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Abstract: Sustainable functionalization of renewable aromatics is a key step to supply our present needs
for specialty chemicals and pursuing the transition to a circular, fossil-free economy. In the present
work, three typically stable aromatic compounds, representative of products abundantly obtainable from
biomass or recycling processes, were functionalized in one-pot oxidation reactions at room temperature,
using H2O2 as a green oxidant and ethanol as a green solvent in the presence of a highly electron
withdrawing iron porphyrin catalyst. The results show unusual initial epoxidation of the aromatic
ring by the green catalytic system. The epoxides were isolated or evolved through rearrangement, ring
opening by nucleophiles, and oxidation. Acridine was oxidized to mono- and di-oxides in the peripheral
ring: 1:2-epoxy-1,2-dihydroacridine and anti-1:2,3:4-diepoxy-1,2,3,4-tetrahydroacridine, with TON of
285. o-Xylene was oxidized to 4-hydroxy-3,4-dimethylcyclohexa-2,5-dienone, an attractive building
block for synthesis, and 3,4-dimethylphenol as an intermediate, with TON of 237. Quinoline was
directly functionalized to 4-quinolone or 3-substituted-4-quinolones (3-ethoxy-4-quinolone or 3-hydroxy-
4-quinolone) and corresponding hydroxy-tautomers, with TON of 61.

Keywords: green chemistry; C-H functionalization; epoxidation; iron porphyrin; oxidation catalysis;
renewable aromatics

1. Introduction

Biomimetic systems allow to reproduce enzyme activity while avoiding expensive
enzyme extractions from natural sources and the expensive procedures of bio- and en-
zymatic catalysis. Iron and manganese porphyrins have shown the ability to mimic the
remarkable activity of oxygenase enzymes, such as cytochrome P450, leading to efficient
catalytic systems for sustainable oxidation of aromatic substrates, in mild conditions, and
with novel reactivity patterns [1,2]. The porphyrin structure, the microenvironment, such
as the solvent, co-catalyst, or catalyst support, have shown to play a key role on biomimetic
efficiency [3,4].

A remarkable reaction of P450 during metabolism is the epoxidation of polycyclic
aromatic compounds (PACs) in peripheral positions [5]. This reaction is not common in
chemical systems, where PACs are mostly oxidized on the meso-rings to afford phenols,
quinones, and analogues [6]. These are also observed using catalytic systems based on
polyoxometalates [7], metallophthalocyanines [8], and metalloporphyrins [9].

In recent years, biomimetic aromatic epoxidations have been disclosed using Mn (2,6-
dichlorophenyl)porphyrins (MnP) as catalysts (Scheme 1A–C), using non-green conditions,
and epoxides of naphthalene, anthracene [10], tetracene [11], and acridine [12] have been
obtained (Scheme 1A).
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Scheme 1. Main direct oxidations of aromatic compounds by biomimetic catalysis with (A–C) Mn 
porphyrin (MnP) and (D) Fe porphyrin (FePF). 

In some cases, epoxide formation was considered an intermediate step and products 
resulting from rearrangement of the epoxide ring were obtained, e.g., the o-diketone 
obtained in phenanthrene oxidation (Scheme 1B) [10,13]. It should be noted that 
alkylbenzenes oxidation in the presence of MnP catalytic systems afforded selectively 
alkyl group oxidation, e.g., toluene was oxidized mainly to benzoic acid and ethylbenzene 
to acetophenone (Scheme 1C) [14]. 

Interest in producing valued aromatic compounds from renewable sources has 
grown enormously in recent years, aiming to implement a circular economy and decrease 
dependence on fossil-based materials as feedstock in the fine chemicals industry [15–17]. 

Promising techniques for the production of platform green aromatics are the catalytic 
pyrolysis of biomass or wastes [18,19] and gas-phase Diels–Alder condensation of furan 
derivatives [20], among others. Optimization studies have been directed towards the 
increased production of the BTX (benzene, toluene, and xylenes) fraction, where xylenes 
are of major interest, for use as solvents and as intermediates for synthesis [21]. 

The chemical oxidation of o-xylene is described in the literature using harsh 
conditions, resulting in methyl groups functionalization [22], or degradation/removal 
from the environment [23]. Still, in biological systems, o-xylene is selectively oxidized in 
the aromatic ring by a diiron monooxygenase [24]. 

