanasiou, E.; Leite, F.R.M.; Guimarães-Stabili, M.R. JAK/STAT as

a Potential Therapeutic Target for Osteolytic Diseases. Int. J. Mol. Sci. 2023, 24, 10290. [CrossRef]
9. Winthrop, K.L. The emerging safety profile of JAK inhibitors in rheumatic disease. Nat. Rev. Rheumatol. 2017, 13, 234–243.

[CrossRef]
10. Nezamololama, N.; Fieldhouse, K.; Metzger, K.; Gooderham, M. Emerging systemic JAK inhibitors in the treatment of atopic

dermatitis: A review of abrocitinib, baricitinib, and upadacitinib. Drugs Context 2020, 9, 2020-8-5. [CrossRef]
11. Liu, C.; Kieltyka, J.; Fleischmann, R.; Gadina, M.; O’Shea, J.J. A Decade of JAK Inhibitors: What Have We Learned and What May

Be the Future? Arthritis Rheumatol. 2021, 73, 2166–2178. [CrossRef] [PubMed]
12. Faris, A.; Ibrahim, I.M.; Al Kamaly, O.; Saleh, A.; Elhallaoui, M. Computer-Aided Drug Design of Novel Derivatives of 2-Amino-

7,9-dihydro-8H-purin-8-one as Potent Pan-Janus JAK3 Inhibitors. Molecules 2023, 28, 5914. [CrossRef] [PubMed]
13. Faris, A.; Ibrahim, I.M.; Hadni, H.; Elhallaoui, M. High-throughput virtual screening of phenylpyrimidine derivatives as selective

JAK3 antagonists using computational methods. J. Biomol. Struct. Dyn. 2023, 1–26. [CrossRef] [PubMed]
14. Hu, X.; Li, J.; Fu, M.; Zhao, X.; Wang, W. The JAK/STAT signaling pathway: From bench to clinic. Signal Transduct. Target. Ther.

2021, 6, 402. [CrossRef] [PubMed]
15. Dai, J.; Yang, L.; Addison, G. Current Status in the Discovery of Covalent Janus Kinase 3 (JAK3) Inhibitors. Mini Rev. Med. Chem.

2019, 19, 1531–1543. [CrossRef] [PubMed]
16. Peng, X.; Wang, Q.; Li, W.; Ge, G.; Peng, J.; Xu, Y.; Yang, H.; Bai, J.; Geng, D. Comprehensive overview of microRNA function in

rheumatoid arthritis. Bone Res. 2023, 11, 8. [CrossRef] [PubMed]
17. Chen, C.; Yin, Y.; Shi, G.; Zhou, Y.; Shao, S.; Wei, Y.; Wu, L.; Zhang, D.; Sun, L.; Zhang, T. A highly selective JAK3 inhibitor is

developed for treating rheumatoid arthritis by suppressing γc cytokine–related JAK-STAT signal. Sci. Adv. 2022, 8, eabo4363.
[CrossRef]

18. Baselga, J. Targeting tyrosine kinases in cancer: The second wave. Science 2006, 312, 1175–1178. [CrossRef]
19. Wang, X.; Rao, J.; Tan, Z.; Xun, T.; Zhao, J.; Yang, X. Inflammatory signaling on cytochrome P450-mediated drug metabolism in

hepatocytes. Front. Pharmacol. 2022, 13, 1043836. [CrossRef]
20. Veeravalli, V.; Dash, R.P.; Thomas, J.A.; Babu, R.J.; Madgula, L.M.V.; Srinivas, N.R. Critical Assessment of Pharmacokinetic

Drug–Drug Interaction Potential of Tofacitinib, Baricitinib and Upadacitinib, the Three Approved Janus Kinase Inhibitors for
Rheumatoid Arthritis Treatment. Drug Saf. 2020, 43, 711–725. [CrossRef]

