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Abstract: The mutation or function loss of tumour suppressor p53 plays an important role in abnormal
cell proliferation and cancer generation. Murine Double Minute 2 (MDM2) is one of the key negative
regulators of p53. p53 reactivation by inhibiting MDM2–p53 interaction represents a promising
therapeutic option in cancer treatment. Here, to develop more effective MDM2 inhibitors with lower
off-target toxicities, we synthesized a dimer, spiroindolinone pyrrolidinecarboxamide XR-4, with
potent MDM2-p53 inhibition activity. Western blotting and qRT-PCR were performed to detect the
impact of XR-4 on MDM2 and p53 protein levels and p53 downstream target gene levels in different
cancers. Cancer cell proliferation inhibition and clonogenic activity were also investigated via the
CCK8 assay and colony formation assay. A subcutaneous 22Rv1-derived xenografts mice model was
used to investigate the in vivo anti-tumour activity of XR-4. The results reveal that XR-4 can induce
wild-type p53 accumulation in cancer cells, upregulate the levels of the p53 target genes p21 and
PUMA levels, and then inhibit cancer cell proliferation and induce cell apoptosis. XR-4 can also act
as a homo-PROTAC that induces MDM2 protein degradation. Meanwhile, the in vivo study results
show that XR-4 possesses potent antitumour efficacy and a favourable safety property. In summary,
XR-4 is an interesting spiroindolinone pyrrolidinecarboxamide-derivative dimer with effective p53
activation activity and a cancer inhibition ability.

Keywords: MDM2 inhibitor; p53 activation; dimer spiroindolinone pyrrolidinecarboxamide; cancer
treatment

1. Introduction

As of 2020, there were 19.3 million new cancer cases and there had been nearly
10 million cancer deaths in the world, making it one of the leading causes of death for
humans all over the world [1]. Changes in many oncogenes and tumour suppressor genes
are associated with human cancers, these genetic changes appear at different stages from
canceration to cancer cell growth, proliferation, and metastasis [2,3]. The apoptosis of
normal somatic cells, which develop to a certain extent, is vital to maintain the metabolism
of the human body [4]. However, the loss or mutation of tumour suppressor genes or the
activation of oncogenes can lead to cell apoptosis function loss, and then induce abnormal
cell proliferation and cancer generation [5–7].

Many proteins play essential roles in tumour generation and development, among
which p53 is a protein encoded by the TP53 gene that plays a crucial role in tumour suppres-
sion [8]. Under conditions of DNA damage, cellular stress, or oncogene activation situations,
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p53 regulates several fundamental cellular processes through transactivating target genes,
such as DNA repair, cell apoptosis, and cell cycle arrest. Furthermore, these downstream
reactions result in the repair or elimination of damaged and potentially tumourigenic
cells [9–11]. Murine Double Minute 2 (MDM2) regulates the protein levels of wild-type p53
in cells at various levels, including ubiquitination mediated by ubiquitin-proteasome, the
inhibition of p53 transcriptional activation by inducing p53 export to the cytoplasm, and the
reduction in the degree of p53 binding to its target DNA sequence [12–14]. Moreover, the
activation of p53 leads to its negative regulator, MDM2 overexpression, which is considered
to be an autoregulatory loop [15]. The loss of p53 function induced by p53 mutation or the
intracellular overexpression of MDM2 is thought to be a major cause of tumorigenesis and
progression [16]. Thus, the blocking of MDM2-p53 interaction is a promising treatment
approach for reactivating p53 in cancers that have wild-type or functional p53 [17].

Inspiringly, many agents have been developed based on the tactic of blocking the
protein–protein interaction between p53 and MDM2, with some of them now being tested
in clinical trials both in hematologic malignancy and solid tumour treatments, such as
RG7388, APG-115, and ASTX-295 [18–20]. Nevertheless, none of these MDM2-p53 in-
hibitors achieved regulatory approval. One of the primary causes is due to the fact that
MDM2-P53 inhibitors have several dose-related side effects that have been seen in clinical
research, including the potential to induce gastrointestinal- and bone marrow-related toxic-
ities [21,22]. Hence, it is still desirable to search for new-generation MDM2 inhibitors that
have more effectiveness and tolerable toxicities.