Quinoline and quinolone scaffolds are present in a vast number of natural 
compounds and pharmacologically active substances, comprising a significant segment 
of the pharmaceutical market [25]. Much has been achieved in developing greener 
syntheses of quinoline and its derivatives. In effect, quinoline can be obtained from 
biomass derivatives, such as glycerol or levulinic acid by reactions with aniline [26,27]. 

The direct oxidation of quinoline has been studied to obtain its degradation [28] or 
site-selective oxidation using enzymatic catalysis [29]. 

Acridine derivatives are also an important class of bioactive compounds with 
antibacterial and antimalarial activity and these have been studied as therapeutic agents 
for cancer and Alzheimer’s disease [12]. Acridine can be obtained from non-fossil sources 
by catalytic pyrolysis of amino acids [30]. Previous studies on biomimetic oxidation of 
acridine with Mn porphyrins led to direct and unprecedent epoxidation of the peripheral 
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porphyrin (MnP) and (D) Fe porphyrin (FePF).

In some cases, epoxide formation was considered an intermediate step and prod-
ucts resulting from rearrangement of the epoxide ring were obtained, e.g., the o-diketone
obtained in phenanthrene oxidation (Scheme 1B) [10,13]. It should be noted that alkyl-
benzenes oxidation in the presence of MnP catalytic systems afforded selectively alkyl
group oxidation, e.g., toluene was oxidized mainly to benzoic acid and ethylbenzene to
acetophenone (Scheme 1C) [14].

Interest in producing valued aromatic compounds from renewable sources has grown
enormously in recent years, aiming to implement a circular economy and decrease depen-
dence on fossil-based materials as feedstock in the fine chemicals industry [15–17].

Promising techniques for the production of platform green aromatics are the catalytic
pyrolysis of biomass or wastes [18,19] and gas-phase Diels–Alder condensation of furan
derivatives [20], among others. Optimization studies have been directed towards the
increased production of the BTX (benzene, toluene, and xylenes) fraction, where xylenes
are of major interest, for use as solvents and as intermediates for synthesis [21].

The chemical oxidation of o-xylene is described in the literature using harsh conditions,
resulting in methyl groups functionalization [22], or degradation/removal from the envi-
ronment [23]. Still, in biological systems, o-xylene is selectively oxidized in the aromatic
ring by a diiron monooxygenase [24].

Quinoline and quinolone scaffolds are present in a vast number of natural compounds
and pharmacologically active substances, comprising a significant segment of the pharma-
ceutical market [25]. Much has been achieved in developing greener syntheses of quinoline
and its derivatives. In effect, quinoline can be obtained from biomass derivatives, such as
glycerol or levulinic acid by reactions with aniline [26,27].

The direct oxidation of quinoline has been studied to obtain its degradation [28] or
site-selective oxidation using enzymatic catalysis [29].

Acridine derivatives are also an important class of bioactive compounds with antibac-
terial and antimalarial activity and these have been studied as therapeutic agents for cancer
and Alzheimer’s disease [12]. Acridine can be obtained from non-fossil sources by catalytic
pyrolysis of amino acids [30]. Previous studies on biomimetic oxidation of acridine with
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Mn porphyrins led to direct and unprecedent epoxidation of the peripheral aromatic rings,
disclosing the possibility of new functionalization routes (Scheme 1A) [12]. However, it
would be desirable to obtain greener conditions, namely the substitution of acetonitrile as
the solvent and improve product selectivity.

A green metalloporphyrin system for catalytic oxidation was described, using hy-
drogen peroxide as a green oxidant, producing water as the only byproduct, a highly
electron withdrawing iron porphyrin [Fe(TPFPP)Cl] (FePF; Scheme 2), and ethanol as a
green solvent, without any other additives or co-catalyst [FePF@H2O2_EtOH]. Moreover,
improved methodologies for metalloporphyrin synthesis in eco-sustainable conditions
have been reported [31]. This system has been effective in the epoxidation of alkenes
and aromatic ring hydroxylation, but direct epoxidation of the aromatic ring has not been
observed (Scheme 1D) [32,33].
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The different catalytic activity of the MnPs and FePF has been ascribed to the formation
of different active species in the catalytic cycle [3,14]. With the FePF, a hydroperoxyl species
[PFe(III)-OOH] has been ascribed as the active oxidant, while an oxo-species is considered
the active oxidant in the catalytic cycle of Mn porphyrins [PMn(V)=O] [32].

