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Abstract: The development of liver fibrosis is a result of chronic liver injuries may progress to liver
cirrhosis and liver cancer. In recent years, liver fibrosis has become a major global problem, and the
incidence rate and mortality are increasing year by year. However, there are currently no approved
treatments. Research on anti-liver-fibrosis drugs is a top priority. Dietary polyphenols, such as plant
secondary metabolites, have remarkable abilities to reduce lipid metabolism, insulin resistance and
inflammation, and are attracting more and more attention as potential drugs for the treatment of liver
diseases. Gradually, dietary polyphenols are becoming the focus for providing an improvement in
the treatment of liver fibrosis. The impact of dietary polyphenols on the composition of intestinal
microbiota and the subsequent production of intestinal microbial metabolites has been observed
to indirectly modulate signaling pathways in the liver, thereby exerting regulatory effects on liver
disease. In conclusion, there is evidence that dietary polyphenols can be therapeutically useful in
preventing and treating liver fibrosis, and we highlight new perspectives and key questions for future
drug development.

Keywords: liver fibrosis; signaling pathways; dietary polyphenols; HSC; intestinal microbes

1. Introduction

The global burdens of chronic liver disease, cirrhosis, and end-stage liver disease are
increasing. Chronic liver disease is the eleventh leading cause of death and fourteenth
leading cause of morbidity worldwide [1]. Liver fibrosis ranks eleventh in terms of mortality,
and kills 100 million people annually [2]. Chronic liver injury is the principal manifestation
of liver fibrosis [3] which is an abnormal wound repair reaction that is characterized by
extracellular matrix (ECM) overdeposition and the abnormal hyperplasia of the connective
tissue. In the absence of effective treatment, liver fibrosis can develop into cirrhosis or
hepatocellular cancer [4]. Liver transplantation is currently the most effective treatment for
cirrhosis; however, its clinical application is limited owing to the lack of donor material,
limited expert technical support, and high associated costs [5]. Liver fibrosis has become
a global epidemic affecting a wide range of people, and there is currently no specific and
effective treatment [3,6]. Therefore, there is an urgent need to understand the underlying
mechanisms and develop promising therapeutic strategies to treat liver fibrosis.

Hepatic stellate cells (HSCs) are a central driver of liver fibrosis in experimental and
human liver injury, and they are the key cells responsible for ECM production [7–9]. After
activation, HSCs transdifferentiate from vitamin A-storing cells to myofibroblasts, which
are proliferative, contractile, inflammatory, and chemotactic cells that are characterized by
their ability to facilitate ECM production following liver injury and in vitro [7,10,11]. HSCs
have a distinct transcriptome profile that differentiates them from other types of resident
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liver cells. The cell-surface protein platelet-derived growth factor (PDGF) receptor-β, en-
zyme lecithin-retinol acyltransferase, the cytoskeletal proteins desmin and glial fibrillary
acidic protein, and transcription factor heart- and neural crest derivatives-expressed protein
2 are among these markers [5]. The ECM is produced by myofibroblasts, smooth muscle
cells, and pericytes, with myofibroblasts being the primary producers [12]. Fibrogenesis is
expressed and there is an imbalance between the deposition and degradation of proteins
in the ECM carried out by tissue inhibitors of metalloproteases (TIMPs) and degrading
enzymes called matrix metalloproteinases (MMPs). This imbalance exacerbates the exces-
sive accumulation of changes in the protein components of the ECM, including fibrillar
collagen types I and III, α-smooth muscle actin (α-SMA), non-muscle myosin, fibronectin,
and vimentin, which ultimately leads to the formation of scar tissue [13]. TIMP-1 and
transforming growth factor (TGF-β) also promote anti-apoptotic signals and the survival
of HSCs [14]. MMP-9 is capable of degrading collagen and gelatin in the ECM [15,16] and
is associated with the breakdown of collagen and other matrix proteins in the cytoplasm of
the activated HSCs. During liver damage, the continuous accumulation of ECM and an
increase in collagen types I and III leads to the deposition of scars and liver fibrosis [17,18].
Oxidative stress is another pro-fibrogenic factor involved in the progression of liver fibrosis
and is mainly attributed to the production of a large number of reactive oxygen species
(ROS) and decreased antioxidant capacity [19,20]. Currently, there are three treatments
for the regression of liver fibrosis by clearance of HSCs: apoptosis, senescence, and rever-
sal [14]. During liver fibrosis, some signaling pathways and elements of these pathways
are overactivated or inhibited, such as TGF-β/Smad and AMPK/mTOR. However, liver
fibrosis is a dynamic process, and advanced fibrosis is reversible when pathogens are
removed [21,22]. Additionally, gut microbes and their metabolites are thought to play
significant roles in the development of liver fibrosis which should be considered when
trying to reverse liver fibrosis.

Surprisingly, medicinal and food homologs contain a wide range of active substances
and nutrients [23]. Some phenols are associated with nutritional and health claims in
medicine and food, highlighting this class of ubiquitous, varied, yet unknown compounds.
However, health professionals, food technologists, analysts, and consumers do not pay suf-
ficient attention to the phenols in food [24]. These molecules can be divided into phenolic
acids, flavonoids, tannins, astragals, and lignans according to the number of phenolic rings
and their binding mechanisms [25]. Their classification by molecular mass divides them
into polyphenolic monomers, which include both phenolic acid compounds and flavonoids,
and tannins formed by the polymerization of monomers [26]. Phenolic acids are divided
into two subgroups that have either benzoic acid or cinnamic acid as the parent core, with at
least one aromatic ring in its structure and at least one hydrogen substituted by a hydroxyl
group on the ring [25]. The subclasses include flavanols, flavanones, flavones, isoflavones,
flavonols, and anthocyanidins [27]. Tannins are mainly divided into condensed tannin
and hydrolysable tannin, according to their chemical structure. Condensed tannins are
oligomers or polymers formed by the polymerization of catechin, epicatechin, gallocatechin,
and epigallocatechin in specific ratios; whereas hydrolysed tannins are composed of gallic
acid or sugar-containing acids and their derivatives, typified by tannic acid [28]. Lignans
are polymers of natural polyphenols that are mainly used in industrial production, and their
pharmacological effects have not been extensively studied. Figure 1 shows the classification
of dietary polyphenols. Polyphenols are typified by o-triphenols and catechols. They are
powerful antioxidants and free radical scavengers owing to their easily oxidized o-phenolic
hydroxyl groups [29] and are associated with a reduced risk of cancer, insulin resistance,
cardiovascular diseases, chronic inflammation, and degenerative diseases [30–32]. They are
receiving increasing attention for the development of potential drugs for the treatment of
liver diseases, and many dietary polyphenols have been found to protect against liver fibro-
sis by inhibiting HSC activity through different signaling pathways. These include apigenin,
epigallocatechin-3-gallate (EGCG), quercetin, icaritin, curcumin, and resveratrol [31]. In
addition, dietary polyphenols help maintain the homeostasis of human intestinal microor-
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ganisms, and the metabolites in microorganisms can regulate the liver and liver fibrosis
through signaling pathways. Here, we review previously publications to demonstrate
how dietary polyphenols inhibit liver fibrosis through different signaling pathways, gut
microbiota, and metabolites. Nanotechnology is also reviewed for its role in improving
the poor bioavailability of polyphenol compounds. We discuss current research limitations
and propose future directions which would encompass the use of polyphenols to alleviate
liver fibrosis and prevent its progression to more serious conditions.
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2. Dietary Polyphenols Affect Hepatic Fibrosis through Multiple Signaling Pathways

Dietary polyphenols are used in the treatment of liver fibrosis and act through multiple
pathways, such as TGF-β/Smad, AMPK/mTOR, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR,
hedgehog pathways and liver fibrosis-related factors. Table 1 lists those dietary polyphenols
and their derivatives that have been shown to inhibit HSC activation.

