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Abstract: This study evaluates the anti-diabetic potential and underlying mechanisms of curcumin
in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were randomly
divided into four groups: normal control, negative control (diabetic group), diabetic group receiving
glibenclamide (positive control group), and curcumin plus STZ (treatment group). The anti-diabetic
activities of curcumin were examined at a dose of 50 mg/kg body weight through physiological,
biochemical, and histopathological analysis. Compared to the normal control group rats, elevated
levels of glucose, creatinine, urea, triglycerides (TG), and total cholesterol (TC) and low levels of
insulin were found in the negative control rats. Curcumin treatment showed a significant decrease in
these parameters and an increase in insulin level as compared to negative control rats. In negative
control rats, a reduced level of antioxidant enzymes and an increased level of lipid peroxidation and
inflammatory marker levels were noticed. Oral administration of curcumin significantly ameliorated
such changes. From histopathological findings, it was noted that diabetic rats showed changes in the
kidney tissue architecture, including the infiltration of inflammatory cells, congestion, and fibrosis,
while oral administration of curcumin significantly reduced these changes. Expression of IL-6 and
TNF-α protein was high in diabetic rats as compared to the curcumin treatment groups. Hence,
based on biochemical and histopathological findings, this study delivers a scientific suggestion that
curcumin could be a suitable remedy in the management of diabetes mellitus.
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1. Introduction

Higher glucose levels and abnormalities in insulin production characterize diabetes
mellitus (DM), or insulin resistance, and some people can have both [1]. Prolonged DM
usually leads to various complications, including cardiovascular disease, chronic kidney
disease, diabetic ketoacidosis, and a hyperosmolar hyperglycemic state [2]. Moreover,
lipid abnormalities are major players in DM due to insulin resistance or metabolic changes
that disrupt key enzymes and lipid metabolic pathways [3]. As per the International
Diabetes Federation, it is projected that the number of diabetes patients will increase to
approximately 10% (578 million) by 2030 and 10.9% (700 million) by 2045 [4]. Thus, the
regulation of blood glucose levels is vital for preventing diabetic complications as well as
improving the health of diabetic patients [5]. The current modes of treatment for DM may
be effective, but in parallel also cause some adverse complications.

The wide and innumerable number of natural compounds from animals, plants,
microorganisms, fungi, and other natural resources delivers a rich and inimitable source in
the search for new drugs [6]. In addition, in traditional medicine, several medicinal plants
with hypoglycemic properties have been used for treating DM [7].
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In this regard, curcumin, a yellow-colored compound, is produced by plants of Cur-
cuma longa species, and it is chemically known as 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,
6-heptadiene-3, 5-dione (Figure 1). It possesses antioxidant, anti-inflammatory, anti-tumor,
and other biological activities [8].
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Curcumin is capable of exercising its antioxidant action via scavenging a variety of
hydrogen peroxide and nitric oxide (NO) radicals and reactive oxygen species (ROS) as
superoxide radicals and by preventing lipid peroxidation [9]. Moreover, several in vitro as
well as in vivo studies have described that curcumin has potential for treating numerous
inflammatory diseases [10–13]. A recent study based on the nephroprotective effect of cur-
cumin in STZ-induced DM was performed. The study revealed that curcumin significantly
reduced blood urea nitrogen, serum levels of urea, and creatinine and simultaneously re-
duced albumin/protein urea and increased creatinine clearance. Further, it also prevented
damage to renal tubules and the thickness of the basement membrane [14]. In addition, STZ
induction caused increased hepatic damage linked to the serum levels of ALT, ALP, and
LDH, increased the production of NO, increased ROS generation and lipid peroxidation,
and reduced antioxidant enzyme levels. However, curcumin treatment efficiently counters
diabetes-induced oxidative-stress-mediated hepatic damage [15]. Another finding reported
that curcumin improved the survival as well as the function of islet cells, with reduced cell
apoptosis in the islet of Langerhans and increased insulin secretion in the STZ-induced
diabetic model [16].