21. Zhang, Z.; Gao, X.; Zhang, P.; Li, Y.; Fu, M.; Lin, H.; Feng, S.; Shen, K.; Yu, G.; Li, X. Effect of CYP3A4 induction and inhibition on
the pharmacokinetics of SHR0302 in healthy subjects. Br. J. Clin. Pharmacol. 2023, 89, 2561–2568. [CrossRef] [PubMed]

https://doi.org/10.1186/s12951-022-01343-7
https://www.ncbi.nlm.nih.gov/pubmed/35279135
https://doi.org/10.2741/873
https://doi.org/10.7759/cureus.7855
https://www.ncbi.nlm.nih.gov/pubmed/32489719
https://doi.org/10.1016/j.jaut.2022.102974
https://www.ncbi.nlm.nih.gov/pubmed/36512907
https://doi.org/10.1016/j.berh.2021.101737
https://www.ncbi.nlm.nih.gov/pubmed/34991984
https://doi.org/10.1007/s00281-022-00912-0
https://www.ncbi.nlm.nih.gov/pubmed/35088123
https://doi.org/10.1016/j.neuron.2022.09.023
https://doi.org/10.3390/ijms241210290
https://doi.org/10.1038/nrrheum.2017.23
https://doi.org/10.7573/dic.2020-8-5
https://doi.org/10.1002/art.41906
https://www.ncbi.nlm.nih.gov/pubmed/34180156
https://doi.org/10.3390/molecules28155914
https://www.ncbi.nlm.nih.gov/pubmed/37570884
https://doi.org/10.1080/07391102.2023.2240413
https://www.ncbi.nlm.nih.gov/pubmed/37539779
https://doi.org/10.1038/s41392-021-00791-1
https://www.ncbi.nlm.nih.gov/pubmed/34824210
https://doi.org/10.2174/1389557519666190617152011
https://www.ncbi.nlm.nih.gov/pubmed/31288716
https://doi.org/10.1038/s41413-023-00244-1
https://www.ncbi.nlm.nih.gov/pubmed/36690624
https://doi.org/10.1126/sciadv.abo4363
https://doi.org/10.1126/science.1125951
https://doi.org/10.3389/fphar.2022.1043836
https://doi.org/10.1007/s40264-020-00938-z
https://doi.org/10.1111/bcp.15733
https://www.ncbi.nlm.nih.gov/pubmed/37005376


Molecules 2024, 29, 23 29 of 30

22. Song, Y.; Li, C.; Liu, G.; Liu, R.; Chen, Y.; Li, W.; Cao, Z.; Zhao, B.; Lu, C.; Liu, Y. Drug-Metabolizing Cytochrome P450 Enzymes
Have Multifarious Influences on Treatment Outcomes. Clin. Pharmacokinet. 2021, 60, 585–601. [CrossRef] [PubMed]

23. Guo, X.; Li, W.; Li, Q.; Chen, Y.; Zhao, G.; Peng, Y.; Zheng, J. Tofacitinib Is a Mechanism-Based Inactivator of Cytochrome P450
3A4. Chem. Res. Toxicol. 2019, 32, 1791–1800. [CrossRef] [PubMed]

24. Radu, A.-F.; Bungau, S.G.; Negru, A.P.; Uivaraseanu, B.; Bogdan, M.A. Novel Potential Janus Kinase Inhibitors with Therapeutic
Prospects in Rheumatoid Arthritis Addressed by In Silico Studies. Molecules 2023, 28, 4699. [CrossRef] [PubMed]

25. Sun, R.; Chen, M.; Hu, Y.; Lan, Y.; Gan, L.; You, G.; Yue, M.; Wang, H.; Xia, B.; Zhao, J.; et al. CYP3A4/5 mediates the metabolic
detoxification of humantenmine, a highly toxic alkaloid from Gelsemium elegans Benth. J. Appl. Toxicol. 2019, 39, 1283–1292.
[CrossRef] [PubMed]

26. Wong, J.; Wall, M.; Corboy, G.P.; Taubenheim, N.; Gregory, G.P.; Opat, S.; Shortt, J. Failure of tofacitinib to achieve an objective
response in a DDX3X-MLLT10 T-lymphoblastic leukemia with activating JAK3 mutations. Mol. Case Stud. 2020, 6, a004994.
[CrossRef] [PubMed]

27. Jin, Y.; Yu, C.; Denman, R.J.; Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 2013, 42, 6634–6654.
[CrossRef] [PubMed]

28. Taylor, M.S.; Jacobsen, E.N. Asymmetric Catalysis by Chiral Hydrogen-Bond Donors. Angew. Chem. Int. Ed. 2006, 45, 1520–1543.
[CrossRef]

29. Climent, M.J.; Corma, A.; Iborra, S. Heterogeneous Catalysts for the One-Pot Synthesis of Chemicals and Fine Chemicals. Chem.
Rev. 2011, 111, 1072–1133. [CrossRef]

30. Kapetanovic, I.M. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem.
Biol. Interact. 2008, 171, 165–176. [CrossRef]