Efforts have been made to develop novel paradigms for designing conceptually distinct
MDM2-p53 inhibitors. Through the proteolysis targeting chimeras (PROTACs) strategy,
some MDM2-targeted heterobifunctional PROTACs have been designed and show potent
MDM2 inhibition activities [23,24]. Interestingly, with MDM2’s twin roles as an E3 ubiquitin
ligase and an anticancer target, He et al. reported a series of homo-PROTACs and proved
their exhilarating MDM2 self-degradation activity. These MDM2 homo-PROTACs can
break down MDM2 proteins without adding additional targets and reducing the possible
side effects [25]. As our previous work potently developed selective MDM2 inhibitors of PE-
Gylation spirooxindole derivatives derived from spiroindolinone pyrrolidinecarboxamide
compound 2 [26–28], here, we developed a dimer, spiroindolinone pyrrolidinecarboxamide
XR-4, as a potent MDM2-p53 inhibitor. This compound can specifically block MDM2–p53
interaction, downregulate MDM2 protein levels, and inhibit wild-type p53 cancer cell
proliferation activity in vitro. Furthermore, XR-4 has been proven to possess anti-tumour
activity in vivo with favourable safety (Scheme 1).
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2. Results
2.1. Rational Design of Dimer Spiroindolinone Pyrrolidinecarboxamide

Based on the chemical structure of a classic MDM2 antagonist, Nutlin-3, Shu et al.
developed a chiral spiroindolinone pyrrolidinecarboxamide derivative named compound
2 [28]. However, our previous work synthesized a cis-cis isomer PEGylation spirooxindole
derivative, XR-2, based on compound 2 to develop a more potently selective MDM2 antag-
onist with acceptable toxicity [26] (Figure 1A). XR-2 presents broad-spectrum anti-tumour
activity both in vitro and in vivo in various cancer types with beneficial safety properties.
Inspired by He et al.’s work [25], we analysed the binding modes of compound 2 and XR-2
with MDM2 (PDB code: 5TRF [29]) using Discovery Studio 3.5 (Figure 1B). The docking
results revealed that the polyethylene glycol side chain on XR-2 was more directly exposed
to the solvent than its core structure, compound 2, was; this side chain may represent
a suitable position for introducing another spiroindolinone pyrrolidinecarboxamide to
obtain a dimer, spiroindolinone pyrrolidinecarboxamide, which could also be regarded as
a homo-PROTAC, as MDM2 belongs to the class of E3 ubiquitin ligases. Therefore, XR-4
was synthesized based on this strategy (Figure 1C).
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Figure 1. The design strategy of dimer spiroindolinone pyrrolidinecarboxamide: (A) the chemical
structures of compound 2 and XR-2; (B) the binding model of compound 2 and XR-2 with MDM2
(PDB: 5TRF); (C) the chemical structure of XR-4.

2.2. Chemistry

Compound 2 was synthesized according to the literature [28]. Schema 2 shows the
procedure for synthesizing critical intermediates c. A solution of 2,2′-((oxybis(ethane-
2,1-diyl)) bis(oxy))diethanol and 1-chloroethyl chloroformate was stirred in CH2Cl2 at
room temperature for 6 h in the presence of Et3N. Then, 200 mL of water was added,
and the resulting mixture was extracted with CH2Cl2 (2 × 50 mL). The organic phase
was separated and washed using brine, 1M hydrochloric acid, and water, successively.
After it had been concentrated through a vacuum, the target product was obtained as an
oil, which was directly used in the next step. The procedure for the synthesis of XR-4 is
outlined in Scheme 2. Compound 2 was dissolved in acetone; then, anhydrous Cs2CO3
and intermediate c were added, and the resulting mixture was mixed overnight at room
temperature. Water was then added following the reaction, and ethyl acetate was used to
extract the mixture. Separated organic phases were washed with brine, hydrochloric acid,
and water, sequentially, and then concentrated under a vacuum. The target product was
obtained after purification via silica gel column chromatography.
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2.3. XR-4 Upregulates p53 Levels in Cancer Cells