In this study, the therapeutic potential of curcumin on streptozotocin (STZ)-induced
kidney injury in rats was evaluated via inflammation, the lipid profile, oxidative stress,
and other biochemical parameters. Moreover, kidney tissue architecture was evaluated via
hematoxylin and eosin, fibrosis by Masson trichrome and Sirius red, and inflammatory
protein expression by immunohistochemistry staining.

2. Results
2.1. Role of Curcumin on Oral Glucose Tolerance Tests (OGTTs)

Hyperglycemia is the most significant indication of diabetes, and OGTTs were per-
formed to measure the hyperglycemic activity in different experimental groups of rats.
In the control group, glucose levels were estimated at 0, 30, 60, 90, and 120 min as
(89.4 ± 4.2, 157.6 ± 6.8, 133.2 ± 7.3, 103.4 ± 5.6, and 94.8 ± 4.7 mg/dL), and negative
control rats revealed higher blood glucose levels at same time intervals as
(310.8 ± 7.9, 478.6 ± 9.8, 431.8 ± 8.4, 390.2 ± 5.8, and 268.4 ± 4.9 mg/dL) (p < 0.05). The
treatment of diabetic rats with curcumin showed a noteworthy reduction in glucose levels
(230.4 ± 4.7, 403.7 ± 5.9, 360.5 ± 7.2, 290.5 ± 5.2, and 256.7 ± 3.5 mg/dL) when compared
to the negative control rats at the same time intervals (p < 0.05) (Figure 2).
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Figure 2. Role of curcumin on oral glucose tolerance tests (OGTTs) was evaluated. Mean ± SEM
was used to describe the findings: * p < 0.05 (significant variance in OGTTs between negative control
(NC) and normal control (C)); # p < 0.05 (significant difference between NC and curcumin treatment
(CuT)).

2.2. Role of Curcumin on Glucose and Insulin Levels

Figure 3 shows the levels of fasting glucose and insulin in different experimental
animals. The fasting glucose levels were found to be significantly higher in the nega-
tive control rats as compared to control group rats (255 ± 7 mg/dL vs. 93 ± 5 mg/dL)
(p < 0.05) (Figure 3a), whereas insulin levels were significantly lowered in the negative control
animals in comparison with control group rats (0.48 ± 0.04 ng/mL vs. 1.25 ± 0.05 ng/mL)
(Figure 3b). The animals treated with curcumin exhibited a substantial reduction in fasting
glucose (155 ± 9 mg/dL) and increased insulin levels (0.85 ± 0.03 ng/mL) when compared
to negative control group rats (p < 0.05). The glibenclamide (positive control) displayed the
same potential in the reduction in FBG and enhancement of insulin, and the values were
near those of the control group.
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Figure 3. The levels of (a) glucose and (b) insulin were measured in different experimental groups
of rats (a total of 8 rats in each group). Mean ± SEM was used to define the findings: * p < 0.05
(significant variance in b.w. (final) between negative control (NC) and normal control (C)); ** p < 0.05
(significant difference between NC and curcumin treatment (CuT)).
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2.3. Effect of Curcumin on Lipid Profile

The triglycerides (TGs) and total cholesterol (TC) serum levels were evaluated in differ-
ent experimental groups. Figure 4 shows that the serum levels of cholesterol
(189.37 ± 8.7 mg/dL) and TGs (230.7 ± 7.2 mg/dL) were increased in negative control
rats in comparison with normal control rats (105.34 ± 5.7 mg/dL and 146.9 ± 8.7 mg/dL)
(p < 0.05). The treatment with curcumin significantly (p < 0.05) decreased the levels of
cholesterol (154.45 ± 6.4 mg/dL) and TGs (176.3 ± 9.5 mg/dL) (p < 0.05). These findings
identified abnormalities in lipid metabolism in diabetic animals.
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Figure 4. The serum levels of triglycerides (TG) and total cholesterol (TC) were evaluated in rats
(8 rats in each group). Mean ± SEM was used to define the findings: * p < 0.05 (significant variance in
b.w. (final) between negative control (NC) and normal control (C)); ** p < 0.05 (significant difference
between NC and curcumin treatment (CuT)).

