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Abstract: To investigate the flavor changes in goat meat upon storage, the volatile components
observed in goat meat after different storage periods were determined using gas chromatography–ion
mobility spectrometry (GC–IMS). A total of 38 volatile organic compounds (VOCs) were determined
from the goat meat samples, including alcohols, ketones, aldehydes, esters, hydrocarbons, ethers,
and amine compounds. 1-Hexanol, 3-Hydroxy-2-butanone, and Ethyl Acetate were the main volatile
substances in fresh goat meat, and they rapidly decreased with increasing storage time and can be
used as biomarkers for identifying fresh meat. When combined with the contents of total volatile
basic–nitrogen (TVB-N) and the total numbers of bacterial colonies observed in physical and chemical
experiments, the characteristic volatile components of fresh, sub-fresh, and spoiled meat were
determined by principal component analysis (PCA). This method will help with the detection of
fraudulent production dates in goat meat sales.

Keywords: goat meat; GC-IMS; storage time; volatile components; PCA

1. Introduction

Goat meat is a high-quality meat source that is not only nutritious but also low in fat,
cholesterol, and saturated fatty acids when compared to beef and pork [1–3]. However, the
physiological and biochemical metabolism of goat meat after slaughter quickly changes the
quality of fresh meat, and the phenomena of rotting, discoloration, and staling readily occur
in the circulation chain of storage, transit, and sale [4–6]. Freshness is the fundamental
metric used to assess the nutritive value and security of meat products for sellers and
consumers [7,8]. Physical and chemical testing or microbial experiments are highly accurate,
but the operation processes are cumbersome, the experimental conditions are demanding,
and the tests are time-consuming and laborious [9]. Although sensory analysis is simple, the
outcomes of this type of evaluation are frequently subjective and cannot provide accurate
data for quantitative or qualitative analysis [10].

The rapid identification of the freshness of meat products is an important topic
in food research. Nowadays, instrumental analytical technologies, including electronic
nose [11,12], spectroscopy [13–15], gas chromatography-olfactometry (GC-O) [16,17], and
chromatography–mass spectrometry [18–20], etc., have been widely used in food quality
characterization, such as food flavor detection, adulteration traceability, and other applica-
tions. GC-IMS technology combines the high separation capacity of gas chromatography
and the fast response of ion mobility spectrometry [21]. When compared with an electronic
nose and gas chromatography–mass spectrometry (GC-MS), GC-IMS overcomes the poor
qualitative accuracy of GC, difficult separation of cross mixtures, and low sensitivity of
complex mixture analysis [22,23]. Headspace-gas chromatography (HS-GC) coupled with
ion mobility spectrometry (IMS) has been proposed as an alternative to plate counting to
detect and quantify microbial contamination in pomegranate juice [24]. Research toward
establishing fingerprint analysis using GC-IMS technology combined with stoichiometry
has progressed rapidly [25–31]. For example, Tian et al. reported the use of GC and GC-
IMS technologies to detect peanut oil (PO) adulterated with rapeseed oil (RO) in varying
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ratios, with good adulteration determination results obtained using GC-IMS in conjunction
with principal component analysis (PCA) and component analysis (CA) [32]. Chen et al.
employed GC-IMS to rapidly and non-destructively profile the scent of commercial coffee
and quickly categorize coffee samples [33]. GC-IMS was also used for the flavor compound
analysis of sheep meat [34–37]. However, the use of GC-IMS to detect the freshness of goat
meat has not been carefully studied.

In this study, GC-IMS combined with PCA and Euclidean distance analysis was used
to distinguish the freshness of different samples of goat meat. The volatile basic nitrogen
(TVB-N) contents and total viable counts (TVCs) of goat meat samples of different degrees
of freshness were also detected and used for additional judgment. The results show that
the multivariate, rapid, non-destructive evaluation model of goat meat freshness based
on GC-IMS can effectively replace the traditional method used for goat meat freshness
evaluation and that the method can be applied to an online inspection system. Our study
shows that the freshness of goat meat can be detected to ensure the safety of meat supplies
based on GC-IMS technology with the help of appropriate stoichiometric analysis methods.