Table 1. Dietary polyphenols function as active substances in anti-fibrosis treatments. ↑ increase, ↓
decrease.

Polyphenols/Polyphenol-
Rich Plants

Categories/
Identified

Polyphenols

Examples of
Dietary
Sources

Experimental
Models Dosage Duration Effects References

Forsythiaside A Phenolic acid Forsythiae
Fructus

CCl4-induced
mouse 15, 30, 60 mg/kg 4 weeks

claudin-1↑,
ZO-1↑,

inclusion↑, LPS↓,
MIP-1↓

[22]

Callistephus
Chinensis flower Polyphenol Rat model

(CCl4-induced) 50, 100 mg/L 6 weeks

TGF-β1↓,
Smad2↓,
P-ERK1↓,
P-NK1↓

[26]

Curcumin Polyphenol Roots of curcumin
spp.

Rat model
(CCl4-induced) 100 mg/kg 4 weeks JNK↓, Smad3↓,

Smad7↑ [33]

Primary rat HSCs 20 µM 24 h
α-SMA↓,
Col1α1↓

PPAR↑, AMPK↑
[34]

HSCs 25 µM 24 h
TLRs↓, MyD88↓,

NF-κB↓,
TNF-α↓, IL-1β↓

[35]

Chlorogenic acid Phenolic acids

Coffee beans,
honeysuckle,

tobacco leaves
and kiwi

hepatic stellate LX2
cell line 20, 40, 80 µg/mL 24 h

miR-21↓,
α-SMA↓,
TIMP-1↓,
Smad7↑,
MMP-9↑

[36]

Rat model
(CCl4-induced) 15, 30, 60 mg/kg 4 weeks

miR-21↓,
α-SMA↓,
TIMP-1↓,
TGF-β1↓
Smad7↑,
MMP-9↑

Rat model
(CCl4-induced) 60 mg/kg 8 weeks

TLR4↓, MyD88↓,
NF-κB↓,
p-IκBα↓

Bambi↑, IκB α↑
[37]

Silymarin Flavonoid Silybum
marianum

CCl4- or
BDL-induced

fibrosis

TGF-β↓,
α-SMA↓,

collagen I↓
[38]

LPS/D-GalN
induced liver injury

(Nrf2)/antioxidant
responsive

element (ARE)
pathway↑

caspase 9/3
related

apoptosis
pathway↓

[39]

Chrysin Flavonoids

Propolis, blue
passion flower

(Passiflora
caerulea), and

honey

Rat model
(CCl4-induced)

50, 100 and
200 mg/kg 2 weeks

α-SMA↓,
TGF-β1↓, Smad

2/3↓
[40]

Luteolin Flavonoids

Pepper,
chrysanthemum,

Lonicerae
japonicae flos

rat models
CCl4, dimethylni-
trosamine (DMN)

and bile duct
ligation (BDL)

p-AKT↓,
p-Smad2↓

[41]

Primary HSCs and
HSC-T6 cells

TGF-β1
(2 ng/mL) 2 h

a-SMA↓,
collagen I/III↓,

AKT↓,
Smad2/3↓,
TGF-β1↓
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Table 1. Cont.

Polyphenols/Polyphenol-
Rich Plants

Categories/
Identified

Polyphenols

Examples of
Dietary
Sources

Experimental
Models Dosage Duration Effects References

Baicalin Flavonoids
Roots of

Scutellaria
baicalensis

BDL-induced 67.5–270 µM PPAR-γ↓, Wnt↓

[42,43]

25–100 mg/kg

SCFA↑,
regulating FXR

and TGR5
receptor↑,

PI3K↓, AKT↓,
mTOR↓, IL-17↓

Ferulic acid Phenolic acid
Tomatoes,

carrots, oranges,
and corn

RAW 264.7 cells
and LX-2 cells

50, 100, 200 µM
And

12.5, 25, 50 µM
24 h

Acta2↓, Col1a1↓,
p-Smad↓,

p-Smad3↓,
p-AMPK↑

[44]

(mice)
CCl4-induced

25, 50 and
100 mg/kg

ALT↓, AST↓,
TGF-1β↓,

Acta2↓, NOX2↓,
SOD↑, AMPK↑,

ERK1/2↑

lipopolysaccharide
(LPS)-induced

cellular ALI models
6, 12 mg/kg 6 day

GSK-3β↑, CREB
(Ser133)↑, IL-10↑,

p-NF-κB↓,
IL-1β↓, IL-6↓,

IL-12↓, TNF-α↓

[45]

Hesperetin
derivative-16 (HD-16) Flavonoids Pericarp of citrus

LX-2 cells (human
immortalized

HSCs)
4, 8, and 16 µM

α-SMA↓,
Col1α1↓,
Col3α1↓,
TIMP-1↓,

TNF-α↓, IL-1β↓,
IL-10↑, IL-13↑,

SIRT3↑ [46]

CCl4-induced
mouse

25 mg/kg,
50 mg/kg,
100 mg/kg

ALT↓, AST↓,
ALP↓, α-SMA↓,

Col1α1↓,
TNF-α↓, IL-1β↓,

IL-10↑, IL-13↑,
SIRT3↑

Salvianolic acid A Phenolic acid Salvia
miltiorrhiza CCl4-induced rats 5, 15 mg/kg 6 weeks

p-AKT↓,
p-mTOR↓,

p-p70S6K1↓,
caspase 3↓, Bax↓,

α-SMA↓,
PDGF-β↓,
Desmin↓,

Vimentin↓,
TGF-β1↓, Bcl-2↑

[47]

Pinostilbene hydrate Phenolic acid Primary HSCs 20 µM,
80 µM 48 h

Wnt/β-catenin↓,
WIF1↑, GSK3β↑,

APCP↑,
β-catenin↑

[48]

Hesperetin
derivative-7 Flavonoids

CCl4-induced
mouse

50, 100,
200 mg/kg 4 weeks

SMA↓, collagen I↓,
β-catenin↓,

c-myc↓,
cyclind1↓,

[49]

HSC-T6 cell line 12.5, 25, 50, 100,
200 µM 48 h

p-smad3↓,
smad4↓
α-SMA↓,
β-catenin↓,
cyclind1↓,

c-myc↓

Morin Flavonoids Mulberry leaves

diethylnitrosamine
induced rat model

of liver fibrosis
50 mg/kg 6 weeks

GSK-3β↓,
β-catenin↓,
cyclin D1↓,

c-myc↓
[35,50]CCl4-induced

mouse 50 mg/kg 8 weeks Nrf2↑, NQO1↑,
HO-1↑

LX-2 cells
(culture-activated

human hepatic
stellate cells)

50 µM 24, 48 h

GFAP↓,
Wnt5a/b↓,

Wnt3↓, GSK-3β↓,
β-catenin↓
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Table 1. Cont.