The present work describes the application of the [FePF@H2O2_EtOH] catalytic sys-
tem, at room temperature (RT), in the oxidative valorization of the renewable aromatic
compounds (Scheme 2).

2. Results and Discussion

The oxidation of o-xylene (1), quinoline (2), and acridine (3) was carried out by progres-
sive addition of H2O2 at a rate of 0.6 mmol·h−1 in ethanol and at room temperature (RT),
using the fluorinated iron porphyrin [Fe(TPFPP)Cl] (FePF) as catalyst. Control reactions
performed in the absence of catalyst showed no substrate conversion during the catalytic
reaction time.

2.1. o-Xylene (1)

The catalytic oxidation of o-xylene afforded two products, the 3,4-dimethylphenol
(1a) and 4-hydroxy-3,4-dimethylcyclohexa-2,5-dienone (1b). The substrate conversion and
product selectivity were monitored by GC-FID and the results are summarized in Table 1.
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Using catalyst loadings of 0.3 and 0.6 mol %, the xylene conversion was 30% and 80%,
respectively. These values are relevant in the context of C-H bond functionalization, where
catalyst loadings between 2.5 and 15 mol % are commonly used [34]. The selectivity for
the main product 1b is 86% and is independent of catalyst loading. The kinetic plot of
the reaction described in entry 2 (Figure 1) shows a nearly constant yield of 1a during the
reaction time, which indicates it as an intermediate of the final product 1b. The maximum
conversion was reached after 2.5 h of reaction with a turnover number (TON) of 237.
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Figure 1. Kinetic curve of o-xylene catalytic oxidation reaction.

Table 1. Green oxidation of o-xylene by Fe porphyrin catalysis in ethanol at room temperature a.
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Entry [FeP] (mol%)
Time (min)

Conversion (%) c
Selectivity (%) c

TON d
H2O2 (eq.) b 1a 1b

1 0.3 90
3 eq. 30 14 86 178

2 0.6 150
5 eq. 80 14 86 237

a Reaction conditions: o-xylene (0,3 mmol), [Fe(TPFPP)Cl] (1–2 mg), ethanol (2 mL), H2O2 (5 mol eq.), at RT
for 2.5 h; b H2O2 added at 2 mol equivalents/h; c Conversion and selectivity measured by GC-FID analysis;
d Turnover number (TON), two catalytic cycles were considered for product 1b [35].

The MS spectrum obtained by GC-MS(EI) of the reaction mixtures are reported in
Supplementary Material (SM). Compound 1a shows [M+•] m/z 122 and loss of CO and
CH3 fragments as main peaks (Figure S1), matching 3,4-dimethylphenol [36]. The MS
spectrum of 1b shows a di-oxygenated product with [M+•] m/z 138 (Figure S2). Com-
pound 1b was isolated by fractionation of the reaction mixture using preparative thin
layer chromatography (TLC) on silica gel and was fully characterized by 1H, 13C and
2D-NMR techniques.

The 1H NMR spectrum shows the two methyl groups at 1.46 and 2.09 ppm (Figure 2).
The latter peak is a doublet with 4J = 1.5 Hz, due to a four-bonds coupling with H-2. The
three signals in the alkene region corroborate the 4-hydroxycyclodienone structure. The
H-2 signal is a quintet due long-range coupling with H-6 and CH3(C-3). A double doublet
is ascribed to H-6 with 3J = 9.9 Hz and 4J = 2.0 Hz from coupling with adjacent H-5 and
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at four-bonds with H-2, respectively. These assignments are corroborated by the HMBC
(1HˆAPT) spectrum (Figure 3) and by APT and HSQC spectra in SM (Figures S3 and S4).
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To our knowledge, this compound has not been previously characterized or isolated
and is an attractive building block for synthesis, e.g., as a dienophile in cycloaddition
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reactions or as a structural analogue of ring C of tetracycline family antibiotics [11]. The
different chemoselectivity relative to the previously reported Mn porphyrin catalytic sys-
tems, which promote selective alkyl group oxidation [14], highlights this reaction as a new
and completely green pathway for the selective functionalization of the aromatic ring of
alkylbenzenes.