2. Results
2.1. Experimental Results Obtained for TVB-N and TVC

The TVB-N and TVC were tested by Chinese standards, and the results were shown in
Figure 1. TVB-N refers to the organic nitrogen produced by protein breakdown and fatty
acid abortion during the storage process of meat. [38]. As shown in Figure 1 (black line),
the TVB-N values gradually increased upon extending the storage time. The TVB-N value
of goat meat exhibited a significant growth rate after 16 d of storage (15.9 mg/100 g) and
was above the limit of fresh meat (15 mg/100 g) in the current Chinese hygienic standard
(GB 2707-2016) [39]. The TVC of the goat meat samples also showed an increasing trend
upon storage (Figure 1, red line). According to the Chinese national food safety standard
(GB/T 9961-2008), the upper limit of TVC in fresh and frozen goat meat is 5 log CFU/g.
When refrigerated for 12 d, the TVC was close to this critical value.
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Figure 1. Changes in the TVC and TVB-N content of goat meat upon storage.

2.2. GC-IMS Atlas Analysis

According to the GC-IMS three-dimensional (3D) spectrogram (Figure 2), we found
that the volatile organic compounds (VOCs) in fresh, sub-fresh, and spoiled meat samples
exhibited significant differences in terms of ion peak signal intensity and quantity with
time. All samples exhibited similar peak signal distributions, which indicated that similar
volatile compounds were present after different storage times. However, with increased
sample corruption levels, some VOCs showed different degrees of increase or decrease
with increase in the storage time.
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Figure 2. A comparison of the GC-IMS 3D spectra obtained for the fresh, sub-fresh, and spoiled
meat samples.

Figure 3 shows the GC–IMS two-dimensional (2D) spectra obtained for the goat meat
samples of different freshness. The spectra show all of the volatile compounds in the
samples. The ordinate is the retention time of the VOCs during the GC separation, the
abscissa is the relative drift time of VOCs in the IMS separation when compared with the
reaction ion peak, and the red vertical line at the abscissa 1.0 in Figure 3a is the reactive
ion peak (RIP). Figure 3b shows the difference in samples observed by the difference
comparison model [35,40]. The white and red shades of the spots indicate the degrees of
accumulation and decomposition. White indicates lower intensity, and red indicates higher
intensity. The intensity increases as the color deepens. Each point on either side of the RIP
represents a VOC. Most signals appear in the hold time of 100–400 s and the drift time of
1.0–1.5 s.
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The differences in goat meat samples were compared by applying a difference compar-
ison model. The topographic map of fresh meat (left) was used as a reference, subtracted
separately to produce the difference spectra of sub-fresh meat (middle) and spoiled meat
(right). If the volatile components were consistent, the background after subtraction was
white. Red indicates that the substance concentration was higher than the reference value,
and blue indicates that the substance concentration was lower than the reference value; the
darker the color, the greater the difference.

2.3. Analysis of the VOCs in Goat Meat
2.3.1. Retention Index Distribution of VOCs in Goat Meat

Table 1 and Figure 4 show that FlavourSpec® can effectively capture VOCs with a low
retention index (RI < 1000), accounting for 94.7%. When compared with GC-MS results, the
incubation temperature, injection temperature, and column temperature results obtained
via GC-IMS were lower [41,42]. Volatile and semi-volatile organic compounds (SVOCs)
can be effectively captured and detected using IMS after pre-separation via GC during the
upwelling process. Therefore, GC-IMS has obvious advantages in detecting VOCs in goat
meat samples.

Table 1. Specific information on the volatile compounds in goat meat samples of different freshness.