Polyphenols/Polyphenol-
Rich Plants

Categories/
Identified

Polyphenols

Examples of
Dietary
Sources

Experimental
Models Dosage Duration Effects References

Quercetin Flavonoid Fruits and
vegetables

Thioacetamide
induced 50 mg/kg 4 weeks

shh↓, Ihh↓,
Ptch-1↓, Smo↓,
Hhip↓, Gli-3↓,

TNF-α↓
[51]

Salvianolic acid A Salvia
miltiorrhiza

CCl4-induced 20, 40 mg/kg 6 weeks

NF-κB↓ (in the
nucleus),

p-NF-κBp65↓,
IL-1β↓, IL-6↓,

TNF-α↓,
TGF-β↓, Cox-2↓,

p-JAK1↓,
p-STAT3↓

[52]

5, 15 mg/kg 6 weeks

p-AKT↓,
p-mTOR↓,

p-p70S6K1↓,
caspase 3↓, Bax↓,

α-SMA↓,
PDGF-β↓,
desmin↓,

vimentin↓,
TGF-β1↓, Bcl-2↑

[53]

Isochlorogenic acid A Phenolic acid

Coffee beans,
honeysuckle,

tobacco leaves
and kiwi

CCl4-induced 10, 20, 40 mg/kg 8 weeks

(NF-κB) p65↓,
IκBα↓,

HMGB1↓, TLR4↓,
NF-κB↓

[54]

Xanthohumol Flavonoids Hop derived
primary human

hepatocytes (PHH)
and HSC

5 and
10 mM 3 day

collagen type I↓,
α-SMA↓,

MCP-1↓, IL-8↓
[55]

Naringin Flavonoids Grapefruit and
oranges

thioacetamide
(TAA)-induced 40 mg/kg 6 weeks

ROS↓, p-Akt↓,
IL-6↓, caspase-3↓,

IL-10↑
[56]

Curcumin/Rutin Flavonoids

Roots of
curcumin
spp/Flos
Sophorae

Immaturus

Hepatic stellate
cells

PI3K-Class I↓,
Akt↓, p-mTOR↓,
TLRs↓, MyD88↓,

NF-κB↓,
TNF-α↓, IL-1β↓

[57,58]

Procyanidin B2 Flavonoid Proanthocyanidin

CCl4-induced
mouse

50, 100 and
150 mg/kg 4 weeks

VEGF↓, HIF-1α↓,
α-SMA↓, Col-1↓,
TGF-β1↓, CD31↓,

Smo↓, GLI1↓ [59]

human hepatic
stellate cell (HSC)

line (LX2 cells)

60, 80 and
100 µM 24 h

VEGF↓, HIF-1α↓,
α-SMA↓, Col-1↓,

TGF-β1↓

Hesperetin Flavanone Pericarp of citrus

CCl4-induced
mouse

25, 50,
100 mg/kg 6 weeks

Ptch1↑,
Col1α1↓,
α-SMA↓,

ALT↓, AST↓ [60]

HSC-T6 cells 2.50 µM Ptch1↑, c-Myc↓,
CyclinD1↓

Salvianolic acid B Phenolic acid Salvia
miltiorrhiza

CCl4-induced
mouse 60 mg/kg 6 weeks

ALB↓, ALT↓,
AST↓,

Shh↓, Ptch1↓,
Smo ↓,

Gli1↓, TGF-β1↓ [61]

CCl4 100 mg/kg 8 weeks PTCH1↑,
Smo↓, Gli2↓

Phillygenin Phenolic acid Weeping
forsythia capsule

CCl4-induced
mouse 10, 20, 40 mg/kg 4 weeks LPS↓, IL-1 β↓,

IL-6↓, TNF- α↓ [62]

2.1. Dietary Polyphenols Reverse Hepatic Fibrosis via TGF-β/Smad Pathway

TGF-β is the most fibrogenic cytokine in the liver [63,64] and contains three subtypes:
TGF-β1, TGF-β2, and TGF-β3 [65]. Under the stimulation of TGF-β, HSCs start to differ-
entiate from a quiescent state into proliferative and fibrotic myofibroblasts that express
and secrete α-SMA and collagen types I (CoI-l), CoI-III, and CoI-IV, leading to liver fibro-
sis [7]. TGF-β can promote the synthesis of ECM proteins, such as proteoglycans, elastin,
adhesins, and collagen glycans; reduce the synthesis of degrading proteases; prevent the
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decomposition of newly synthesized ECM; and destroy the balance between ECM syn-
thesis and degradation [66]. α-SMA invasion is one of the critical hallmarks which can
demonstrate HSC activation [67]. Most myofibroblasts express α-SMA and it is postulated
that TGF-β1 increases their expression of α-SMA and CoI-l. Blocking or reducing the
TGF-β pathway can inhibit or even reverse fibrosis [68], and the direct knockout of TGF-β
expression using siRNA has been shown to have anti-fibrotic effects in rat models [69]. In
liver fibrosis, TGF-β promotes HSC activation through the TGF-β/Smad signaling path-
way [70], and activated receptors are also influenced by Smad-mediated canonical TGF-β
signaling mechanisms. Non-Smad signaling pathways, including the mitogen-activated
protein kinase (MAPK), extracellular signal-regulated kinases (ERks), c-Jun amino termi-
nal kinase (JNK), p38MAPK, IαB kinase (IKK), phosphatidylinositol-3 kinase (PI3K) and
Rho family GTPases, promote the nuclear localization of transcription factors through
effects on ERK phosphorylation and Smad2/3 binding to Smad4 [71–73]. In the canonical
signaling pathway, the activation of HSCs in vitro induces the nuclear translocation of
Smad2/3 [71,74]. Activated TGF-β first activates type II receptors on the surfaces of cells,
which subsequently recruit TGF-β type I receptor (TβRI), causing the two receptors to form
a heterotetramer complex. Type II receptor kinase phosphorylates type I receptors in the
GS region, which is upstream of the kinase domain. The receptors then phosphorylate
Smad2 and Smad3 to form heterooligomers with Smad4. They are transported from the
cytoplasm to the nucleus and regulate miR21 expression in the nucleus. Smad7 acts as an
inhibitor, which is also a target of miR21, prevents liver fibrosis by inhibiting Smad2/3. By
increasing miR-21 levels, Smad7 is inhibited, which further activates Smad proteins and
increases collagen synthesis [71,75–79]. Intracellular Smad7 binds to TβRI and prevents
Smad3 phosphorylation and the formation of Smad3-Smad4 heterodimeric complexes,
thereby blocking the pro-fibrotic activity in the canonical TGF-β pathway. Additionally,
Smad7 binds to DNA and blocks the binding of Smad3-Smad4 heterodimer complexes to
DNA in the nucleus [33] (Figure 2).