2.2. Quinoline (2)

The direct one-pot oxidation of quinoline afforded the quinolone products 3-ethoxy-4-
quinolone (2a), 4-quinolone (2b) and 3-hydroxy-4-quinolone (2c). The latter two products
were observed also as hydroxyquinoline tautomeric compounds: 4-hydroxyquinoline
(2b*) and 3,4-dihydroxyquinoline (2c*). The results are collected in Table 2, where for
simplicity, selectivity and yield for products 2b and 2c corresponds to joint values observed
for tautomer compounds (2b and 2b*) or (2c and 2c*).

Table 2. Green oxidation of quinoline by Fe porphyrin catalysis in ethanol at room temperature a.
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TON h
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1 0.9 57 e,f 100 (57) g - - - 61
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3 1.9 70 e - - - - 38
a Reaction conditions: quinoline (0.3 mmol), [Fe(TPFPP)Cl] (3 mg), ethanol (2 mL), H2O2 (8 mol eq.), at RT for 4 h;
b H2O2 added at 2 mol equivalents/h; c During the work-up, the evaporation of reaction mixture was performed
in the rotavapor at 60 ◦C (I) or at RT (II); d For simplicity, this value corresponds to the joint selectivity of the
two tautomer compounds observed; e Measured by GC-FID analysis; f Reaction mixture separated by TLC;
g Measured by 1H NMR spectrum of the final reaction mixture; h Turnover number (TON).

Quinoline consumption during the reaction was monitored by GC-FID, but reaction
products were not observable by this technique. The reaction mixtures were fractionated
by preparative TLC and all the collected fractions were analyzed by NMR and HR-ESI-MS2

to obtain products identification/characterization. Subsequently, product selectivity and
substrate conversion were obtained by 1H NMR analysis of the final reaction mixtures in
DMSO-d6. Similar values of substrate conversion were observed by both techniques for
identical reaction conditions (Table 2, entries 1 and 2). Using catalyst loadings of 0.6 and
1.9 mol%, the substrate conversion was 57% and 70%, respectively, after 4 h of reaction time
and upon addition of 8 mol equivalents of H2O2 (Table 2, entries 1 and 3).

The presence of a substituent at 3-position (ethoxy or hydroxy) was dependent on the
work-up conditions, namely the temperature of solvent evaporation. Solvent evaporation
at 60 ◦C in the rotary evaporator in Path I and at RT in Path II.

Upon Path I, the fractionation of the reaction mixture by preparative TLC, afforded the
3-ethoxyquinolin-4-(1H)-one (3-ethoxy-4-quinolone, 2a), which was isolated as the single
reaction product (Table 2, entry 1).

The 1H NMR spectrum of 2a (Figure 4) shows the selective functionalization on the
pyridyl ring, as the four signals in the aromatic region show a multiplicity and coupling
pattern typical of a non-functionalized aromatic ring (COSY spectrum in SM, Figure S5).
The two doublets at δ 4.01 ppm and 4.73 ppm (broad), coupling with each other (J = 4.8 Hz),
are ascribed to H-2 and H-1(NH), respectively. The low δ values observed for H-2 and C-2
(HSQC spectrum in Figure 5) are expected for 3-substituted-4-quinolones [37], carrying an
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electron donor substituent at position 3. High electron density on C-2/H-2 is justified by
the presence of mesomerism in compound 2a (Figure 4, upper insert), with a significant con-
tribution of two zwitterionic resonance hybrids to describe its structure. This is confirmed
by the multiplet signal at δ 3.91–4.00 ppm, ascribed to ethoxy -CH2 group. The contribution
of the two zwitterionic structures leads to a hindrance in Ar-OEt bond rotation, resulting
in distinct chemical environment on the -CH2 protons [38,39]. The hydroxyl tautomer of
compound 2a, 3-ethoxy-4-hydroxyquinoline, was not observed.
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We found no previous references in the literature for compound 2a, and this methodol-
ogy may be an effective and green way to produce new 3-substituted quinolone derivatives,
by direct functionalization of quinoline.