Compounds MW RI Rt (s) Dt (RIPrel)
The Peak Intensity

Fresh Meat Sub-Fresh Meat Spoiled Meat

Nonanal 142.2 1109.4 507.00 1.47224 134.67 ± 16.47 112.6 ± 14.37 100.36 ± 7.2
6-Methyl-5-hepten-2-one 126.2 982 332.67 1.16872 819.63 ± 117.43 199.81 ± 26.1 292 ± 31.68

2-Pentylfuran 138.2 994.4 343.20 1.26022 152.99 ± 57.26 20.31 ± 2.71 21.56 ± 4.07
2-Octanone 128.2 988.9 338.52 1.35933 201.15 ± 53.1 30.03 ± 8.61 25.28 ± 4.49

2-Heptanone-M 114.2 894.4 258.57 1.25869 277.81 ± 43.47 80.54 ± 15.88 67.6 ± 5.84
2-Heptanone-D 114.2 894 258.18 1.63533 651.06 ± 315.24 35.53 ± 1.95 35.14 ± 7.79

1-Hexanol-M 102.2 872.6 246.48 1.32121 1367.78 ± 204.33 138.8 ± 68.68 88.76 ± 11.05
1-Hexanol-D 102.2 869.6 244.92 1.63838 1027.97 ± 298.11 36.27 ± 5.67 35.33 ± 6.1

(E)-2-Heptenal 112.2 954.4 309.27 1.26022 87.47 ± 17.56 17.1 ± 4.38 20.72 ± 5.89
Furfural-M 96.1 829.1 223.86 1.08333 228.79 ± 201.4 77.46 ± 14.29 59.18 ± 2.91
Furfural-D 96.1 828.3 223.47 1.34408 379.64 ± 260.16 38.96 ± 4.74 38.45 ± 4.11
Hexanal-M 100.2 791.3 204.23 1.25743 769.3 ± 78.18 108.25 ± 30.82 91.89 ± 28.01
Hexanal-D 100.2 791.3 204.23 1.56718 951.23 ± 239.23 21.78 ± 4.46 24.85 ± 1.3

2-Hexanone-M 100.2 781.7 199.51 1.1807 67.42 ± 8.89 40.13 ± 28.33 15.4 ± 2.08
2-Hexanone-D 100.2 781 199.27 1.49755 370.76 ± 77.81 19.05 ± 2.6 19.47 ± 2.54
1-Pentanol-M 88.1 763.4 192.06 1.24606 506.38 ± 62.43 141.63 ± 74.77 69.22 ± 5.47
1-Pentanol-D 88.1 759.7 190.57 1.51176 361.02 ± 52.76 19.02 ± 2.61 17.43 ± 4.73
Isopentanol 88.1 728 177.66 1.49613 332 ± 117.62 27.71 ± 18 27.62 ± 12.22

3-Hydroxy-2-butanone 88.1 709.3 170.04 1.33844 3349.22 ± 1203.65 140.62 ± 26.97 110.76 ± 6.14
Pentanal 86.1 693.8 163.75 1.42336 97.36 ± 27.32 4.41 ± 2.02 4.22 ± 1.72

2-Pentanone 86.1 693 163.40 1.36302 495.65 ± 176.86 19.57 ± 5.45 12.47 ± 2.47
1-Butanol 74.1 685.4 160.79 1.37978 411.35 ± 57.75 76.87 ± 32.02 34.27 ± 7.71

3-Methylbutanal 86.1 648.4 151.01 1.41777 320.47 ± 105.92 77.03 ± 80.15 36.6 ± 25.94
Ethyl Acetate 88.1 608.7 140.53 1.34403 4009.34 ± 1618.55 63.88 ± 7.93 71.83 ± 0.62
2-Butanone 72.1 588.2 135.12 1.25353 3265.26 ± 130.9 2135.66 ± 826.26 1461.21 ± 234.95