Dietary polyphenols, such as chlorogenic acid (5-O-cafeoylquinic acid; CGA), are
closely associated with the TGF-β signaling pathway [72]. CGA is formed by the condensa-
tion of caffeic and quinic acids. It is one of the most abundant phenolic acids in nature and
is widely found in fruits, plants, and vegetables such as coffee beans, honeysuckles, tobacco
leaves, and kiwi [80]. CGA inhibits the expression of miR-21, α-SMA, and TIMP-1. CGA
upregulates Smad7 expression, downregulates p-Smad2, p-Smad3, and p-Smad2/3 levels
in vitro and in vivo, and has been shown to inhibit CCl4-induced liver fibrosis in Sprague-
Dawley rats [36]. Silymarin is one of the most effective hepatoprotective compounds found
in Silybum marianum (Milk thistle), belonging to the Asteraceae family. Silymarin is a mixture
of seven flavonoids, which are called silybin A, silybin B, isosilybin A and isosilybin B,
silydianin, silychristin and taxifolin [81,82]. They can reverse hepatic fibrosis in vivo by
downregulating TGF-β and inhibiting the secretion of α-SMA and CoI-l [38]. The data ag-
gregated from this study clearly demonstrate that the nanoparticle formulation of silymarin
is more effective than the pure silymarin formulation, including controlled release, minimal
cytotoxicity, lower dose, targeted entry into hepatic stellate cells for the treatment of hepatic
fibrosis [82–84]. Curcumin, a polyphenol present in the roots of curcumin spp., reduces the
phosphorylation levels of JNK and Smad3 and can reverse Smad7 levels [33]. In addition,
curcumin remarkably reduced lipid levels, mitigated inflammation and oxidative stress,
and improved liver function and hepatic steatosis in patients with non-alcoholic fatty liver
disease(NAFLD). Nanocurcumin capsules are a novel drug delivery system that should
be studied and applied to boost the clinical efficacy of curcumin [85]. The distribution of
free-curcumin solution is widespread throughout the body, and it accumulates in much
lower amounts in the liver compared to curcumin-modified nanostructured lipid carriers.
Nano-formulation can overcome the problem of curcumin by maximizing its solubility and
bioavailability, increasing its membrane permeability, and improving its pharmacokinetics,
pharmacodynamics, and biodistribution, thereby improving the effectiveness of curcumin
as a drug [86–88]. Polyphenols from Callistephus chinensis flowers are composed of various
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flavonoids, which are currently mainly concentrated in flavones (e.g., apigenin, celery
glucoside, luteolin, kaempferol-7-O-β-D-glucopyranoside) and flavonols (e.g., kaempferol,
quercetin, hyperoside). By inhibiting related proteins in the pathway, downstream tar-
get proteins p-ERK1, p-ERK2 and upstream proteins phosphorylation levels of Smad2,
p-JNK1, p-JNK2 can be inhibited [64]. In addition, dietary polyphenols such as flavones
(chrysin), flavones (luteolin) block TGF-β1-induced activation of HSCs and reverses fibrosis
by inhibiting Smad2/3 signaling [40,41]. Luteolin self-nano-emulsifying drug-delivery
systems can improve bioflavonoid luteolin dissolution rate and therapeutic effect, as well as
protect the liver significantly [89]. Chrysin is a dietary phytochemical that mainly exists in
many plant extracts, including propolis, blue passion flower (Passiflora caerulea), and honey.
Luteolin is abundantly present in many plant extracts, including pepper, chrysanthemum,
Lonicerae japonicae flos, [90,91]. Therefore, a large collection of dietary polyphenols has been
shown to interact with the TGF-β/Smad pathway both as monomers and complexes to
treat liver fibrosis.
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2.2. Dietary Polyphenols Activate AMPK/mTOR-Mediated Autophagic Pathway to Alleviate
Liver Fibrosis

Adenosine monophosphate (AMP)-activated protein kinase (AMPK), which senses
energy status and controls energy consumption and storage, is an important metabolic
regulator [42]. A recent study demonstrated that the AMPK pathway is closely related to
liver fibrosis; AMPK can robustly control the proliferation of HSCs, and the lack of AMPK
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can accelerate the development of liver fibrosis [92]. Studies have shown that adiponectin
agonist ADP355, as an agonist of AMPK, alleviates liver fibrosis by promoting AMPK
phosphorylation [93]. AMP or adenosine diphosphate (ADP) binding facilitates the phos-
phorylation of AMPK and increases its antifibrotic activity [94]. The secretion of monocyte
chemoattractant protein (MCP)-1 increases the recruitment of inflammatory cells to the site
of tissue injury and regulates adhesion molecules and pro-inflammatory cytokines [95].
AMPK can inhibit pro-inflammatory signaling pathways, reduce MCP-1 expression and
inhibit NOD-, LRR-, and pyrin domain-containing (3) inflammasome activation to prevent
liver inflammation [96]. An autophagic process involves the degradation, recovery, and me-
tabolization of organelles and macromolecules. AMPK is activated in response to metabolic
stress, and mTOR is inactivated in response to UNC-51 like kinase protein-induced acti-
vation of liver mitochondrial phagocytosis [97]. The activation of AMPKα1 upregulates
cyclin A2 transcription and promotes hepatocyte proliferation, finally restoring liver mass
after partial hepatectomy. Once the activation of AMPK is reduced, pro-apoptotic caspase-6
cleavage induces the release of cytochrome c, which consequently supports the activation
of the executioner caspases and apoptosis in a feed-forward mechanism, leading to liver
injury and liver fibrosis [44,98]. Treatment with AMPK activator and caspase-6 inhibitor
for two weeks significantly reduced the death of hepatocytes and liver fibrosis. Caspases
are related aspartic proteinases that regulate inflammation and cell death [42]. In addi-
tion, blocking mTOR and phosphorylating AMPK ameliorates liver fibrosis [46]. A role for
AMPK in liver injury treatment may be to maintain energy balance by inhibiting mTOR [99].
AMPK-mTOR is a classic upstream signal-regulation pathway of autophagy. Inhibition of
the AMPK signaling pathway leads to a decreased autophagy level. Autophagy is charac-
terized by microtubule-associated protein light chain 3 (LC3) and Beclin1 [100]. Apoptosis
and autophagy can be regulated by AMPK, which is located upstream of Beclin1 and B-cell
lymphoma-2 (Bcl-2). It has been shown that destroying the Beclin1/Bcl-2 complex increases
autophagy in mammals [47]. Although autophagy acts as a double-edged sword in liver
fibrosis [99], the role it plays in liver fibrosis remains controversial and needs further study.

The MAPK signaling pathway is closely related to dietary polyphenols [101]. Ferulic
acid (FA) is one of the derivatives of cinnamic acid. FA accounts for up to 90% of the total
phenolic acids of some fruits and vegetables, including tomatoes, carrots, oranges, and
corn [102]. FA has a range of biological activities, including antioxidant, anti-inflammatory,
and immune-enhancing properties. FA inhibits hepatic oxidative stress, macrophage activa-
tion and HSC activation of hepatocytes via AMPK phosphorylation. The time-dependent
effects of FA on P50 and P65 transport from the nucleus to the cytoplasm results in the
inhibition of inflammation and the alleviation of fibrosis [44]. The liposomal formulation
of ferulic acid overcomes its hydrophobicity significantly and can effectively reach the
liver [103]. Hesperetin (flavanones) is mainly distributed in the pericarp of citrus. By
activating AMPK/Sirtuins (SIRT3) signaling pathway, hesperetin derivative-16 (HD-16)
can increase SIRT3 expression in liver fibrosis [36]. Studies have shown that SIRT3 is
generally located in mitochondria and is the downstream signaling target of AMPK [104].
The overexpression of SIRT3 protects liver function and alleviates liver fibrosis. There is
evidence that SIRT3 plays a protective role in liver fibrosis by regulating mitophagy [105].
However, SIRT3 knockout impairs the antifibrotic effects of HD-16 by inhibiting the expres-
sion of the α-SMA, Col1α1, Col3α1, and TIMP-1 genes [46]. The treatment of liver fibrosis
with curcumin increases p-AMPK levels in a dose-dependent manner and reduces HSC
activity [34]. However, it has been shown that combined administration of taurine, EGCG
and trihydroxyflavone (genistein) can reduce p-AMPK protein expression and increase
p-mTOR protein expression and anti-liver fibrosis. The expression of TGF-β1 in hepatic
fibrosis decreased after concurrent use of AMPK inhibitor. The mRNA expressions of LC3,
Beclin1 and mTOR all decreased; EGCG (flavanols) and genistein (isoflavones) are present
in tea and soybean as characteristic components [27,106]. However, research on the role
of polyphenols in alleviating fibrosis through the AMPK signaling pathway is poor and
controversial at present, and further studies are needed.
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2.3. Dietary Polyphenols Reverse Wnt/β-Catenin Pathway in Hepatic Fibrosis