Upon Path II (solvent evaporation at RT, 17–22 ◦C), the fractionation of the reac-
tion mixture by preparative TLC, afforded quinolin-4(1H)-one (4-quinolone, 2b) and 3-
hydroxyquinolin-4(1H)-one (3-hydroxy-4-quinolone, 2c) and the corresponding tautomers
4-hydroxyquinoline (2b*) and 3,4-dihydroxyquinoline (2c*). The selectivity was 46% and
22% for the mixtures of tautomers (2b + 2b*) and (2c + 2c*), respectively (Table 2, entry 2).

Compounds 2b and 2b*, 2c and 2c* were identified by HR-ESI-MS2 (SM,
Figures S7 and S8). The [M + H]+ ions in the MS spectra were m/z 146.060 and m/z
162.055 for compounds 2b/2b* and 2c/2c*, respectively. NMR studies in DMSO-d6
(1H, APT, COSY, and HSQC; SM, Figures S9 and S10) confirmed the identification of
these compounds.

The 1H NMR spectrum of the total reaction, after evaporation at RT (Path II, Table 2,
entry 2), was obtained in DMSO-d6 (SM, Figures S11 and S12). The area of chosen non-
overlapping peaks from quinoline and reaction products were used for quantification of
product selectivity, product yield and substrate conversion. The 4-hydroxy-tautomers were
observed as the major products. It should be noted that the ferric center of [Fe(TPFPP)Cl]
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has a markedly acidic character [40] and may confers acidity to the reaction media, favoring
the presence of hydroxyl-tautomers 2b* and 2c*.
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2.3. Acridine (3)

Acridine oxidation yielded 1:2-epoxyacridine (3a) and anti-1:2,3:4-diepoxyacridine
(3b). NMR studies of the reaction mixture after chromatographic separation of the catalyst
allowed compounds’ identification by comparison with previously described data [12].
Better selectivity was obtained for compound 3a (90%, Table 1, entry 1) than in those studies
using the MnP catalytic system (70%, Scheme 1) [12].

As acridine has an N atom in the structure, which confers basicity to the substrate
that might influence the oxidation reaction, one reaction was carried out with addition of
HNO3. The results are presented in Table 3. It is observed that the pH does not lead to
significant changes in the conversion of acridine, resulting only in a small increase in the
yield of the monoepoxide (3a).

According to the 1H spectrum of the reaction mixture, shown in Figure 6, there is a
total of 18 protons, which indicates the presence of a mixture of the two products, 3a and
3b. The only two singlets present in the spectrum, at δ 8.38 and 8.20 ppm, correspond to
H-9 of both compounds and their areas were used to quantify products selectivity. The 1H,
APT, and COSY NMR spectra are reported in SM (Figures S13 and S14).
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Table 3. Green oxidation of acridine by Fe porphyrin catalysis in ethanol at room temperature a.
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Entry [FeP] (mol%) Additive Conversion (%) c
Selectivity (%) c

TON d

3a 3b

1 0.6 None 94 10 90 285

2 0.6 HNO3
(pH 4.6) 89 16 84 261

a Reaction conditions: 2 mg of catalyst, 2 mL of solvent, 0.3 mmol of substrate, 5 eq. H2O2, 2h30 of reaction time;
b H2O2 added at 2 mol equivalents/h; c Conversion and selectivity measured by 1H RMN; d Turnover number
(TON), two catalytic cycles were considered for product 1b.
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2.4. Catalyst Stability

The reactions were followed by UV–vis. At the beginning of the reaction, the Fe
porphyrin Soret band, at 410 nm, is observed and its intensity decreases as the reaction
proceeds. This indicates the concomitant oxidation of the porphyrin macrocycle (SM,
Figures S15 and S16). The cessation of substrate conversion relates to the complete dis-
appearance of the Soret band after the TON maximum of 237, 61, and 285 for o-xylene,
quinoline, and acridine, respectively.
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2.5. Considerations on the Mechanism

Catalytic performance of the [Fe(TPFPP)Cl] (FePF) might be associated with the
typical acidic character of iron porphyrins [40], which is intensified by the strong electron-
withdrawing porphyrin ligand due to extensive fluorination. The iron-hydroperoxy-species
[PFe(III)-OOH] formed by coordination of hydrogen peroxide to the metal center and
subsequent deprotonation, has been considered the active oxidant in the catalytic cycle.
In the absence of a co-catalyst, it is not expected that this species evolve into an oxo
species [32].