Methyl acetate 74.1 551.2 125.34 1.18872 661.91 ± 39.34 89.72 ± 70.73 96.34 ± 62.91
2-Propanone 58.1 500.9 112.06 1.12057 6216.66 ± 86.68 1936.03 ± 675.44 1212.88 ± 178.14

Ethanol 46.1 469.8 103.86 1.12839 3654.02 ± 57.73 263.72 ± 179.61 201.85 ± 59.64
Acetic acid 60.1 612.7 141.58 1.15967 224.97 ± 48.26 1711.15 ± 333.28 2011.53 ± 64.07

Ethyl propanoate 102.1 689.1 161.83 1.45576 7.21 ± 0.8 32.41 ± 42.79 9.53 ± 1.53
Dimethylamine 45.1 446 97.57 0.95409 163.36 ± 14.1 1005.22 ± 844.72 2576.22 ± 418.3
Trimethylamine 59.1 520.7 117.30 1.15855 1330.47 ± 138.29 2587.24 ± 1048.38 4036.3 ± 580.56

Ammonia 17 447.4 97.92 0.89375 392 ± 18.72 4593.52 ± 1263.04 3087.01 ± 1186.73
Styrene 104.2 891.1 256.14 1.41659 125.45 ± 15.61 262.75 ± 103.59 283.26 ± 60.9
Octanal 128.2 991.5 340.73 1.42632 120.71 ± 5.98 168.41 ± 35.68 126.78 ± 7.55

(E)-2-Hexenal 98.1 824.7 221.60 1.19013 24.45 ± 5.18 118.97 ± 29.93 57.1 ± 9.06
Ethyl 2-methylbutanoate 130.2 826.9 222.76 1.24848 103.69 ± 23.04 103.76 ± 19.55 62.29 ± 9.9

Dipropyl disulfide 150.3 1094 484.99 1.48917 47.67 ± 7.68 125.7 ± 20.48 73.99 ± 7.63

Note: RI = retention index, Rt = retention time, and Dt = migration time.
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As shown in Table 1, all of the 38 identified VOCs could be divided into 9 groups, in-
cluding 10 aldehydes, 10 ketones, 7 alcohols, 4 esters, 3 amines, 1 ether, 1 acid,
1 hydrocarbon, and 1 heterocyclic compound. The other 24 peaks were unidentifiable
due to the imperfect library databases. Furthermore, higher proton affinities or higher
concentrations will form dimers or multimers; six volatile compounds, including fur-
fural, hexanal, 2-heptanone, 2-hexanone, 1-hexanol, and 1-pentanol, coexist as monomers
(abbreviated as M) and dimers (abbreviated as D).

The main VOCs in fresh meat were (E)-2-heptene aldehyde, hexanal, furfural, amyl
aldehyde, 3-methyl butyl aldehyde, 6-methyl-5-heptene-2-ketone, 2-ketone ketone,
2-heptanone, 2-hexanone, 2-pentanone, 3-hydroxy-2-butanone, 2-ethyl ketone, acetone and
1-hexanol, 1-amyl alcohol and isoamyl alcohol, 1-butyl alcohol, ethanol, 2-amyl furan, ethyl
acetate, and methyl acetate. Dipropyl disulfide, ethyl 2-methylbutyrate, ethyl propionate,
(E)-2-hexenal, octanal, and other substances were detected with an increase in the stor-
age time (sub-fresh meat). Finally, higher concentrations of acetic acid, dimethylamine,
trimethylamine, ammonia, and styrene were observed in spoiled goat meat. In particular,
1-Hexanol (flower, green, and resin odors) [43], 3-Hydroxy-2-butanone (sweet and sour
odors) [44] and Ethyl Acetate (pineapple odor) [45] have a higher intensity in fresh meat
than in un-fresh meat and can be used as identification indicators for fresh meat.