2.4. Effect of Curcumin on Creatinine and Urea Levels

The creatinine and urea serum levels were evaluated in experimental animals in each
group. Negative control group rats exhibited increased creatinine (105.7 ± 7.8 µmol/L) and
urea levels (47.9 ± 1.8 mg/dL) (p < 0.05). Creatinine and urea levels of the STZ-induced
diabetic rats (negative control) treated with curcumin (50 mg/kg) returned to normal levels
(87.39 ± 5.8 µmol/L and 31.3 ± 2.3 mg/dL) (p < 0.05) (Figure 5).
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Figure 5. The serum levels of creatinine and total urea were evaluated in rats (a total of 8 rats in each
group). Mean ± SEM was used to define the findings: * p < 0.05 (significant variance in b.w. (final)
between negative control (NC) and normal control (C)); ** p < 0.05 (significant difference between NC
and curcumin treatment (CuT)).
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2.5. Effect of Curcumin Treatment on Oxidative Stress Level

Negative control group rats showed a rise in MDA levels when compared to normal
control group rats (168.3 ± 3 nmol/g vs. 112.7 ± 6 nmol/g). Figure 6 shows that treatment
with curcumin (50 mg/kg body weight) significantly (p < 0.05) decreased MDA levels in
STZ-induced negative control rats (134.4 ± 6 nmol/g) (Figure 6).
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Furthermore, the results showed that negative control rats displayed a decline in
antioxidant enzyme (CAT, 26.2 ± 3 vs. 35.5 ± 2 U/mg protein; GST, 71.9 ± 10 vs.
146.6 ± 9.2 U/mg protein; and SOD, 36.5 ± 4 vs. 74.9 ± 7 U/mg protein) levels as
compared to normal control groups (Figure 7). As compared to the STZ-induced negative
control rats, curcumin enhances the reduced antioxidant enzymes CAT (31.8 ± 2.1 U/mg
protein), GST (95.5 ± 12.2 U/mg protein), and SOD (61.7 ± 4.1 U/mg protein). This
suggests that curcumin reduced oxidative stress through the enhancement of antioxidant
enzymes and the reduction in lipid peroxidation.
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Mean ± SEM was used to define the findings: * p < 0.05 (significant variance in b.w. (final) between
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curcumin treatment (CuT)).

2.6. Effect of Curcumin Treatments on Inflammatory Marker Level

Negative control rats showed a substantial elevation (p < 0.05) in levels of cytokines
such as TNF-α (115.5 ± 6.2 vs. 37.6 ± 6.3 pg/mL), IL-6 (91.6 ± 6.2 vs. 34.43 ± 3.0 pg/mL),
and IL-1β (52.6 ± 2.3 vs. 32.3 ± 1.6 pg/mL) as compared to the control group. Figure 8
shows that treatment with curcumin (50 mg/kg b.w.) suggestively (p < 0.05) decreased
these cytokine levels (TNF-α, 68.8 ± 5.1 pg/mL; IL-6, 57.4 ± 7.2 pg/mL; and IL-1β,
45.3 ± 2.7 pg/mL) in the STZ-induced negative control group. These findings indicate that
curcumin has a role in diabetes management through its anti-inflammatory properties.
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2.7. Effect of Curcumin Treatments on Renal Tissue Architecture

The hematoxylin and eosin (H&E) staining of the renal tissue of normal-group rats
showed normal renal tissue architecture. Compared to the control group, negative control
group rats showed various changes characterized by inflammatory cell infiltration, con-
gestion, and fibrosis. However, the administration of curcumin in negative control group
rats (50 mg/kg body weight) considerably reduced the renal tissue change. Glibenclamide-
administered (positive control) rats showed normal tissue architecture (Figure 9).
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Figure 9. Renal tissue architecture of different experimental groups of rats: (a) normal control group;
(b) STZ-induced negative control group rats; (c) STZ treated with curcumin (50 mg/kg body weight);
(d) STZ treated with glibenclamide (positive control). Original magnification: 100×; scale bar: 50 µm.
The red arrow shows inflammatory cells and the blue arrow shows congestion.