An inhibition of the Wnt/catenin signal (canonical) may limit the activation of HSCs
by maintaining their static state [49]. It is reported that Wnt/β-catenin activation of the
signal can promote liver fibrosis [107]. During liver fibrosis, the Wnt signaling pathway is
activated, and some Wnt signaling pathway elements are upregulated. Silencing β-catenin
inhibits CoI-l/III synthesis in HSCs, which is the core component of the Wnt/β-catenin
pathway. Activated HSCs induce Wnt ligands (Wnt3a, Wnt4, Wnt5a, and Wnt10b) and
Wnt receptors (Frizzled1 (Fz1), Frizzled2 (Fz2). In addition, canonical (β-catenin) and
non-canonical (Wnt4 and Wnt5a) Wnt genes were increased in activated HSCs [11]. A
destructive complex of Axin, adenopolyposis coli (APC), and glycogen synthase kinase
3 (GSK-3) forms under unstimulated conditions. Cytoplasmic β-catenin levels are kept
lower by phosphorylation of GSK-3. It is ubiquitinated and targets the proteasome for
degradation when it becomes phosphorylated. Axin, APC, and GSK-3 complexes are
inhibited when Wnt binds to the receptor complex, blocking the phosphorylation of GSK-3
to β-catenin. Low-levels of phosphorylated β-catenin accumulate in the cytoplasm and are
transferred to the nucleus, where they regulate the expression of target genes by cooperating
with the T-cell-specific transcription factor/lymphoid enhancer binding factor 1 (TCF/LEF)
family of transcription factors [49,108]. TCF/LEF is a type of transcription factor with a
dual regulatory role in the nucleus, and when combined with β-catenin, it promotes the
transcription of downstream target genes and hepatocyte apoptosis [109]. The activation of
target genes is triggered by the Wnt proteins binding to the Frizzled family of receptors,
illustrated in Figure 2 [35].

Dietary polyphenols such as pinostilbene hydrate (3,4’-Dihydroxy-5-methoxy-trans-
stilbene hydrate, PSH) are available; it is a non-flavonoid natural methylated derivative of
resveratrol. There is some evidence that PSH can significantly reduce nuclear β-catenin, β-
catenin nuclear translocation, and TCF activity. PSH decreased Col1α1 and the expression
of α-SMA was blocked when WIF1 (as a Wnt signal inhibitor) was silenced. Complexes
consisting of APC, AXIN1 and GSK3β are known to downregulate β-catenin stability
and induce its degradation. PSH resulted in the inactivation of the Wnt/β-catenin signal,
decreased TCF activity and β-catenin nuclear migration, and increased WIF1, GSK3β, APC
and P-β-catenin levels [48]. Hesperetin deactivative-7 decreased β-catenin and down-
stream proteins, such as cyclin1 and C-myc, which reduced liver fibrosis [49]. A flavonoid
compound called baicalin is mainly found in the dry roots of Scutellaria baicalensis [110].
Baicalin reduces BDL-induced HSC activity by inhibiting Peroxisome proliferator-activated
receptor-γ(PPAR-γ) through the Wnt pathway, thereby alleviating liver fibrosis [111]. Com-
pared with baicalin alone, nanoliposomes loaded with baicalin had a greater effect on
mice induced with NAFLD from a choline-deficient diet [112]. The typical Wnt/β-catenin
signaling pathway is a complex, controllable molecular mechanism that regulates key
physiological and pathological processes such as cell proliferation, differentiation, and
polarity in multicellular organisms. Although the Wnt/β-catenin pathway is activated
during HSC activation, its role in fiber formation remains controversial [113]. Hence, it is
necessary to conduct further studies in order to clarify the relationship between dietary
phenolics, the Wnt/β-catenin pathway and liver fibrosis.

2.4. Polyphenols Inhibit the NF-κB Pathway in Liver Fibrosis

It is worth noting that nuclear factor kappa-B (NF-κB) activity is crucial to the expres-
sion of anti-apoptotic proteins [114]. The activation of NF-κB accelerates liver injury and
inflammation, followed by massive hepatocyte death and the inflammatory activation of
HSCs leading to liver fibrosis [51]. The NF-κB family of transcription activators includes
RelA, RelB, and cRel, and two family members (p50 and p52) forming heterodimers with
transcriptional active proteins. Additionally, these simulations predicted that increased
RelA activity might decrease cRel activity by competing for p50 [115,116]. These transcrip-
tion factors may regulate inflammation and apoptosis primarily through the NF-κB/IκBα
signaling pathway [117]. The transcription factor of NF-κB binds to the nuclear factor κB
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(IκB) protein inhibitor during the resting state condition, keeping the transcription factor
localized in the cytoplasm [118–120]. When hepatocytes are stimulated, this prompts IKK
activation and phosphorylation, which later promotes IκBα phosphorylation, resulting in
the dissociation of the IκBα-NF-κB complex [119]. IKK activation, IκBα phosphorylation
and subsequent rapid degradation by the targeting proteasome, resulting in NF-κB p65
subunit activation and translocation from the cytoplasm to the nucleus, and thus IκBα
is used to reflect NF-κB translocation [121,122]. NF-κB translocates to the nucleus upon
activation and stimulates pro-inflammatory genes such as interleukin-6 (IL-6), Tumor necrosis
factor (TNF-α) and Inductible Nitric Oxide Synthase (iNOS) [50]. This activation occurs mainly
through phosphorylation and degradation of the repressor IκBα, releasing the cytoplasmic
dimer NF-κB p65/p50. The cytoplasmic dimer binds to DNA and stimulates the transcrip-
tion of the target gene in the nucleus [123]. In addition, there is a crucial role for GSK-3 in
the regulation of proinflammatory and anti-inflammatory factors, mainly affecting the NF-
κB receptor [99]. GSK3 signaling is critical for the production of proinflammatory cytokines
such as interleukin (IL-1β), IL-6, interleukin-12 (IL-12) and TNF-α; the anti-inflammatory
cytokine interleukin-10 (IL-10) in innate immune cells is differentially regulated [99]. It is
intriguing to speculate that NF-κB-mediated anti-apoptotic responses to TNF-α depend on
GSK-3β function [45,124], as illustrated in Figure 2.

Consumption of dietary polyphenols suppresses the pro-inflammatory process that
develops in liver diseases by downregulating the NF-κB pathway [125]. FA has numerous
beneficial biological and pharmacological effects. FA targeting accelerates GSK-3β to
repress the binding ratio of p-NF-κB to CSK-binding protein (CBP) and CREB (Ser133)
to CBP, thereby increasing the anti-inflammatory factor IL-10 and decreasing the pro-
inflammatory factors IL-1β, IL-6, IL-12 and TNF-α [45]. The salvianolic acid A (sal-A)
plant is mostly found in Salvia miltiorrhiza, it has been shown that sal-A can decrease
or increase the levels of NF-κB in the nucleus and cytoplasm, respectively; it inhibited
both NF-κB and IκBα dimer disaggregation in the cytoplasm, thereby alleviating NF-κB
translocation into the nucleus [52]. An isochlorogenic acid is a polyphenol made up of
two molecules of caffeic acid and one molecule of quinic acid [126]. Isochlorogenic acid
A significantly decreased NF-κB p65 expression in the nucleus and increased NF-κB p65
expression in the cytoplasm, reducing the phosphorylation of IκBα and activation of NF-
κB [54]. Xanthohumol is a hop-derived chalcone that has been widely examined for its
health-protecting properties [127]. Xanthohumol inhibits MCP-1 and interleukin-8 (IL-8)
by decreasing NF-κB activity. Fibrosis in nonalcoholic steatohepatitis is associated with an
increase in MCP-1 and IL-8 [55]. Therefore, studies have shown that dietary polyphenols
play an important role in inhibiting the activation of transcription factor NF-κB and HSC.