2.3.2. Characteristic Distribution of VOCs in Goat Meat

To further compare the differences in the VOCs in goat meat samples of different
freshness, the fingerprints of the volatile compounds in goat meat were established using
the Gallery Plot plug-in, shown in Figure 5. Each row represents a sample, and each sample
was measured three times in parallel, with all of the signal peaks of the VOCs contained in
the sample at the same retention time and drift time.
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Figure 5. Fingerprints of volatile compounds in goat meat samples of different freshness.

From the ionic peak arrangement of the volatile substances shown in Figure 5, it can
be seen that there are obvious similarities between the parallel sample groups and that the
volatile substances in the goat meat samples with different degrees of freshness showed
significant differences [46]. Taking fresh goat meat as a reference, there were significant
differences in the types and concentrations of VOCs between sub-fresh meat and spoiled
meat samples. There were similar changes in the types and concentrations of VOCs between
the sub-fresh meat and spoiled meat samples, but there were also differences, which further
indicated that GC-IMS could effectively distinguish the different freshness levels of the
goat meat samples. On the whole, a variety of volatile substances found in fresh goat meat
were significantly reduced with increasing storage time.

Combining Figure 5 and Table 1 (compound numbering is consistent with the finger-
prints) shows that the VOC contents (including nonyl aldehyde, (E)-2-heptene aldehyde,
hexanal, furfural, amyl aldehyde, 3-methyl butyl aldehyde, 6-methyl-5-heptene-2-ketone,
2-ketone ketone, 2-heptanone, 2-hexanone, 2-pentanone, 3-hydroxy-2-butanone, 2-ethyl
ketone, acetone and 1-hexanol, 1-amyl alcohol and isoamyl alcohol, 1-butyl alcohol, ethanol,
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2-amyl furan, ethyl acetate, methyl acetate, and other substances) were higher than those
observed in the other samples.

The contents of dipropyl disulfide, ethyl 2-methyl butyrate, ethyl propionate,
(E)-2-hexenal, octanal, and other substances in the sub-fresh meat samples were higher.
The contents of acetic acid, dimethylamine, trimethylamine, ammonia, styrene, and other
substances in the samples of sub-fresh meat and spoiled meat were higher.

2.4. Cluster Analysis of the Meat Samples

Principal component analysis (PCA) was used for dimensionality reduction of the
2D and 3D data obtained from GC-IMS, in order to visually analyze the characteristics of
frozen goat meat samples with different storage times. In general, when the cumulative
contribution rate reaches 60%, the PCA model can be used as the separation model [47–49].
Figure 6 shows that the sum of the contribution rates of principal components 1 and 2
was >80%, and the comprehensive variables obtained after reduction of the dimensionality
can express most of the information of the original variables in a two-dimensional space.
When the cumulative variance contribution rates were 77% and 10%, the two major compo-
nents of mutton at different freshness levels were clearly separated. The difference between
each sample in the group is relatively concentrated in a certain range, and other groups of
data clusters show clear spacing.
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Figure 6. PCA analysis of VOCs found in goat meat samples of different freshness.

As shown in the PCA distribution map, it can be clearly seen that, in a completely
independent space, goat meat samples of different freshness can be well distinguished in
the visualization. Fresh meat can be distinguished according to negative score values for
PC1 and negative score values for PC2 (except the fresh meat 2 sample). Sub-fresh meat
can be distinguished by positive score values for PC1 and positive score values for PC2.
Spoiled meat can be distinguished by positive score values for PC1 and negative score
values for PC2. These results also suggest that storage time results for the same sample
have good repeatability and that the specificities of samples with different storage times
are more obvious.