2.8. Effect of Curcumin Treatments on Renal Fibrosis

Renal fibrosis was measured in all experimental groups using Masson trichrome
and Sirius red staining to check the effects of curcumin. The Masson trichrome staining
of the renal tissue of normal-group rats showed normal collagen fiber. As compared to
the control group, the negative control rats showed thick collagen fiber (stained blue).
However, diabetic animals treated with curcumin showed reduced fibrosis. Glibenclamide-
administered (positive control) rats showed a similar result as that shown in the control
group (Figure 10).

The Sirius red staining of the renal tissue of normal-group rats showed normal collagen
fiber. As compared to the control group, negative control rats showed more fiber (stained
red). The negative control group treated with curcumin showed significantly reduced
fibrosis. (Figure 11).

2.9. Effect of Curcumin Treatments on IL-6 Protein Expression

Immunohistochemistry (IHC) staining was performed to evaluate the expression
pattern of the IL-6 protein. The staining of renal tissue of normal group rats showed no
expression of the IL-6 protein. Negative control group rats showed significant upregulation
or high expression (stained brown color) (p < 0.05) of IL-6 in renal cells as compared to
the control group, whereas negative control group rats treated with curcumin showed
significantly reduced or downregulated (p < 0.05) expression of the IL-6 protein as compared
to negative control group rats. The glibenclamide-administered (positive control) group
showed a similar result (no expression) to that in the control group (p > 0.05) (Figure 12A,B).

2.10. Effect of Curcumin Treatments on TNF-α Protein Expression

The staining of the renal tissue of normal-group rats showed no expression of the
TNF-α protein. Negative control rats showed significant upregulation (stained brown color)
of this protein in renal cells as compared to the control group (p < 0.05), whereas negative
control group rats treated with curcumin showed significantly reduced or downregulated
(p < 0.05) expression of the TNF-α protein as compared to negative control group rats
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(p < 0.05) (Figure 13A,B). The glibenclamide-administered (positive control) group did not
show any expression compared to the control group rats (p > 0.05) (Figure 13A,B).
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Figure 11. Renal tissue fibrosis in different experimental groups of rats: (a) normal control group;
(b) STZ-induced negative control group; (c) STZ treated with curcumin (50 mg/kg body weight);
(d) STZ treated with glibenclamide (positive control). Original magnification: 100×; scale bar: 50 µm.
Arrow (green) showing fiber deposition.
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Figure 12. (A) Expression of IL-6 protein in different experimental groups of rats: (a) normal control
group (showed no expression); (b) STZ-induced negative control group (showed high expression);
(c) STZ treated with curcumin (50 mg/kg body weight) (showed less expression); (d) STZ treated
with glibenclamide (positive control, showed no expression). Original magnification: 100×; scale bar:
50 µm. Arrow (red) showing cytoplasmic positivity. (B) Graph showing IL-6 expression in different
experimental groups: * p < 0.05 (significant variance in b.w. between negative control (NC) and
normal control (C)); ** p < 0.05 (significant difference between NC and curcumin treatment (CuT)).
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Figure 13. (A) Expression of TNF-α protein in different experimental groups of rats: (a) normal control
group (showed no expression); (b) STZ-induced negative control group (showed high expression);
(c) STZ treated with curcumin showed decreased expression; (d) STZ treated with glibenclamide
(positive control, showed no expression). Original magnification: 100×; scale bar: 50 µm. Arrow
(red) showing cytoplasmic positivity. (B) Graph showing TNF-α expression in different experimental
groups: * p < 0.05 (significant variance in b.w. between negative control (NC) and normal control (C));
** p < 0.05 (significant difference between NC and curcumin treatment (CuT)).
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3. Discussion

Higher glucose levels and abnormalities in insulin production or action [1] commonly
describe diabetes mellitus (DM). Numerous anti-diabetic drugs and synthetic inhibitors
for hyperglycemia are accessible that decrease the development of diabetic complications;
however, several adverse effects have been noticed in parallel [17]. Thus, natural anti-
diabetic drugs or medicinal plant compounds may deliver an auspicious therapeutic
remedy to prevent diabetes and its complications.