Mechanistically, by binding competitively to the p53 pocket of MDM2, an MDM2
inhibitor could prevent the interaction between MDM2 and p53, resulting in p53 accumula-
tion and translocation [17]. Herein, we first investigated whether XR-4 could promote p53
protein accumulation in different cancer cells. The 22Rv1 cell is a human castration-resistant
prostate cancer cell line; this cell line is sensitive to MDM2 inhibitors as it is a p53 wild-type
cell line. Western blot analysis showed that XR-4 dramatically and dose-dependently
increased the amount of p53 protein after 24 h of treatment in 22Rv1 cells. Surprisingly,
XR-4 exerted the activity of activating p53 at a low concentration of 0.04 µM (Figure 2A).
The LNCaP cell is a human castration-sensitive prostate cancer cell line; it is also an MDM2
inhibitor-sensitive p53 wild-type cell line. Similar to the results performed in 22Rv1 cells,
XR-4 also dose-dependently upregulated the p53 protein levels in LNCaP cells (Figure 2B).
The HepG2 cell line is a p53 wild-type human hepatoma carcinoma cell line; thus, then
chose this cell line to analyse of the p53 activation activity of XR-4. As is shown in Figure 2C,
XR-4 also dose-dependently promoted p53 protein expression in HepG2 cells, and we even
observed an upregulation of p53 levels under the 0.008 µM XR-4 treatment. Moreover, we
then detected the time–effect relationship of XR-4 in 22Rv1 cells, and we found that under
the 5 µM XR-4 treatment for 4 h, the p53 protein levels were significantly upregulated,
while it seemed to have no influence on p53 protein levels under the XR-4 treatment for
2 h, and the XR-4 treatment for 8 h was thought to induce the strongest p53 activation
activity (Figure 2D). Finally, we detected whether XR-4 influences the mRNA levels of
p53 via conducting quantitative polymerase chain reaction (qPCR) analysis; the results
indicated that XR-4 had almost no influence on p53 mRNA expression levels under our
chosen concentration treatment both in LNCaP and HepG2 cells (Figure 2E,F). Together,
our results proved that XR-4 could potently promote p53 protein accumulation in differ-
ent cancer cells in both dose-dependent and time-dependent manners by blocking the
MDM2-p53 interaction.

2.4. XR-4 Activates p53 Downstream Target Genes

As our previous work demonstrated that XR-4 induced p53 accumulation in cancer
cells, we then performed qRT-PCR analysis to investigate the influence of XR-4 on p53 target
genes in different cancer cells. The p21 gene is one of the p53 signal pathway downstream
genes, and p21 is a crucial cell cycle regulatory gene. It is involved in the process of cell
growth, differentiation, senescence, and death and is closely related to tumorigenesis [30].
The qRT-PCR results revealed that XR-4 dose-dependently increased p21 mRNA expression
levels, both in LNCaP and HepG2 cells (Figure 3A,C). The p53 downstream target gene,
PUMA, plays an important role in mediating p53-induced cell death [31]. Similarly, our
qRT-PCR results also revealed that XR-4 could dose-dependently upregulate PUMA mRNA
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expression levels both in LNCaP and HepG2 cells (Figure 3B,D). These results surely
confirmed that XR-4 can activate the p53 pathway.
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Figure 2. XR-4 effectively promotes p53 protein accumulation in different cancer cells in both dose-
dependent and time-dependent manners: (A) 22Rv1 cells were treated with XR-4 at the different
concentrations for 24 h, and the protein levels of p53 and β-actin were detected via Western blotting;
(B) LNCaP cells were treated with the gradually rising concentrations of XR-4 for 24 h, and the protein
levels of p53 and GAPDH were detected via Western blotting; (C) Western blotting was used to detect
the levels of p53 and β-actin in HepG2 cells treated with XR-4 at the indicated concentrations for
24 h; (D) Western blotting was performed at different time points after 22Rv1 cells were treated with
5 µM XR-4 and the protein levels of p53 and GAPDH were determined; (E) LNCaP cells treatment
with XR-4 at the indicated concentrations for 24 h; qRT-PCR was performed to measure p53 mRNA
levels and normalised to GAPDH; (F) HepG2 cell treatment with XR-4 at the indicated concentrations
for 24 h and qRT-PCR was performed to measure p53 mRNA levels and normalised to GAPDH.
Experiments were performed in triplicates.
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2.5. XR-4 Downregulates MDM2 Protein Levels