Metallo-hydroperoxy species have been described as the active oxidant in epoxidation
reactions or in the generation hydroxyl radicals [3]. Previous studies showed that the Fe(III)
porphyrin is effective in alkene epoxidation and aromatic hydroxylation and an EPR spin
trap study confirmed the absence of free hydroxyl radicals in these conditions [3]. The
[PFe-OOH] is a strong oxidant, which can be further activated in the presence of a protic
solvent by hydrogen bond formation with the hydroperoxide group [41]. This leads to an
enhanced δ+ at the distal oxygen (Scheme 3, central species).
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In the present work, it was observed that, unlike Mn porphyrins in aprotic solvent
(acetonitrile) and with a co-catalyst, the present [FePF@H2O2_EtOH] system performs the
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selective aromatic oxidation of o-xylene, the oxidation of the aza-ring of quinoline and the
epoxidation of the peripheral ring of acridine.

In previous studies [31], it was pointed out that the action of this catalyst in the
formation of naphthoquinone by naphthalene oxidation (Scheme 1D) can be explained
by the formation of naphtol via an electrophilic substitution mechanism (Scheme 3A,
path ii). The electrophilic attack of [Fe-OO(δ+)H] on the aromatic ring π-system, with
formation of a carbocation intermediate and recovery of aromaticity by deprotonation of
the adjacent proton.

However, the results of the present work suggest a direct epoxidation of the aro-
matic π-system (Scheme 3A, path i) by an addition reaction, and the hydroxylated deriva-
tives formed result from subsequent rearrangement of the epoxide ring in acidic medium
(path iii).

The presence of path (i) is confirmed by: (a) isolation of acridine epoxides; (b) forma-
tion of the quinoline derivatives 2a (3-ethoxy-4-quinolone) and 2c (3-hydroxy-4-quinolone)
(Scheme 3C), either resulting by epoxide ring opening through nucleophilic attack of EtOH
(60 ◦C) or H2O (RT); (c) regioselectivity of hydroxylation in the formation of the final xylene
product 1b (Scheme 3B), suggesting epoxidation of the aromatic ring and not electrophilic
substitution (path ii), as in the latter case, the derivatives should result from the forma-
tion of a tertiary carbocation intermediate, namely, 1,3-dihydroxy-4,5-dimethylbenzene or
3,4-dimethyl-o-benzoquinone.

The oxidation of intermediate I might occur also non-catalytically in the oxidizing re-
action media, similarly to the formation of benzoquinones from hydroquinones previously
observed [14].

3. Materials and Methods
3.1. Materials

The chloro [5,10,15,20-tetraquis(pentafluorophenyl)porphyrinate] iron (III) [Fe(TPFPP)Cl]
(FePF) was prepared by a literature procedure, in environmentally compatible conditions,
using microwave heating [31]. Quinoline (98%), acridine (97%), and H2O2 30% w/w were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). o-Xylene (98%) n-hexane, and ethyl acetate
were acquired from Fisher Scientific (Waltham, MA, USA). Ethanol was from AppliChem
(Gatersleben, Germany). All solvents were p.a. grade. Nitric acid (65%) was from PanReac
(Barcelona, Spain). The chromatographic purifications were carried out using silica gel 60
F254 from Merck (Darmstadt, Germany).

3.2. Instrumentation

The GC-FID analyses were performed using a Varian 3900 chromatograph (Palo Alto,
CA, USA), using nitrogen as carrier, and GC-MS analyses were performed in a Thermo
Scientific Trace 1300, coupled to a Thermo Scientific ISQ Single quadropole MS apparatus
(Waltham, MA, USA), using helium as the carrier gas. In both cases, DB-5-type-fused silica
Supelco (Sigma-Aldrich) capillary columns were used (30 m, 0.25 mm i.d.; 0.25 µm film
thickness) and the temperature program was: 70 ◦C (1 min), 20 ◦C min−1 to 200 ◦C (5 min).
The injector temperature was set at 200 ◦C and the detector temperature was set at 250 ◦C.