31. Lu, F.; Wang, D.; Li, R.-L.; He, L.-Y.; Ai, L.; Wu, C.-J. Current strategies and technologies for finding drug targets of active
components from traditional Chinese medicine. Front. Biosci. Landmark 2021, 26, 572–589. [CrossRef]

32. Nascimento, I.J.d.S.; de Aquino, T.M.; da Silva-Júnior, E.F. The New Era of Drug Discovery: The Power of Computer-aided Drug
Design (CADD). Lett. Drug Des. Discov. 2022, 19, 951–955. [CrossRef]

33. da Silva-Júnior, E.F. “You’ve got the Body I’ve got the Brains”—Could the current AI-based tools replace the human ingenuity for
designing new drug candidates? Bioorg. Med. Chem. 2023, 94, 117475. [CrossRef] [PubMed]

34. Azam, M.A.; Thathan, J.; Jupudi, S. Pharmacophore modeling, atom based 3D-QSAR, molecular docking and molecular dynamics
studies on Escherichia coli ParE inhibitors. Comput. Biol. Chem. 2020, 84, 107197. [CrossRef] [PubMed]

35. Rondla, R.; PadmaRao, L.S.; Ramatenki, V.; Haredi-Abdel-Monsef, A.; Potlapally, S.R.; Vuruputuri, U. Selective ATP competitive
leads of CDK4: Discovery by 3D-QSAR pharmacophore mapping and molecular docking approach. Comput. Biol. Chem. 2017, 71,
224–229. [CrossRef] [PubMed]

36. Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using
graph-based signatures. J. Med. Chem. 2015, 58, 4066–4072. [CrossRef] [PubMed]

37. Xiong, G.; Wu, Z.; Yi, J.; Fu, L.; Yang, Z.; Hsieh, C.; Yin, M.; Zeng, X.; Wu, C.; Lu, A.; et al. ADMETlab 2.0: An integrated online
platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res. 2021, 49, W5–W14. [CrossRef]

38. Shu, L.; Chen, C.; Huan, X.; Huang, H.; Wang, M.; Zhang, J.; Yan, Y.; Liu, J.; Zhang, T.; Zhang, D. Design, synthesis, and
pharmacological evaluation of 4- or 6-phenyl-pyrimidine derivatives as novel and selective Janus kinase 3 inhibitors. Eur. J. Med.
Chem. 2020, 191, 112148. [CrossRef]

39. Tan, L.; Akahane, K.; McNally, R.; Reyskens, K.M.; Ficarro, S.B.; Liu, S.; Herter-Sprie, G.S.; Koyama, S.; Pattison, M.J.; Labella, K.
Development of selective covalent Janus kinase 3 inhibitors. J. Med. Chem. 2015, 58, 6589–6606. [CrossRef]

40. Yadav, D.K.; Saloni; Sharma, P.; Misra, S.; Singh, H.; Mancera, R.L.; Kim, K.; Jang, C.; Kim, M.; Pérez-Sánchez, H.; et al. Studies of
the benzopyran class of selective COX-2 inhibitors using 3D-QSAR and molecular docking. Arch. Pharm. Res. 2018, 41, 1178–1189.
[CrossRef]

41. Ozgencil, F.; Eren, G.; Ozkan, Y.; Guntekin-Ergun, S.; Cetin-Atalay, R. Identification of small-molecule urea derivatives as novel
NAMPT inhibitors via pharmacophore-based virtual screening. Bioorg. Med. Chem. 2020, 28, 115217. [CrossRef] [PubMed]

42. Schrödinger Release 2021-1, Maestro—Schrödinger, LLC.: New York, NY, USA, 2021.
43. Janet, J.P.; Kulik, H.J. Resolving Transition Metal Chemical Space: Feature Selection for Machine Learning and Structure–Property

Relationships. J. Phys. Chem. A 2017, 121, 8939–8954. [CrossRef] [PubMed]
44. Jawarkar, R.D.; Zaki, M.E.A.; Al-Hussain, S.A.; Abdullah Alzahrani, A.Y.; Ming, L.C.; Samad, A.; Rashid, S.; Mali, S.; Elossaily,

G.M. Mechanistic QSAR analysis to predict the binding affinity of diverse heterocycles as selective cannabinoid 2 receptor
inhibitor. J. Taibah Univ. Sci. 2023, 17, 2265104. [CrossRef]