Homo-PROTACs are a type of PROTAC molecule that consists of two identical E3
ligase-targeted ligands. As the structure of XR-4 could be regarded as a homo-PROTAC
molecule, in consideration of its effective p53 pathway activation activity, we chose to use
XR-4 to further evaluate its effects on MDM2 degradation in 22Rv1 cell lines via Western
blot analysis. The results showed that XR-4 dose-dependently induced MDM2 protein
cleavage in 22Rv1 cells (Figure 4A,B). The MDM2 protein DC50 of XR-4 was about 5.0 µM.
These results preliminary proved that XR-4 could play a role as a homo-PROTAC molecule.

2.6. XR-4 Suppresses the Viability of Wild-Type p53 Cancer Cells Both In Vitro and In Vivo

As XR-4 was proven to upregulate the p53 key downstream target genes, such as p21,
PUMA and MDM2, p21 and PUMA can regulate cell cycle arrest, apoptosis, and senescence
in various cancer cell lines. Subsequently, we detected the cell proliferation inhibition
activities of XR-4 in different wild-type p53 cancer cell lines via the CCK-8 (Cell Counting
Kit-8) assay, including LNCaP (prostate cancer), 22Rv1 (prostate cancer), HepG2 (liver
cancer), HCT116 (colorectal cancer), MCF7 (breast cancer), and T24 (bladder cancer) cell
lines. Moreover, we chose the MDM2 inhibitor, RG7388, which is under clinical research
as a positive control. The results revealed that XR-4 showed comparable cell proliferation
inhibition activities to RG7388 in all the detected wild-type p53 cancer cell lines (Table 1).
Notably, we also detected the impact of XR-4 on DU145 (prostate cancer) and PC-3 (prostate
cancer) cell lines, as DU145 is a p53 mutated cell line, while PC-3 is a p53 null cell line. As
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is shown in Table 1, the DU145 and PC-3 cell line proliferation inhibition IC50 values of
XR-4 were both over 50 µM, while the DU145 proliferation inhibition IC50 of RG7388 was
12.6 µM, and the PC-3 proliferation inhibition IC50 of RG7388 was 21.4 µM, which are both
lower than that of XR-4. These results indicate that XR-4 is an effective and selective MDM2
inhibitor with lower off-target cell toxicity than RG7388 has.
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Table 1. The cell proliferation inhibition IC50 of XR-4 and RG7388 in different cancer cell lines detected
via the CCK-8 assay.

Cell Lines P53 Type XR-4 (µM) RG7388 (µM)

LNCaP wild 0.043 0.068
22Rv1 wild 0.66 0.67
HepG2 wild 0.55 0.46
HCT116 wild 0.84 0.75
MCF7 wild 0.31 0.26

T24 wild 0.39 0.51
DU145 mutated >50 12.6
PC-3 null >50 21.4

To evaluate the influence of XR-4 on cancer cells’ clone formation ability, 22Rv1 cells
were treated with different concentrations of XR-4 for about 2 weeks; the results showed
that the XR-4 treatment more effectively reduced the number of 22Rv1 cell colonies in
comparison to that of the negative control (Figure 5A). Western blot analysis also indicated
that XR-4 could induce the accumulation of cleaved PARP, an apoptotic marker protein,
in LNCaP cells in a dose-dependent manner (Figure 5B). Furthermore, flow cytometry
analysis also revealed that XR-4 induced LNCaP cell apoptosis (Figure 5C). These results
suggest that XR-4 could suppress cell proliferation and induce apoptosis through p53
activation in vitro.