UV–vis absorption spectra were recorded at room temperature on a Genesys 10s
Thermo Scientific Spectrophotometer in the region 300–800 nm.

High-resolution electrospray ionization mass spectra (HR-ESI-MS) were obtained
using an LTQOrbitrap XL mass spectrometer (Thermo Scientific). Evaporated samples
were dissolved in acetonitrile while reaction mixtures were directly injected and infused
into the electrospray ion source at 10 µL·min−1. The spectrometer was operated in the
positive ionization mode with the capillary voltage set to +3.1 kV, sheath gas flow to 6, and
the temperature of the ion transfer capillary to 275 ◦C.

NMR spectra (1D and 2D) were recorded on Bruker Avance instruments operating at a
frequency of 400 MHz for 1H experiments and 100 MHz for 13C experiments, with sample
temperatures of 22 ◦C and using CDCl3 or DMSO-d6 as solvent (Euroisotop, Cambridge, UK).
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NMR and MS analyses were performed at CEMUP (Centro de Materiais da Universi-
dade do Porto).

3.3. Catalytic Oxidation Reactions

The catalytic experiments were performed using the following general procedure: The
substrate (0.3 mmol), the catalyst [Fe(TPFPP)Cl] (FePF), from 0.3 mol % (1 mg, 1 µmol)
to 1.9 mol% (5 mg, 5 µmol), as indicated in Tables 1–3, were dissolved in 2 mL of ethanol
and stirred at RT (17–22 ◦C) protected from light. H2O2 (aq.) 30% w/w was progressively
added to the reaction mixture, by addition of aliquots of 0.5 mol equivalents relatively to
the substrate every 15 min. The reactions were terminated when the substrate conversion
did not change despite the addition of H2O2. When specified, the acridine reaction media
was acidified by addition of HNO3 until pH~4.6.

At the end of reactions, the solvent was evaporated at 60 ◦C in the rotary evaporator
(Work-up-1, used for quinoline) or at RT (Work-Up 2, used for all substrates) and the
reaction mixtures were separated by TLC, using mixtures of ethyl acetate: n-hexane as
eluent: (40:60% v/v) for xylene (1) and (50:50% v/v) for quinoline (2) and acridine (3).
Compounds were revealed on TLC plates using a UV lamp and were removed from silica
with the same eluent used for chromatography.

For 1H NMR analyses of the total reaction mixtures, the final reaction was passed
through a small plug of silica-gel and eluted with DMSO-d6.

Conversion (%) = [n (sum of products)/n of substrate]; Selectivity (%) = [n of product
P/n (sum of products)]; Yield (%) = [n of product P/n of substrate].

3.4. Spectroscopic Data of Products

4-hydroxy-3,4-dimethylcyclohexa-2,5-dienone (1b) 1H NMR (CDCl3, 400 MHz) δ 1.46
(3H, s, CH3_C-4), 2.09 (3H, d, J = 1.5 Hz, CH3_C-3), 6.01 (1H, quintet, J = 1.5 Hz, H-2), 6.12
(1H, dd, J = 9.9, 2.0 Hz, H-6), 6.88 (1H, d, J = 9.9 Hz, H-5); 13C NMR (CDCl3, 400 MHz) δ
18.0 (CH3_C-3), 26.0 (CH3_C-4), 69.2 (C, C-4), 125.9 (CH, C-2), 127.0 (CH, C-6), 152.5 (CH,
C-5), 161.7 (C, C-3), 185.8 (C, C-1); EIMS m/z (relative abundance %) 138 [M]+• (43), 123
(100), 110 (54), 95 (77).

3-ethoxy-4-quinolone (2a) 1H NMR (CDCl3, 400 MHz) δ 1.00 (3H, t, J = 7.1 Hz, -CH3),
3.96 (2H, m, -CH2), 4.01 (1H, d, J = 4.8 Hz, H-2), 4.73 (1H, d-broad, J = 4.8 Hz, H-1), 7.52
(1H, t, J = 8.2 Hz, H-6), 7.70 (1H, t, J = 8.0 Hz, H-7), 7.85 (1H, d, J = 8.0 Hz, H-8), 8.18 (1H,
dd, J = 8.2, 1.3 Hz, H-5); 13C NMR (CDCl3, 400 MHz) δ 14.1 (-CH3), 54.6 (CH, C-2), 60.8
(-CH2), 124.6 (CH, C-5), 129.3 (CH, C-6), 130.1 (CH, C-8), 133.6 (CH, C-7).