The R program was used to further analyze the VOCs in goat meat samples under
different storage conditions (Figure 7). The horizontal clustering results of the clustering
heat map represent the relative content relationships between samples of different freshness
degrees. The cluster analysis results showed that the samples of sub-fresh meat and spoiled
meat could be grouped into one class. The changes in acetic acid, styrene, dimethylamine,
trimethylamine, and other substances showed regularity in un-fresh meat. Acid com-
pounds are more easily detected in long-term stored meat, the production of which can be
initiated by enzymes or microorganisms existing in the goat meat [50]. When compounds
containing nitrogen, including Dimethylamine, trimethylamine, and ammonia, exceed a
particular threshold in goat meat, an offensive stench is produced. The detection of volatile
organic nitrogen compounds at high concentrations indicates the massive degradation
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of proteins and amines [51]. This tendency of changes in TVB-N levels was also noticed.
Unsurprisingly, as the meat spoiled further, the relative concentrations of nonanal, 3-methyl
butanal, 1-butanol, and other chemicals declined. The changes in typical flavor substances
make it easy for us to distinguish between fresh and un-fresh goat meat by GC-IMS.

Molecules 2023, 28, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 7. Heat map clustering of volatile substances produced during storage of the goat meat 
samples. 

The data processed using PCA were applied to cluster analysis, and goat meat 
samples with known storage times were used as test samples to test the classification 
effect. Due to the small number of samples in each storage period, the nearest-neighbor 
algorithm was used for the analysis. Figure 8 shows that goat meat samples at the same 
stage had high similarity and close sample distances. Therefore, the analysis using the 
nearest-neighbor algorithm was suitable for the discrimination of goat meat freshness. 

 

Figure 7. Heat map clustering of volatile substances produced during storage of the goat
meat samples.

The data processed using PCA were applied to cluster analysis, and goat meat samples
with known storage times were used as test samples to test the classification effect. Due to
the small number of samples in each storage period, the nearest-neighbor algorithm was
used for the analysis. Figure 8 shows that goat meat samples at the same stage had high
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similarity and close sample distances. Therefore, the analysis using the nearest-neighbor
algorithm was suitable for the discrimination of goat meat freshness.
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3. Discussion

Based on GC-IMS detection, the levels of volatile components in goat meat samples of
different freshness changed significantly. According to our results, there were 62 VOCs,
but, due to the imperfect database, only 38 volatile substances had qualitative results; the
remaining 24 VOCs need further study. There were 32 monomers in 38 volatile substances,
including 5 alcohols, 8 ketones, 8 aldehydes, 4 esters, and 7 others. Fresh meat contains more
alcohol and aldehyde VOCs. Alcohols were common flavor substances found in various
meats, such as fish [52,53], chicken [54], pork [55], duck [56], and so on. Alcohols mainly
originate from the oxidation of unsaturated fats, and the threshold value of unsaturated
alcohols is low, which has a great influence on flavor; 1-Amyl alcohol, for example, has
a green odor [57]. Aldehydes mainly originate from lipid oxidation and have lower
thresholds, which plays a crucial role in the flavor of meat [34]. Hexanal and pentaldehyde
had berry, nut, and fruit fragrances; furfural had a sweet popcorn and wood odor; while
nonanal and (E)-2-heptenal had a fatty fragrance [24,25,57]. Ketones are derived from the
Maillard reaction and fat degradation [26]. 2-Heptanone, 2-pentanone, and 2-butanone
have the aromas of banana, wood, and sweet coconut fruit, respectively, and aldehydes
give lamb a pleasant aroma.

Upon extending the storage period, alcohols and aldehydes rich in fruit flavors and
fragrances were no longer detected in the sub-fresh meat, and flavor began to change
dramatically. Only ethyl propionate, octyl aldehyde, and other substances with good
flavors of fat and fruit were detected. Ethyl acetate, which has a fruity aroma, underwent a
significant reduction during storage, which is common in fresh meat [58].

In addition, the rancid odors of dimethylamine, trimethylamine, ammonia, and other
substances were detected in large quantities in the spoiled meat samples, indicating that
the meat was seriously corrupted. Figure 6 shows that dimethylamine, trimethylamine,
and other volatile components exhibited obvious increasing trends with an increase in
storage time. The dimethylamine, trimethylamine, acetic acid, and other characteristic
flavor peak regions of sub-fresh meat and spoiled meat were obviously different from those
of fresh meat and can be used as characteristic fingerprint regions to identify spoiled meat.
Therefore, the storage time of goat meat can be judged by the increase and decrease in
VOCs and the relative change in the concentration of these substances.