Next, we investigated the in vivo tumour inhibition activity of XR-4 using a 22Rv1
xenograft model. As is shown in Figure 6A, 50 mg/kg of XR-4 more potently suppressed
the 22Rv1 xenograft growth compared with that of the negative control group. The tumour
growth inhibition rate was about 66.7% after 15 days of XR-4 treatment. Importantly,
the 50 mg/kg XR-4 treatment showed almost no influence on the mice’s body weight
(Figure 6B). Together, our in vivo research demonstrated that XR-4 possessed potent antitu-
mour efficacy and favourable safety properties.
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Figure 5. XR-4 inhibits cellular proliferation and promotes the apoptosis of wild-type p53 cancer cells
in vitro. (A) After 14 days of treatment with different concentrations of XR-4, 22Rv1 cells were stained
with crystal violet. (B) The protein levels of cleaved PARP and GAPDH were measured via Western
blot after LNCaP cells were treated with XR-4 at indicated concentrations for 24 h. (C) LNCaP cells
were treated with different concentrations of XR-4, flow cytometry analysis were performed to detect
the cell apoptosis levels.
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Figure 6. XR-4 suppressed wild-type p53 tumour progression in vivo: (A) Tumour volume of 22Rv1
xenografts treated with 50 mg/kg XR-4 or vehicle control for 15 days (n = 8); (B) mice weight of
22Rv1 xenografts treated with 50 mg/kg XR-4 or vehicle control for 15 days (n = 8).

3. Conclusions

In summary, we synthesized a potent MDM2-p53 inhibitor, XR-4, which possesses a
dimer, spiroindolinone pyrrolidinecarboxamide, chemical structure. XR-4 can selectively
promote wild-type p53 accumulation in cancer cells, and then activate the downstream
target genes, p21 and PUMA, of the p53 pathway to inhibit cancer cell proliferation and
induce cell apoptosis. XR-4 showed comparable cancer cell proliferation inhibition activity
and lower off-target toxicity compared to those of RG7388 in a broad of spectrum p53
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wild-type cancer cells, including liver cancer, prostate cancer, breast cancer, bladder cancer,
and colorectal cancer cells. Importantly, XR-4 showed potent antitumour efficacy and
desirable safety properties in vivo.

Notably, our works also preliminarily proved that XR-4 could perform as a homo-
PROTAC lead compound that degrades MDM2 protein, which is worthy of a future study
on the structure–activity relationship. All in all, XR-4 is an interesting spiroindolinone
pyrrolidinecarboxamide-derivative dimer with effective p53 activation activity and feasible
lower off-target toxicity.

4. Materials and Methods
4.1. Chemistry

Bis(1-chloroethyl) (((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl)) bis(carbonate)
(linker intermediate): The solution of 2,2’-((Oxybis(ethane-2,1-diyl)) bis(oxy)) diethanol
(1.94 g, 10 mmol, purchased from Sigma-Aldrich, Darmstadt, Germany) and 1-chloroethyl
chloroformate (4.29 g, 30 mmol, purchased from Sigma-Aldrich) was stirred in CH2Cl2
(100 mL, purchased from Bidepharm, Shanghai, China) at room temperature for 6 h in
the presence of Et3N (4.04 g, 52.5 mmol, purchased from Bidepharm, Shanghai, China).
Then, 200 mL of water was added, and the resulting mixture was extracted with CH2Cl2
(2 × 50 mL). The organic phase was separated, and subsequently, washed with brine,
1M hydrochloric acid, and water. After being concentrated through a vacuum, the target
product was obtained as an oil, which was directly used in the next step.
1H NMR (400 MHz, CDCl3): 6.30 (q, J = 5.8 Hz, 1H), 4.29 (dd, J = 3.12 Hz, 2H), 3.68 (dd,
J = 4.6 Hz, 2H), 3.59 (s, 4H), 1.76 (d, J = 5.8 Hz, 3H).

((Oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl) (2′S,2′ ′ ′S,3R,3”R,4′S,4′ ′ ′S,5′R,5′ ′ ′R)-
bis(5′-((4-carbamoyl-2-methoxyphenyl)carbamoyl)-6-chloro-4′-(3-chloro-2-fluorophenyl)-2′-
neopentyl-2-oxospiro[indoline-3,3′-pyrrolidine]-1′-carboxylate) (XR-4): Compound 2 was
synthesized according to the literature [28]. Compound 2 (612 mg, 1.0 mmol) was dis-
solved in acetone (100 mL, purchased from Bidepharm, Shanghai, China), and then an-
hydrous Cs2CO3 (2.0 mmol, purchased from Sigma-Aldrich, Darmstadt, Germany) and
bis(1-chloroethyl) (((oxybis(ethane-2,1-diyl))bis(oxy))bis(ethane-2,1-diyl)) bis(carbonate)
(204 mg, 0.5 mmol) were added, and the resulting mixture was stirred overnight at room
temperature. The reaction mixture was then diluted with water (20 mL) and extracted with
ethyl acetate (2 × 50 mL, purchased from Bidepharm, Shanghai, China) and washed with
brine, hydrochloric acid, and water, before being concentrated through a vacuum. After
purification via silica gel column chromatography, the target product, XR-4, was obtained
(405 mg, yield: 55%; purity: 97%) as a white solid. The melting point of XR-4 was about
155–156 ◦C. 1H NMR (CDCl3, 400 MHz): 10.59 (s, 1H), 8.44 (d, J = 8.24 Hz, 1H), 7.79 (s, 1H),
7.54 (s, 1H), 7.48 (t, J = 6.90 Hz, 1H), 7.28–7.39 (m, 2H), 7.17–7.25 (m, 2H), 7.04 (t, J = 7.96 Hz,
1H), 6.20–6.55 (bs, 1H), 5.35–5.65 (bs, 1H), 4.69 (t, J = 8.84 Hz, 1H), 4.35–4.55 (m, 3H), 3.92
(s, 3H), 3.81 (t, J = 4.46 Hz, 2H), 3.60–3.75 (m, 5H), 3.24 (t, J = 10.7 Hz, 1H), 1.78 (s, 1H),
0.85–1.00 (m, 10H).
13C NMR (CDCl3, 101 MHz): 174.09, 171.38, 168.83, 157.38, 154.90, 149.29, 148.00, 139.75,
134.55, 130.00, 129.75, 128.43, 127.15, 125.26, 124.62, 124.49, 123.54, 123.10, 121.19, 119.97,
117.76, 115.80, 109.62, 70.48, 68.35, 67.66, 66.32, 66.28, 65.16, 55.39, 50.54, 42.50, 30.15,
29.61, 29.50. HRMS (ESI-TOF): m/z calculated for C72H78Cl4F2N8NaO15

+ [M + 2H +
Na]+: 1495.4207, found: 1495.4204. The NMR and HRMS data of XR-4 were showed in
supplementary materials.

4.2. Cell Culture

LNCaP (ATCC, CRL-1740), 22Rv1 (ATCC, CRL-2505), PC-3 (ATCC, CRL-1435), and
DU145 (ATCC, HTB-81) human prostate cancer cell lines were purchased from the American
Type Culture Collection (ATCC). The human colorectal cancer cell line, HCT116 (CL-0096),
human liver cancer cell line, HepG2 (CL-0103), human breast cancer cell line, MCF7 (CL-
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0149), and human bladder cancer cell line, T24 (CL-0227) were purchased from Procell
Life Science & Technology Co., Ltd., Wuhan, China. All cell lines were cultured in a
37 ◦C humidified incubator with 5% CO2 and cultured in medium containing 10% foetal
bovine serum (FBS) (Gibco, Waltham, MA, USA). 22Rv1, LNCaP, PC-3, and T24 cells were
cultured in Roswell Park Memorial Institute (RPMI) 1640 medium (Meilunbio, Dalian,
China). MCF7, HepG2, DU145, and HCT116 cells were cultured in Dulbecco’s Modified
Eagle Medium (DMEM) (Meilunbio, Dalian, China).