45. Clark, M.; Cramer, R.D.; Opdenbosch, N.V. Validation of the general purpose tripos 5.2 force field. J. Comput. Chem. 1989, 10,
982–1012. [CrossRef]

46. Shinde, M.G.; Modi, S.J.; Kulkarni, V.M. QSAR and Molecular Docking of Phthalazine Derivatives as Epidermal Growth Factor
Receptor (EGFR) Inhibitors. J. Appl. Pharm. Sci. 2017, 7, 181–191. [CrossRef]

47. Giordano, D.; Biancaniello, C.; Argenio, M.A.; Facchiano, A. Drug Design by Pharmacophore and Virtual Screening Approach.
Pharmaceuticals 2022, 15, 646. [CrossRef] [PubMed]

48. Yang, S.-Y. Pharmacophore modeling and applications in drug discovery: Challenges and recent advances. Drug Discov. Today
2010, 15, 444–450. [CrossRef]

https://doi.org/10.1007/s40262-021-01001-5
https://www.ncbi.nlm.nih.gov/pubmed/33723723
https://doi.org/10.1021/acs.chemrestox.9b00141
https://www.ncbi.nlm.nih.gov/pubmed/31414593
https://doi.org/10.3390/molecules28124699
https://www.ncbi.nlm.nih.gov/pubmed/37375255
https://doi.org/10.1002/jat.3813
https://www.ncbi.nlm.nih.gov/pubmed/31119768
https://doi.org/10.1101/mcs.a004994
https://www.ncbi.nlm.nih.gov/pubmed/32843425
https://doi.org/10.1039/c3cs60044k
https://www.ncbi.nlm.nih.gov/pubmed/23749182
https://doi.org/10.1002/anie.200503132
https://doi.org/10.1021/cr1002084
https://doi.org/10.1016/j.cbi.2006.12.006
https://doi.org/10.52586/4968
https://doi.org/10.2174/1570180819666220405225817
https://doi.org/10.1016/j.bmc.2023.117475
https://www.ncbi.nlm.nih.gov/pubmed/37741120
https://doi.org/10.1016/j.compbiolchem.2019.107197
https://www.ncbi.nlm.nih.gov/pubmed/31901788
https://doi.org/10.1016/j.compbiolchem.2017.11.005
https://www.ncbi.nlm.nih.gov/pubmed/29153893
https://doi.org/10.1021/acs.jmedchem.5b00104
https://www.ncbi.nlm.nih.gov/pubmed/25860834
https://doi.org/10.1093/nar/gkab255
https://doi.org/10.1016/j.ejmech.2020.112148
https://doi.org/10.1021/acs.jmedchem.5b00710
https://doi.org/10.1007/s12272-017-0945-7
https://doi.org/10.1016/j.bmc.2019.115217
https://www.ncbi.nlm.nih.gov/pubmed/31818629
https://doi.org/10.1021/acs.jpca.7b08750
https://www.ncbi.nlm.nih.gov/pubmed/29095620
https://doi.org/10.1080/16583655.2023.2265104
https://doi.org/10.1002/jcc.540100804
https://doi.org/10.7324/JAPS.2017.70427
https://doi.org/10.3390/ph15050646
https://www.ncbi.nlm.nih.gov/pubmed/35631472
https://doi.org/10.1016/j.drudis.2010.03.013


Molecules 2024, 29, 23 30 of 30

49. Aljoundi, A.; Bjij, I.; El Rashedy, A.; Soliman, M.E.S. Covalent Versus Non-covalent Enzyme Inhibition: Which Route Should We
Take? A Justification of the Good and Bad from Molecular Modelling Perspective. Protein J. 2020, 39, 97–105. [CrossRef]

50. Tivon, B.; Gabizon, R.; Somsen, B.A.; Cossar, P.J.; Ottmann, C.; London, N. Covalent flexible peptide docking in Rosetta. Chem.
Sci. 2021, 12, 10836–10847. [CrossRef]

51. Faris, A.; Ibrahim, I.M.; Alnajjar, R.; Hadni, H.; Bhat, M.A.; Yaseen, M.; Chakraborty, S.; Alsakhen, N.; Shamkh, I.M.; Mabood, F.;
et al. QSAR-driven screening uncovers and designs novel pyrimidine-4,6-diamine derivatives as potent JAK3 inhibitors. J. Biomol.
Struct. Dyn. 2023, 1–30. [CrossRef]