STZ damages insulin-producing beta cells within the pancreas, and therefore it is
commonly used to induce diabetes in laboratory animals [18,19]. In this study, a diabetes
model was used to investigate the protective effect of curcumin against renal pathogenesis
in diabetic rats.

In the current study, it was noticed that fasting glucose levels (FBG) were found to be
significantly higher and insulin levels significantly lower in the type 2 diabetic mellitus
animals. The rats treated with curcumin exhibited a significant reduction in FBG and had
increased insulin levels when compared to the negative control group rats. Another finding
was in accordance with current findings that oral administration of tetrahydrocurcumin
to STZ-given diabetic animals significantly increased plasma insulin and reduced plasma
glucose levels [20]. Moreover, another study reported that pre-treatment with curcumin
significantly decreased serum glucose levels and enhanced insulin levels [21]. Based on
other natural products, related results were reported, as insulin levels and blood glucose
were restored in diabetic animals by Gymnema sylvestre treatment [22], and Caralluma
tuberculata caused increases in insulin levels [23].

In this study, the serum levels of cholesterol and TGs were increased in diabetic rats
as compared to normal control rats. The treatment with curcumin significantly decreased
the levels of cholesterol and TGs. A study based on curcumin reported that treatment of
STZ-induced diabetic animals with curcumin reduced total cholesterol and LDL levels,
indicating that curcumin reduced hyperlipidemia [24].

The rise in levels of creatinine, uric acid, and blood urea nitrogen (BUN) in the serum
of diabetic rats postulates progressive renal damage, an index of changed GFR in diabetic
nephropathy [25,26]. The clearance of creatinine is measured by urine and serum levels
of creatinine and is a sign of functional changes in renal cells [27]. In the current study,
it was observed that STZ-induced diabetic rats exhibited an increase in creatinine and
urea levels. Creatinine and urea levels of STZ-induced diabetic rats treated with curcumin
(50 mg/kg b.w.) were diminished. Our findings are consistent with earlier reported
findings, which displayed improved renal function in diabetic rats treated with curcumin,
and it was described that treatment of STZ-induced diabetic rats with curcumin reduced
diabetic nephropathy with meaningful decreases in blood urea nitrogen and creatinine [28].
In addition, treating diabetic rats with curcumin caused a reduction in renal histological
changes and urea nitrogen and creatinine levels, demonstrating improvements in kidney
structure and function [29].

Oxidative stress is a state of inequality in the production and accumulation of re-
active oxygen species in cells and tissues with the capability of biological systems to
clear these reactive products [30]. Oxidative stress has been identified as one of the chief
causes of the development of diabetes [31,32]. Thus, a molecule holding both antioxidant
and hypoglycemic potential might be measured as a protective agent against diabetic
nephropathy [33,34]. Diabetic rats showed an increase in MDA and a decrease in an-
tioxidant enzyme levels as compared to normal control groups. As compared to the
STZ-induced diabetic rats, curcumin enhanced the reduction in antioxidant enzymes and
decreased MDA levels, suggesting that curcumin is able to reduce oxidative stress through
the enhancement of antioxidant enzymes and the reduction in lipid peroxidation. Previous
findings were similar to current findings, as the administration of curcumin to STZ-induced
rats reduced renal dysfunction and oxidative stress [35]. Also, diabetic rats showed a
substantial rise in lipid peroxidation, as identified by a noticeable rise in renal MDA levels
and a decrease in glutathione levels as compared to control rats. Treatment with curcumin
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in diabetic rats reversed the decreased glutathione levels and resulted in a rise in lipid
peroxidation [35].