4.3. RNA Extraction, Reverse Transcription, and Quantitative Real-Time Polymerase Chain
Reaction (qPCR)

The different types of cancer cells were seeded at a density of ~4 × 105 cells per well
in six-well plates. After 48 h, vehicle (0.2%DMSO) or test compounds were applied at
designated concentrations. After another 24 h of incubation, 500 µL of TRIzol (Invitro-
gen, Carlsbad, CA, USA) was added in each well of six-well plates. A colourless upper
aqueous phase was obtained by adding 100 µL of chloroform to 500 µL of TRIzol reagent.
Precipitation with isopyknic isopropanol was performed on the RNA-containing aqueous
phase. RNA precipitation was washed with 75% ethanol and resuspended using the ap-
propriate volume of RNase-free water. The total RNA was reverse-transcribed using a
reverse transcription kit (Accurate Biology, Hunan, China). cDNA was used for qPCR using
the 2× SYBR Green Mix (Accurate Biology, Hunan, China). The calculation method of
qPCR was the 2−∆∆Ct method, with GAPDH as the housekeeping gene. The specific qPCR
primers were as follows: p53 forward, 5′-CCTCAGCATCTTATCCGAGTGG-3′; reverse,
5′-TGGATGGTGGTACAGTCAGAGC-3′; p21 forward, 5′-ATGAAATTCACCCCCTTTCC-3′;
reverse, 5′-CCCTAGGCTGTGCTCACTTC-3′; PUMA forward, 5′-GACGACCTCAACGCAC
AGTA-3′; reverse, 5′-AGGAGTCCCATGATGAGATTGT-3′; GAPDH forward, 5′-GGTATCG
TGGAAGGACTCATGAC-3′; reverse, 5′-ATGCCAGTGAGCTTCCCGTTCAG-3′.

4.4. Western Blot

Cancer cells were seeded at a density of ~4 × 105 cells per well in six-well plates.
After 48 h, vehicle (0.2% DMSO) or test compounds were applied at designated concentra-
tions. After another 24 h of incubation, cells were washed twice with phosphate-buffered
saline (PBS), and protein samples were obtained by using RIPA lysis buffer (Beyotime
Biotechnology, Shanghai, China). Sodium dodecyl sulphate–polyacrylamide gel elec-
trophoresis (SDS-PAGE) was used to separate protein samples, which were then transferred
to polyvinylidene fluoride (PVDF) membranes. After blocking for 1 h at room temperature
with a blocking buffer (Beyotime Biotechnology, Shanghai, China) for 1 h, the membranes
were incubated overnight at 4 ◦C with primary antibodies. The primary antibodies used in
this research included rabbit anti-MDM2 (Abways, Tracxn Technologies Limited, India),
rabbit anti-p53 (Abways, Tracxn Technologies Limited, India), rabbit anti-cleaved PARP1
(Santa Cruz, CA, USA), mouse anti-GAPDH (Abmart, Shanghai, China), and mouse anti-
β-actin antibody (Abmart, Shanghai, China). Following three washes with TBST buffer
for 10 min each, the membranes were incubated for 1 h at room temperature with the
anti-mouse or anti-rabbit secondary antibodies (Abmart, Shanghai, China). After being
washed with TBST solution three times, protein bands were detected via an enhanced
chemiluminescence (ECL) solution and an Image Analysis System (Sinsage, Beijing, China).
All the experiments were performed in triplicates.

4.5. Cell Viability Assay

Cell counting was performed using a Neubauer haemocytometer. Approximately
3000 cells per well were seeded in 96-well plates for 24, and then incubated with DMSO
(0.5%), XR-4, or RG7388 at indicated concentrations for 72 h. Counting Kit-8 (CCK-8)
solution (Meilunbio, Dalian, China) was used to measure the cell viability. CCK8 reagent
was configured into a medium containing 10% CCK-8 solution and added in the form of
exchange fluid. Ninety-six-well plates supplemented with CCK-8 solution were incubated
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at 37 ◦C for 4 h. Then, the 96-well plate was taken out, and the OD value of each well at a
wavelength of 450 nm was measured using a microplate reader (BioTek, Bedfordshire, UK).
All experiments were performed in triplicates.