52. Stortz, C.A.; Johnson, G.P.; French, A.D.; Csonka, G.I. Comparison of different force fields for the study of disaccharides. Carbohydr.
Res. 2009, 344, 2217–2228. [CrossRef] [PubMed]

53. Morris, G.M.; Huey, R.; Olson, A.J. Using AutoDock for Ligand-Receptor Docking. Curr. Protoc. Bioinform. 2008, 24, 8.14.1–8.14.40.
[CrossRef] [PubMed]

54. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef] [PubMed]

55. Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular
simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [CrossRef]

56. Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput.
Chem. 2005, 26, 1701–1718. [CrossRef]

57. Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29,
1859–1865. [CrossRef] [PubMed]

58. Faris, A.; Ibrahim, I.M.; Chakraborty, S.; Kamaly, O.A.; Alshawwa, S.Z.; Hallaoui, M.E. Identification of Selective JAK3/STAT1
and CYP34A from Pyrazolopyrimidine Derivatives: A Search for Potential Drug Targets for Rheumatoid Arthritis using In-silico
Drug Discovery Techniques. Lett. Drug Des. Discov. 2023, 20, 1–26. [CrossRef]

59. Faris, A.; Hadni, H.; Saleh, B.A.; Khelfaoui, H.; Harkati, D.; Ait Ahsaine, H.; Elhallaoui, M.; El-Hiti, G.A. In silico screening of a
series of 1,6-disubstituted 1H-pyrazolo[3,4-d]pyrimidines as potential selective inhibitors of the Janus kinase 3. J. Biomol. Struct.
Dyn. 2023, 1–19. [CrossRef]

60. Huang, J.; MacKerell, A.D., Jr. CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. J.
Comput. Chem. 2013, 34, 2135–2145. [CrossRef]

61. Ziada, S.; Diharce, J.; Raimbaud, E.; Aci-Sèche, S.; Ducrot, P.; Bonnet, P. Estimation of Drug-Target Residence Time by Targeted
Molecular Dynamics Simulations. J. Chem. Inf. Model. 2022, 62, 5536–5549. [CrossRef]

62. Zhang, X.; Perez-Sanchez, H.; Lightstone, F.C. A Comprehensive Docking and MM/GBSA Rescoring Study of Ligand Recognition
upon Binding Antithrombin. Curr. Top. Med. Chem. 2017, 17, 1631–1639. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10930-020-09884-2
https://doi.org/10.1039/D1SC02322E
https://doi.org/10.1080/07391102.2023.2283168
https://doi.org/10.1016/j.carres.2009.08.019
https://www.ncbi.nlm.nih.gov/pubmed/19758584
https://doi.org/10.1002/0471250953.bi0814s24
https://www.ncbi.nlm.nih.gov/pubmed/19085980
https://doi.org/10.1038/srep42717
https://www.ncbi.nlm.nih.gov/pubmed/28256516
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/jcc.20291
https://doi.org/10.1002/jcc.20945
https://www.ncbi.nlm.nih.gov/pubmed/18351591
https://doi.org/10.2174/1570180820666230821102836
https://doi.org/10.1080/07391102.2023.2220829
https://doi.org/10.1002/jcc.23354
https://doi.org/10.1021/acs.jcim.2c00852
https://doi.org/10.2174/1568026616666161117112604

	Introduction 
	Results and Discussion 
	Static Results of QSAR Models 
	Contour Maps 
	Design of New Molecules Based on QSAR Models 
	Pharmacophore Model Analysis 
	Identification of Compounds Using Pharmacophore Model DHRRR_1 
	ADMET Analysis 
	Analysis Docking of Selected Molecules (Covalent Docking between Identified and Designed Molecules) 
	Molecular Docking with CYP3A4 
	Molecular Dynamics Simulation Analysis 
	RMSD, RMSF, RoG, and SASA Analyses 
	PCA and FEL Analyses 

	MM/GBSA Analysis 

	Methods and Materials 
	Dataset 
	Building Robust Models: Exploring Three-Dimensional QSAR in Development 
	Preparation of Ligands 
	Field-Based and Atom-Based 3D-QSAR 
	Evaluating the Predictive Power of 3D-QSAR Models: A Comparative Analysis 

	Pharmacophore Hypothesis Generation 
	Molecular Docking 
	Protein Structure Preparation 
	Schrödinger Covalent Docking 
	Predictive Toxicity Analysis and Bioactivity Assessment 
	Molecular Dynamics Simulation 
	Evaluating Binding Free Energy with Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) 

	Conclusions 
	References