Inflammation is a major factor in metabolic dysregulation. Chronic exposure to
pro-inflammatory mediators arouses the activation of cytokine signaling proteins, which
finally stop the initiation of insulin signaling receptors in β-cells of pancreatic islets [36,37].
However, the regulation of the inflammation process is a crucial step in the inhibition of
diabetes and its complications. Curcumin treatment attenuates inflammatory marker levels
as compared to untreated diabetic rats due to its potential to attenuate hyperglycemia
and the inflammation process. In this regard, previous findings reported that treatment of
STZ-induced diabetic rats with curcumin attenuated pro-inflammatory cytokine mRNA as
well as protein levels and macrophage infiltration in renal tissue [38]. Moreover, in parallel
with the present results, it was reported in these previous findings that the administration
of curcumin improved antioxidant enzymes and that inflammatory cell infiltration in the
liver was decreased, demonstrating reduced oxidative stress as well as inflammation [39].

A histopathological assessment of the kidney tissues of STZ-induced diabetic rats
displayed various changes, such as the infiltration of inflammatory cells, congestion, and
fibrosis. Treatment with curcumin significantly reduced these tissue changes, thus rep-
resenting a protective role in renal damage. Previous findings reported that bioactive
compounds of natural products maintain kidney tissue architecture [40].

Cytokines have a vital role in intercellular renal damage as well as in the production
of secondary messengers, including cell adhesion molecules, acute phase proteins, and
transcription factors [41]. As per the clinical data, the levels of IL-6 and IL-1β were
increased in patients with diabetic nephropathy [42]. In this study, the STZ-induced diabetic
group showed significantly higher expression of the IL-6 protein. However, curcumin
treatment reduced the expression of IL-6. Another study based on ursolic acid reported that
immunohistochemical staining revealed a rise in the expression of cytokines such as TNF-α,
MCP-1, and IL-1β in diabetic nephropathy rats compared to control animals. Amazingly,
the elevated expression levels of the above-mentioned proteins in diabetic nephropathy
rats were attenuated by administration with ursolic acid [43]. Similarly, another study
reported that IL-6 is positively expressed in STZ-treated renal tissues. On the other hand,
nephropathic rats treated with chitosan-loaded p-coumaric acid nanoparticles (PCNPs)
showed a considerable reduction in IL-6 in comparison with nephropathic rats [44].

TNF-α is an inflammatory cytokine, and its upregulation has been noticed in patho-
genesis. This study showed the upregulation of TNF-α in the renal tissue of STZ-induced
diabetic rats. Furthermore, TNF-α expression was found to be significantly decreased in
the curcumin-treated group. In this regard, another study based on curcumin reported
that, as compared to the control group, the diabetes mellitus group showed high positive
cells. After treatment with curcumin, the expression of this inflammatory protein decreased
significantly [45].

4. Materials and Methods
4.1. Chemicals

Streptozotocin (STZ) and curcumin were purchased from Sigma-Aldrich Inc., St. Louis,
MO, USA. The antioxidant enzyme kits including catalase, glutathione, and superoxide
dismutase were acquired from Abcam, Cambridge, UK. The inflammatory markers kits
for TNF-α, IL-6 and IL-1β were also obtained from Abcam, UK. Antioxidant enzyme and
myeloperoxidase kits were purchased from Abcam, UK. For fibrosis evaluation, trichrome
stain and a Sirius red kit were purchased from the same company. IL-6 and TNF-α mono-
clonal antibodies and the Specific HRP/DAB Detection IHC kit were acquired from Abcam,
United Kingdom. All supportive chemicals used in this study were of analytical grade and
purchased from a local vendor.
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4.2. Animals and Treatment

A total of 32 male albino rats, weighing 160–210 g, were purchased from the animal
house of King Saud University, Saudi Arabia. All rats were kept under normal research
laboratory conditions with a 12 h light/dark cycle at a temperature of 23 ± 2 ◦C during the
study. Rats were fed with normal rat chow as well as tap water ad libitum throughout the
experiment. All methodology was approved by the Control and Regulation of Experiments
on Animals, CAMS, at Qassim University (ethical committee no. 31711J1-2022-1-3-C).