4.6. Colony Formation Assay

Cell counting was performed using a Neubauer haemocytometer. About 1000 22Rv1
cells in each well were seeded in six-well plates. Cells were treated with DMSO (0.2%) or
XR-4 at the indicated concentration for 14 days. The cell culture medium was changed
regularly. Following washing with PBS, the colonies were fixed with methanol for 15 min.
After removing the fixative, colonies were stained with 0.1% crystal violet (Solarbio, Beijing,
China) for 15 min and washed with running water. After each well of the six-well plate
was dried in the air, colonies were photographed with a camera.

4.7. Flow Cytometry Assay

The LNCaP cells were seeded at a density of about 4 × 105 cells per well in a 6-well
plate. After being incubated for 48 h, DMSO (0.2%) and XR-4 were added to each well
at designated concentrations. After the compound treatment for 24 h, LNCaP cells were
collected with EDTA-free Tyrisin (Beyotime, Beijing, China) and washed twice with cold
PBS. Then, cells were incubated for 15 min at room temperature with Annexin V-FITC-PI in
a binding buffer. Cell staining was performed, and staining cells were collected on a flow
cytometer (BDC6, BD Biosciences, San Jose, CA, USA). Then, data were analysed using
FlowJo software. Results are expressed as percentages of Annexin V+ cells.

4.8. In Vivo Studies

The mice used in this study, 4-6-week-old BALB/c male nude mice, were purchased
from Shanghai Laboratory Animal Center (Shanghai, China). The 22Rv1 cells (5 × 106 cells
with Matrigel at a ratio of 1:1) were subcutaneously injected into the left flanks of the
mice. When the average tumour volumes reached about 100–150 mm3, the mice were
assigned randomly to 2 groups consisting of 8 mice each. XR-4 was administered once daily
intraperitoneally for 15 days. Tumour volume and mice’s body weight were measured
every other day, and data were recorded and are represented as mean ± SD. The tumour
volume (V) was calculated using the formula V = (L ×W2)/2 (mm3), where L is the longest
diameter, and W is the diameter perpendicular to L of the tumour. All animal experiments
were approved by the KeyGEN BioTECH Institutional Animal Care and Use Committee
(Reference number: IACUC-20210302).

4.9. In Silico Docking

The molecular docking of compound 2 and the XR-2 to MDM2 protein (PDB code:
5TRF) was conducted as described in our previous works [26]. The crystal structure
of MDM2 (PDB code: 5TRF) was downloaded from the PDB database (https://www.
rcsb.org, accessed on 24 October 2020). Chain A of the MDM2 crystal structure was
remained and was modified by the ‘protonate 3D’ module of Discovery Studio 3.5. Two-
dimensional chemical structures of compound 2 and XR-2 were drawn using the Chemdraw
18.1 software, and then were generated in three-dimensional structures using the ‘prepare
ligands’ module Discovery Studio 3.5. The binding site was centred at Ile99 in MDM2 with
a radius of 10 Å to cover the binding pocket of MDM2. Then, the prepared compounds
were docked into the MDM2 chain A binding site using the ‘Libdock’ module of Discovery
Studio 3.5 in default mode. After analysing the 10 binding poses of compound 2 and XR-2
to MDM2, we selected the highest-ranked pose for the MDM2 structure as the binding
model of compound 2 and XR-2.

4.10. Statistical Analysis

Statistical significance was defined as p-values less than 0.05. Student’s t-test was
used to compare the two groups. One-way ANOVA analysis of variance was performed to

https://www.rcsb.org
https://www.rcsb.org
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compare two or more groups. GraphPad Prism software (version 8.0) was used to perform
statistical analysis on the three independent studies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/molecules28093912/s1.
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