2.5. PI3K/AKT/mTOR Pathway Effects of Dietary Polyphenols

The PI3K/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway
plays an indelible role in cell activation, proliferation, differentiation, and survival [10].
Several growth factors, such as PDGF, TGF-β, epidermal growth factor (EGF), vascular
endothelial growth factor (VEGF), and basic fibroblast growth factor (bFGF), are implicated
in the cellular process which activates PI3K and AKT [10,128]. PDGF is the most powerful
mitogen of HSC, which can activate the PI3K/AKT/70-kDa ribosome S6 kinase (p70S6K)
signaling pathway, and regulate HSC proliferation and migration [41]. PI3K/AKT/mTOR
signaling facilitates the proliferation, activation and synthesis of ECM by HSCs [129]. In the
fibrosis model experiment, the phosphorylation of AKT was significantly increased [41,56].
As a PI3K inhibitor, HS-173 relieves activated HSCs associated with liver fibrosis by block-
ing the PI3K/AKT pathway [129–131]. PI3K is a heterodimeric protein consisting of a
regulatory subunit of 85 kDa and a catalytic subunit of 110 kDa that binds to the PDGF
receptor and is activated through phosphorylation [132,133]. PI3K is activated and con-
verted to phosphatidylinositol 3,4-triphosphate (PIP3), which is actually phosphorylated
by PI3K [95,107]. As a result of PI3K activation, phosphorylated inositol lipids are gen-
erated, which function as essential second messengers for intracellular signaling. As a
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downstream target in the PI3K pathway, phosphorylated inositol lipid binds to Akt and
induces its translocation to the plasma membrane [132,133]. The phosphorylation of Akt
by PIP3 facilitates a variety of signal-transduction processes related to apoptosis. PIP3
promotes the aggregation and activation of Akt, which directly phosphorylates mTOR.
Through active mTOR phosphorylation, downstream protein P70S6K promotes mRNA
synthesis, translation, transcription, and growth and proliferation of cells [119,134]. PI3K
also activates p70S6 kinase (p70S6K), a ribosomal 70-kDa protein affected by mitogens,
growth factors, and hormones, downstream of Akt [132,133]. It has been demonstrated
that CCl4 activates PI3K/AKT signaling by significantly increasing the phosphorylation of
mTOR, PI3K, and AKT in the hepatic fibrosis cells, as illustrated in Figure 2 [119].

Luteolin (3,4,5,7-tetrahydroxyflavone) is a flavone mainly distributed in broccoli,
celery, chrysanthemum flowers, onion leaves, broccoli, carrots, peppers, parsley, and
thyme [135]. Luteolin reduces PDGF-induced AKT (Ser473) phosphorylation and down-
stream mTOR molecules and mTOR substrate p70S6K in a dose-dependent manner. Lute-
olin also reduces TGF-β1-induced AKT signaling [41]. Naringin (4′,5,7-trihydroxyflavonone-
7-rhamnoglucoside) is a natural flavone glycoside extracted from grapefruit and oranges.
Naringin regulates cell survival by blocking the PI3K/AKT signal to relieve liver fibro-
sis [56]. Sal-A reduces the stimulation of the PI3K/AKT/mTOR signaling pathway, inhibits
the stimulation of HSCs and reduces the deposition of ECM [53]. Rutin (Flos Sophorae
Immaturus) and curcumin induce NHSC (non-chemically induced HSC) autophagy by
stimulating fatty acids by regulating the PI3K/AKT/mTOR pathway, resulting in the
inhibition of NHSC activation [57]. It is reported that isovitexin (IVT) is derived from H.
sibthorpioides, a plant of the Umbelliferae family that may treat diseases of the liver, such
as cirrhosis, liver fibrosis, and jaundice [136]. PTEN (phosphatase and tensin homolog
deleted on chromosome ten) negatively regulates PI3K expression, which is a downward
regulation during the progression of fibrosis and a positive regulation during recovery.
Decreased PTEN expression may stimulate stellate cell activation via the activation of
the PI3K-Akt-mTOR pathways, and these regulatory effects are closely associated with
autophagy. IVT dramatically augmented the apoptosis rate of HSCs, decreased the cell
viability, and inhibited Col-I, Col-III and α-SMA mRNA levels and protein expressions,
suggesting the inhibition of HSC activation and increased autophagy. A significant increase
in p-PTEN levels and a reduction in levels of p-PI3K, p-Akt, and p-mTOR in the liver tissues
of mice were observed following IVT treatment. When a PTEN inhibitor or PI3K activator
was treated, the effect of IVT on autophagy and HSCs was impaired, suggesting that the
PI3K-Akt signaling pathway is the hub of IVT regulation of autophagy and HSC activa-
tion [136]. A small number of polyphenol compounds are also effective in the treatment of
liver fibrotic diseases by activating the pathway of PI3K/AKT/mTOR. PI3K/AKT/mTOR
regulates autophagy and reverses hepatic fibrosis.

2.6. The Effect of Dietary Polyphenols on the Hedgehog Signaling Pathway

The hedgehog signaling (Hh) pathway is a highly conserved signaling pathway in cells
and regulates various diseases [137]. Hh signaling is thought to be inactivated in healthy
adult livers because Hh ligands are rarely expressed in mature hepatocytes [138,139]. Hh
signaling contributes in activated HSCs and liver fibrosis [140]. Studies have shown that the
upregulation of Hh signaling promotes the development of hepatic fibrosis and inhibits Hh
signaling to inhibit hepatic fibrosis [141]. Hh signaling promotes the transition of quiescent
HSCs to fibroblasts. Researchers have found that quiescent HSCs produce large amounts of
Hhip (an inhibitor of hedgehog) and prevent its binding to Patched (Ptc) receptors [43,138].
Hhip is rapidly downregulated when HSC is activated and hedgehog target genes (such as
GLI family zinc finger 2 (Gli2)) are increased [140]. The canonical pathway involves Hh lig-
ands (Shh, Ihh and Dhh) binding to the transmembrane receptor Ptc, causing Ptc to release
Smoothened (Smo, a G protein coupled receptor) [141–143]. The released Smo accumulates
in the primary cilium, which conduces to the nuclear localization of glioma-associated
oncogene homology (Gli) transcription factors, and there are three Gli transcription factors
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(Gli1, Gli2, and Gli3). Gli2 is described as the main activator of Hh signaling, whereas Gli3
is responsible for the inhibitory function of Hh signaling [43,141–143]. Gant61 (a Gli1/2
transcription factor inhibitor), Gant61 alleviates liver fibrosis by decreasing the number
of HSCs and decreasing the mRNA and protein levels of Smo, Gli1, Gli2 [141]. Gli2 or
Gli3 binds to DNA and then regulates the transcription of many Hh target genes in the
nucleus. In the noncanonical signaling pathway, Ptc was shown to regulate the cell cycle
through cyclin B1, without the need for Smo and Gli transcription factors. Downstream
effects of Smo have also been shown to be mediated by the sensitization of small GTPases
independent of Gli transcription factor as illustrated in Figure 2 [141–144].