This study used STZ to induce type 2 diabetes mellitus (T2DM) in rats with a single
dose of a streptozotocin (55 mg/kg b.w.) [46] solution prepared in 50 mM citrate buffer.
Curcumin (50 mg/kg b.w.) [47,48] was prepared in a dimethyl sulfoxide (1.0%) solution and
administered orally by gavage to the treatment animals. After 2 days of STZ injection, blood
glucose was measured, and rats with a glucose level >200 mg/dl were considered diabetic
animals and considered as the diabetic group. Curcumin was given thrice weekly after
one week of diabetes induction and continued for eight consecutive weeks. Glibenclamide
(5 mg/kg b.w.) was given to rats and considered a positive control.

Rats were divided into 4 different groups, with 8 rats per group:

• Group I: rats with free access to rat pellets and orally administered saline as a placebo
for 8 weeks, considered as the normal control (C) group.

• Group II: STZ-induced diabetic rats at 55 mg/kg b.w., considered as the negative
control (NC) group.

• Group III: diabetic rats administered curcumin orally (50 mg/kg/day) [47,48] for
8 weeks, considered as the curcumin treatment (CrT) group.

• Group IV: diabetic rats treated with glibenclamide (5 mg/kg b.w.) [49] as a standard
drug for 8 weeks, considered as the positive control (PC) group.

4.3. Effect of Curcumin on Oral Glucose Tolerance Tests

As described by the previous method, an oral glucose tolerance test (OGTT) was
executed [50] after constant treatment for 8 weeks. Briefly, fasting rats were orally given
glucose (3 g/kg b.w.). Blood samples were collected from the tail vein at different intervals:
0 min, 30, 60, 90, and 120 min after glucose administration. Blood glucose levels were
examined by using a glucometer.

4.4. Measurement of Fasting Blood Glucose and Insulin Level

After the completion of the treatment plan, all the animals were sacrificed, and blood
samples were collected for the estimation of glucose and insulin levels by using specific kits.

4.5. Total Cholesterol and Triglyceride (TG) Measurement

The total cholesterol (TC) and triglycerides (TGs) were measured using the colorimetric
method. The absorbance of the colored solution was evaluated at 546 nm, and the results
were interpreted accordingly.

4.6. Determination of Serum Urea and Creatinine Level

Blood was collected and centrifuged at 3000× g for 20 min. The obtained serum was
measured from all the experimental animals for urea and creatinine levels, the absorbance
was measured, and the results were interpreted accordingly.

4.7. Measurement of Malondialdehyde (MDA)

The determination of malondialdehyde (MDA) content was estimated through the
thiobarbituric acid (TBA) method for a non-enzymatic oxidative state for lipid peroxida-
tion [51]. Lipid peroxidation was measured by estimating the malondialdehyde (MDA)
concentration, which was evaluated by the absorbance of color development with thiobar-
bituric acid. The absorbance of the resulting product was estimated at 532 nm, and the
results are expressed in nmol/g [52].
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4.8. Determination of Antioxidant Enzyme (SOD, GST, and CAT) Levels

Renal tissue was obtained from different experimental groups of rats, and all tissues
were stored in PBS. All the samples were homogenized and centrifuged at 1100× g for
15 min. The antioxidant enzyme (CAT, SOD, and GST) levels were measured in different
experimental groups using the colorimetric method with commercial kits (Abcam, UK).
The absorbance of the resultant product was estimated at different wavelengths [52] as per
the manufacturer’s instructions, and the results were consequently interpreted.

4.9. Assessment of Inflammatory Cytokines (IL-6, IL-1β, and TNF-α)

The Enzyme-Linked Immunosorbent Assay (ELISA) test was run to quantify the
evaluation of inflammatory markers. The inflammatory markers, including IL-6, IL-1β,
and TNF-α, were measured using an ELISA Kit (Abcam, Cambridge, UK) according
to the manufacturer’s protocol, and the obtained results were expressed as pg/mL [53]
accordingly.