4-quinolone (2b) 1H NMR (DMSO-d6, 400 MHz) δ 6.51 (1H, d, J = 9.0 Hz, H-3), 7.19
(1H, t, J = 7.8 Hz, H-6), 7.32 (1H, d, J = 7.9 Hz, H-8), 7.50 (1H, t, H-7), 7.66 (1H, d, J = 7.8 Hz,
H-5), 7.91 (1H, d, J = 9.0 Hz, H-2); 13C NMR (DMSO-d6, 400 MHz) δ 115.6 (CH, C-8), 122.2
(CH, C-3), 122.3 (CH, C-6), 128.4 (CH, C-5), 130.9 (CH, C-7), 140.8 (CH, C-2), HRESIMS m/z
(relative abundance %) 162.055 [M + H]+, (100), 144.045 (7), 134.060 (7), 116.050 (10).

4-hydroxyquinoline (2b*) 1H NMR (DMSO-d6, 400 MHz) δ 7.50 (1H, d, J = 7.3 Hz,
H-3), 7.76 (1H, t, J = 7.5 Hz, H-6), 7.84 (1H, t, J = 8.4 Hz, H-7), 7.99 (1H, d, J = 7.3 Hz, H-2),
8.11 (1H, d, J = 7.5 Hz, H-5), 8.55 (1H, d, J = 8.4 Hz, H-8); 13C NMR (DMSO-d6, 400 MHz) δ
119.3 (CH, C-8), 122.4 (CH, C-3), 126.1 (CH, C-2), 129.1 (CH, C-5), 129.3 (CH, C-6), 130.9
(CH, C-7), 119.6 (C, C-4a), 141.2 (C, C-8a), 162.6 (C, C-4); HRESIMS m/z (relative abundance
%) 146.060 [M + H]+, (100), 129.057 (2), 128.050 (3).

4. Conclusions

Inert aromatic compounds have been selectively functionalized by catalytic oxidation
in mild and green conditions, using H2O2 as green oxidant, ethanol as green solvent, in
the absence of other additives, at room temperature and using an electron withdrawing
iron porphyrin catalyst, obtainable in eco-sustainable conditions, and used in a low loading
of <2 mol%. The results support the occurrence of an initial direct epoxidation of the
aromatic ring, leading to an unusual selectivity for o-xylene oxidation, as it occurred
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exclusively on the aromatic ring and not on the methyl groups, as previously observed.
Moreover, the functionalization of acridine on the peripheral ring, instead of on the meso
9-position was unusual. The new methodology can be very attractive for the preparation of
new 3-substituted quinolone derivatives, which have high potential for biological activity.
The oxidations resulted in loss of aromaticity in products or in one of the aromatic rings.
Two new compounds with attractive application potential were isolated and characterized.

The results point to the future relevance of aromatic epoxidation reactions, still largely
unexplored in organic synthesis. This is mainly of importance in the valorization of
aromatic products resulting from recycling processes based on pyrolysis of biomass and
waste. Further developments of the catalytic system can be pursued developing more
easily obtainable highly electron withdrawing iron catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28093940/s1, Figures S1 and S2: MS spectrum (EI) of products 1a
and 1b; Figures S3 and S4: NMR spectra (APT and HSQC) of product 1b; Figures S5 and S6: NMR
spectra (COSY and APT) of product 2a; Figures S7 and S8: HR-MS2 (ESI) spectra of products 2b and
2c; Figures S9 and S10: 2D-NMR spectra (COSY and HSQC) of a fraction containing compounds 2b,
2b* and 2c*; Figures S11 and S12: NMR spectra (1H and COSY) of a quinoline total reaction mixture;
Figures S13 and S14: NMR spectra (COSY and APT) of a fraction containing compounds 3a and 3b;
Figures S15 and S16: UV-vis of quinoline and acridine reaction mixtures.
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