There are about 100 medicinal plants containing quercetin, which is found in a number
of foods. Quercetin (3,3,4,5,7-pentahydroxyflavone) is a flavonoid and has good safety
and bioavailability when used as a supplement. It can relieve Shh, Ihh, and hedgehog
ligand-receptor Ptc1 expression induced by thioacetamide (TAA), reduce the level of Smo
and Ptc1 mRNA, and relieve liver fibrosis [145]. Quercetin could be selectively delivered to
activated HSCs using multifunctional integrin-targeted nanoparticles [146]. Liver fibrosis is
associated with HIF-1, a gene that is targeted by Hh signaling. HIF-1α is highly expressed
in fibrotic tissues. The induction of liver fibrosis is alleviated by flavanols that are derived
from proanthocyanidin dimers, such as procyanidin B2 [59]. In the absence of Hh ligands,
Ptc1 reduces the expression of Smo by inhibiting this pathway. Hesperetin derivatives
(HDs) regulate and enhance the expression of Ptc1 in HSCs to enhance liver protection [60].
Salvianolic acid B (SalB) caused a significant reduction in Shh, Ptc1, Smo and Gli1 mRNA
levels in liver tissue, thereby inhibiting HSC activity [61]. Moreover, studies have shown
that giving SalB can induce demethylation of DNA methyltransferase 1 (DNMT1) to
regulate the Ptc1 gene. Ptc1 hypermethylation is associated with the activation of fibroblasts
in liver and the persistence of liver fibrosis. SalB can silence DNMT1 and demethylate Ptc1,
thereby inhibiting the Hh signaling pathway to relieve the activated HSC [147]. It appears
that SalB mesoporous silica nanoparticles, rhodamine B, is more effective than free SalB
at increasing cellular drug uptake, drug bioaccessibility, and antiROS and hepatic fibrosis
efficacy [148].

2.7. Role of Dietary Polyphenols on Liver Fibrosis-Related Factors

As a key transcription factor mediated by ROS, nuclear factor-erythroid 2-related fac-
tor 2 (Nrf2) plays an important role in protecting cells from oxidative stress by promoting
the expression of many antioxidant genes, such as heme oxygenase-1 (HO-1) and NAD (P)
H: quinone oxidoreductase (NQO1), glutathione cysteine ligase modified subunit (GCLM) and
glutathione cysteine ligase catalytic subunit (GCLC) stimulate ring protection genes. Nrf2
induction is a potential target for the alleviation of toxic liver injury and fibrosis [149].
In vitro, Nrf2 gene transfer to human and rabbit aortic smooth muscle cells can inhibit
the secretion of MCP1, Nrf2-dependent HO-1 expression can inhibit TNF-α stimulated
NF-κB and the secretion of MCP-1 in human umbilical vein endothelial cells [150]. Studies
have shown that the activation of Nrf2 alleviates liver fibrosis and nonalcoholic steato-
hepatitis [151]. Normally, Nrf2 is in a bound state with keapl (as the main inhibitor of
Nrf2) in the cytoplasm [152]. When oxidative stress occurs, it will dissociate in the form
of dimers and combine with antioxidant components, participating in the synthesis of
antioxidant enzymes and phase II detoxification enzymes, and defend against the progress
of liver fibrosis by increasing the antioxidant capacity of the liver. HO-1 and NQO-1
are antioxidant defense genes completely dependent on Nrf2 [52,152]. Silibinin/bovine
serum albumin (SIL/BSA) nanoparticles exhibited antioxidant effects against intracellular
oxidative stress via the upregulation of the Nrf2/antioxidant responsive element (ARE)
pathway, decreasing ROS and regulating antioxidant enzyme reactivity. There was a signif-
icant reduction in acetaminophen and lipopolysaccharides(LPS)/D-GalN-induced acute
liver injury in mice when SIL/BSA nanoparticles were compared to SIL formulation since
SIL/BSA nanoparticles presented better biocompatibility and more liver distribution [39].
Morin (3,5,7,2′,4′-pentaxyl flavone), a natural flavonol, is extracted from mulberry leaves
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and has inhibitory effects on LX-2 cells (a hepatic stellate cell) in vitro by reducing the
expression of GFAP (activated HSC marker) [35,153]. It has been reported that morin
acts as an exogenous agonist of Nrf2 and promotes its nuclear translocation to exert its
biological effects [154]. In the morin-treated group, Nrf2 and its downstream products,
including NQO1 and HO-1, were significantly elevated, indicating that morin plays a
role in alleviating liver fibrosis through the Nrf2 pathway [153]. The expression levels of
HO-1, NQO-1 and GCLC were increased dose-dependently by sal-A. Improvement in the
synthesis and activation of Nrf2 in liver tissue to prevent oxidative damage thus alleviated
CCl4-induced liver damage [52].

3. Dietary Polyphenols Affect Gut Microbiota Composition in Liver Fibrosis
3.1. Effect of Dietary Polyphenols on Intestinal Microbial Composition

The liver and gut microbes are anatomically and physiologically connected by the
portal vein and interact with each other [155–157]. Studies have shown that intestinal
microbes in the gastrointestinal tract can remotely regulate a variety of organ injuries,
especially in the liver [158]. In addition, the occurrence of liver fibrosis is followed by the
imbalance of intestinal micro-homeostasis, the decrease in intestinal microbial diversity
and richness, the increase in potential pathogenic bacteria and the reduction in beneficial
bacteria [159]. At the phylum level, the change in the Firmicutes/Bacteroidetes ratio is an
important indicator of a change in the intestinal flora structure, which can indicate liver
fibrosis [157,160]. Research shows that an increase in Ruminococcus abundance is inde-
pendently related to fibrosis [161]. It seems that polyphenols can change the intestinal
microecology, affect the total number of beneficial bacteria in the intestine, and bring
positive intestinal health benefits [162]. It is reported that dietary polyphenols can treat
liver immune diseases [163], nonalcoholic fatty hepatitis, nonalcoholic fatty liver disease
and other related liver diseases by regulating intestinal microorganisms [164]. Because
inflammation is accompanied by various stages of liver fibrosis, polyphenols can stimulate
Firmicutes phylum, Bifidobacterium spp., Akkermansia spp., Roseburia spp. and Faecalibac-
terium spp. It is beneficial to the growth of bacteria, can provide anti-pathogenic and
anti-inflammatory effects, and inhibit the growth of pathogenic bacteria Clostridium spp.
(Firmicutes phylum) [165]. Phillygenin (PHI) is one of the main lignans in weeping forsythia
capsules [149]. PHI increased the abundance of Ruminococcaceae_UCG-014 and Lactobacillus,
and decreased that of [Eubacterium]_coprostanoligenes_group, in which Lactobacillus has a
liver protection effect. It can be concluded that PHI can alleviate CCl4-induced liver injury
and liver fibrosis by regulating intestinal microorganisms [62,166]. In addition to regulating
intestinal flora and inhibiting inflammation to alleviate liver fibrosis, dietary polyphenols
can also be directly metabolized by colonic microorganisms. Its metabolites may not only
balance the homeostasis of intestinal flora, but also have stronger bioactivity of metabolites
than native phenolic compounds, and enhance the absorption and bioavailability of the
body [167–169]. Therefore, dietary polyphenols may be a latent intervention for improving
intestinal microbial disturbance in patients with liver fibrosis.