4.10. Histopathological Examination of Renal Tissues

Kidney tissues were taken and immediately fixed in 10% buffered formalin. Then,
tissues were processed, followed by dehydration using a series of graded alcohols (Leica
automated tissue processor, Leica TP1020), Nussloch, Germany and embedded in paraffin
wax (Leica embedding unit, Leica EG1160) to make paraffin-embedded blocks. Kidney
sections (5 µm thick) were cut using a rotatory microtome (Leica RM2125). Hematoxylin and
eosin staining was performed as per a previously described protocol [54], and independent
pathologists examined the slides in a blinded manner. Stained slides were examined under
a light microscope (Leica) at 100× magnification. The photographs were taken by a Leica
Digital camera, DMD108, and the findings were consequently construed.

4.11. Fibrosis Evaluation Using Masson Trichrome and Sirius Red Staining

Masson’s trichrome staining kit was used to measure collagen fibers. Briefly, kidney
sections were deparaffinized and hydrated properly. The manufacturer’s instructions were
followed to complete the staining procedures. Finally, all slides were cleared by xylene and
mounted using D.P.X. Sections that underwent Masson trichrome and Sirius red staining
were evaluated under a light microscope (Leica) using 100× magnification. Photographs
(Leica Digital camera DMD108) were taken and findings were consequently construed.

4.12. Expressional Evaluation of IL-6 and TNF-α Proteins Using Immunohistochemistry Staining

Kidney sections were used for immunohistochemical staining to evaluate the expres-
sion pattern of IL-6 and TNF-α proteins, as previously described [55,56]. Briefly, sections
were deparaffinized and dehydrated, and antigen retrieval was performed in citrate buffer
(pH 6.0) for 22 min. After washing in PBS, the slides were incubated in blocking buffer for
10 min. After that, the sections were incubated with IL-6 and TNF-α primary antibodies at
4 ◦C overnight. The slides were washed away with phosphate buffer solution and incu-
bated with secondary antibodies in a moistened atmosphere for 30 min. Finally, the slides
were incubated with DAB, and sections were dehydrated. Sections were mounted with
D.P.X and covered with coverslips. A light Leica microscope (Leica, DM2500) using under
100× magnification was used, photographs (Leica Digital camera, DMD108) were taken,
and findings were consequently construed.

4.13. Quantification of IHC

IL-6 and TNF-α protein expression were measured based on cytoplasmic staining. A
pathologist blinded to the experimental group using a light microscope assessed the quan-
tification of positively cytoplasmic-stained renal cells. Five different areas (a total number
of 500 cells) of each section were selected, and the number of stained cells in each region
was calculated. The cells were scored as negative (if less than 5% positivity) or positive (if
more than 5% of cells showed positivity) and intensity of staining as negative, moderate, or
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strong. The percentage of positive cells was categorized as follows: 0 (negative), 1 (10–15%),
2 (16–30%), 3 (31–50%), and 4 (more than 50%).

4.14. Statistical Analysis

All the data obtained from these results were evaluated statistically as means± stan-
dard error of mean (SEM). One-way analysis of variance (ANOVA) was used for calcula-
tions in multiple groups. A p < 0.05 was measured as statistically significant.

5. Conclusions

The current study was carried out to measure the anti-diabetic potential of curcumin
through physiological, biochemical, and histopathological studies. In the physiological and
biochemical studies, it was found that curcumin decreases glucose, creatinine, urea, and
inflammatory markers and increases antioxidant enzyme levels. In addition, the histopatho-
logical findings revealed that curcumin plays a significant role in the maintenance of renal
tissue architecture through the reduction in all pathological changes.

This study showed that curcumin has a vital role in the regulation of the expression
pattern of the IL-6 protein and fibrosis. Based on biochemical and histopathological findings,
this study delivers a scientific suggestion that curcumin could be a suitable remedy in
the management of diabetes mellitus. The novelty of the current study is that curcumin
showed anti-fibrotic potential by reducing collagen fiber deposition. However, more
detailed studies based on molecular mechanisms are needed to know the mechanism of
action of this compound in diabetes prevention and management.
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