3.2. Polyphenols Regulate Liver Fibrosis by Influencing Microbial Metabolites

There is strong evidence that gut microbial metabolites are involved in inflammation
and liver fibrosis pathways [156]. Gut microbial metabolites such as bile acids, LPS, en-
dogenous ethanol and short-chain fatty acids (SCFA), etc., act as messengers across the
intestinal barrier into the liver to activate inflammation-related signals and regulate fibrosis
progression [159,168]. Liver immune cells are activated and induced by the innate immune
response of the liver to produce inflammatory cytokines that drive the production and
progression of liver fibrosis [156,158,170–172]. Endotoxin interacts with hepatic CD14,
Toll-like receptors(TLR4) and other receptors to enhance the phosphorylation and degra-
dation of IκBα in the cytoplasm, leading to the activation of NF-κB [168]. It also enhances
myeloiddifferentiation factor88 (MyD88) recruitment through the activation of TLR4 and
accelerates nuclear transcription of NF-κB to activate the TLR4-MyD88-NF-KB signaling
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pathway. The upregulation of levels of inflammatory cytokines (e.g., TNF-α, IL-1β and
IL-6) stimulates extracellular matrix synthesis in HSCs and causes or exacerbates liver fibro-
sis [159,168,173]. LPS regulates innate immunity by activating TGF-β signaling progression
via TLR4 in the HSC [174]. TLR4 stimulation promotes liver fibrosis by downregulating
Bambi, an endogenous decoy receptor for TGF-β, and upregulating the TGF-β/Smad
signaling pathway. In addition to enhancing exposure to TGF-β derived from Kupfer cells,
LPS also heightens receptor sensitivity to induce inflammation in the liver and facilitate the
development of liver fibrosis [159,168,170]. Furthermore, primary bile acids are converted
to secondary bile acids by gut microbes, and the flora act as important players in bile acid
synthesis, modification, and signaling. Lithochalic acid (LCA) is a secondary bile acid that
inhibits inflammation and ECM synthesis by activating bile acid receptor 5 (TGR5), which
binds G-proteins on the surface of macrophages and HCS. LCA reduces IL-1β, TNF-α,
caspase-1 and IL-22 levels, inhibits the TLR4/NF-κB pathway and NLPR3 inflammation
to improve liver inflammation. In addition, LCA reduces the influence of HSC on TGF-β
signal sensitivity and promotes ECM degradation [175]. Another metabolite of intestinal
bacteria, SCFA, not only has the effect of inhibiting inflammation, but may also accelerate
the differentiation of naive T cells into Th1 and Th17 cells, so as to improve the body’s
immunity against pathogens [176], as illustrated in Figure 3.
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Many studies have reported that dietary polyphenols can decrease liver inflammation
and liver fibrosis by regulating the regulation of the liver-related inflammatory signaling
pathway using the metabolites of intestinal microorganisms. For example, baicalin has po-
tential therapeutic effects on liver and intestinal diseases by regulating farnesoid X receptor
(FXR) and TGR5 to mediate bile acid crosstalk related to intestinal microorganisms. Baicalin
helps to increase the number of bacteria producing SCFA, reduces the phosphorylation
of PI3K, AKT and mTOR, and lowers the level of IL-17 to inhibit liver fibrosis [111,177].
Chlorogenic acid treatment of liver fibrosis is mainly through improving the intestinal mi-
crobial composition, increasing the level of SCFA, and inhibiting inflammatory factors [178].
It mainly inhibits the activation of the TLR4 signaling pathway, including the reduction of
TLR4, MyD88 expression, the increase in Bambi and IKB proteins, the nuclear translocation
of NF-κB and p-IKB-reduction [37]. In addition to chlorogenic acid, isochronogenic acid A
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(ICQA) reduces liver fibrosis and the expression of high-mobility group box 1 (HMGB1)
and TLR4, alleviates NF-κB p65 nuclear translocation, and inhibits p-IKB expression. It
is suggested that ICQA protects against liver fibrosis induced by CCl4 by inhibiting the
HMGB1/TLR4/NF-κB signaling pathway [54]. PHI reduces the level of LPS in serum
and of inflammatory factors (IL-1β, IL-6, and TNF-α) in liver tissue [22]. It promotes the
production of SCFA, regulates the imbalance of bile acid, and may alleviate liver fibro-
sis [166]. Forsythiaside A (FTA), as a polyhydroxy structural compound, reduces LPS,
macrophage inflammatory protein-1 and TNF-α in serum. Additionally, FTA increases the
abundance of SCFA-producing bacteria and SCFA products, thus protecting the liver [22].
It can be concluded that the interaction between dietary polyphenols and the intestinal
microenvironment is essential for the clinical treatment of liver fibrosis.

4. Conclusions

In recent years, in spite of an increasing morbidity and mortality rate in relation to
liver fibrosis, there are no effective drugs available to treat it, and clinically used drugs
for treating liver fibrosis have poor efficacy or side effects. Fibrosis-specific drugs are
urgently needed. It can develop into more severe liver cirrhosis or even cancer if left un-
treated. Dietary polyphenols have anti-inflammatory and antioxidant properties, and they
have been reported to inhibit TGF-β/Smad, Wnt/β-catenin, NF-κB, PI3K/AKT/mTOR,
hedgehog pathway, or activate the AMPK/mTOR pathway to reverse liver fibrosis. In
addition, they can regulate gut microbiome composition to alleviate liver fibrosis. These
metabolites of gut microbes regulate various signaling pathways and the immune system
indirectly to reduce liver fibrosis through the gut–liver axis. Currently, there are still many
disadvantages associated with dietary polyphenols in the treatment of liver fibrosis, which
need to be addressed. First, their poor bioavailability greatly limits their anti-fibrotic and
anti-inflammatory effects, despite their strong biological activity and ability to be par-
tially metabolized by gut bacteria. However, the emergence of nanomedicine, which is
stable and scalable has shown high translational potential. It may reduce the toxic side
effects of polyphenol compounds. The advantages of nanotechnology for polyphenol
compounds include controlled release, lower dose, remarkable hepatic-targeting effect,
superior pharmacokinetic properties, and superior biosafety, thus reducing the damage
to other tissues. In general, polyphenolic compounds used in the treatment of hepatic
fibrosis, such as milk thistle, curcumin, baicalin, etc., are of definite therapeutic benefit.
More large-scale, long-term, high-quality clinical trials are necessary in the future to assess
the efficacy and safety of polyphenols in the treatment of liver fibrosis in order to promote
drug development and clinical application. Secondly, there are occasionally toxic side
effects associated with polyphenols, and further research is needed to understand their
mechanism of action against liver fibrosis. Furthermore, there are significant differences
between cell and animal experiments and human clinical application. The current level
of research is limited to cells or animals. Polyphenols in the diet are difficult to achieve in
clinical trials and need to be improved. Finally, there are a sea of polyphenol compounds
in the diet and a small part of the polyphenol compounds have been shown to treat liver
fibrosis. In addition, it is difficult to explain which polyphenol compounds are beneficial to
liver disease in dietary polyphenols. To treat liver fibrosis, dietary polyphenol compounds
must be developed in the future. Due to the multiple pathways involved in hepatic fibrosis,
a treatment targeting multiple factors is expected to address the driving factors. In the
future, in order to better understand the relationship between dietary polyphenols and
gut microbiomes and signaling pathways, we look forward to designing more systematic
experimental models to investigate the anti-fibrosis and liver-protective effects of dietary
polyphenols. In clinical studies, dietary polyphenols that are known to have therapeutic
effects need to be evaluated for their dose, toxicity, and bioavailability to contribute to the
treatment and improvement of liver fibrosis.
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