The physiological and biochemical metabolism of fresh goat meat during storage will
make the quality of fresh goat meat change rapidly. When combining the total number of
bacteria and detection results for volatile base nitrogen (TVB-N), the quality of goat meat
reached the sub-fresh stage when it was stored for 13 d. After 17 d of preservation, the goat
meat seriously deteriorated and became spoiled. Based on GC-IMS fingerprint analysis,
dimethylamine, trimethylamine, acetic acid, ammonia, styrene, and other characteristic
volatile components can be used to identify the freshness and chilled storage time of
goat meat.
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4. Materials and Methods
4.1. Materials

Fresh goat meat samples (the cleaned hind leg meat of the goat was cut into small
pieces 1 × 1 × 1 cm in size) were purchased from RT-Mart in Bengbu, placed in an insulated
box at low temperature, and brought back to the laboratory. Plate Count Agar (PCA) was
purchased from Solarbio (Beijing, China). All other chemicals and solvents were obtained
from were purchased from Adamas-beta Reagent Co., Ltd. (Shanghai, China).

4.2. Sample Processing

The same batch of goat meat was divided into the control group and experimental
group. Seven batches of goat meat from the same source were prepared, marked for
subsequent detection, and sealed at 4 ◦C for storage.

4.3. Determination of TVB-N and TVCs

The method used for the determination of TVB-N in chilled goat meat was performed
according to the Chinese standard GB 5009.228-2016 [59]. The determination of the TVB-N
of the goat meat samples was performed on an Automatic Kjeldahl nitrogen analyzer
(K9860, Hanon, Jinan, China). The results were expressed as TVB-N (mg/100 g).

The TVC of the goat meat samples was determined according to a method described
in the literature [60]. A sample of 5 g of goat meat was sterilely weighed and homogenized
with 45 mL of bacteria-free 0.85% NaCl solution for 1 min. From this dilution, other decimal
dilutions were prepared using 0.85% NaCl solution. Then, 0.1 mL of the diluted samples
was spread onto plate count agar for the enumeration of the TVCs. The inoculated plates
were then incubated for 72 h at 30 ◦C for TVC analysis. All counts were carried out in
duplicate, and the results were expressed as log CFU/g.

4.4. The experimental Method of GC-IMS
4.4.1. Instrumentation

The analyses of goat meat samples were completed on an IMS instrument (FlavourSpec®

Gesellschaft für Analytische Sensorsysteme mbH, Dortmund, Germany) equipped with an
autosampler unit. The specifications of the chromatographic column were as follows: MXT-5;
15 m × 0.53 mm ID; film thickness, 1 µm.

4.4.2. GC-IMS Conditions

Headspace incubation temperature, 60 ◦C; incubation time, 15 min; incubation speed,
500 rpm; injection volume, 100 µL; injection needle temperature, 65 ◦C; non-shunt mode;
cleaning time, 0.50 min. The carrier gas was high-purity N2 (≥99.999%). The chromato-
graphic column temperature was 60 ◦C, and the chromatographic running time was 20 min.
The flow rate gradient of carrier gas was set to 2.00 mL/min, kept for 2 min, and linearly
increased to 20.00 mL/min over 6 min. It was linearly increased to 100.00 mL/min over
2 min and kept for 5 min.

4.4.3. Detection Method

Fresh meat samples, secondary fresh meat samples kept fresh for 12 days, and stale
meat samples kept fresh for 17 days were selected. After crushing, 2 g meat samples were
weighed and placed in a 20 mL headspace bottle for incubation. The headspace components
in the bottle were extracted with a heated injection needle, and the volatile components
were analyzed using a FlavourSpec® flavor analyzer.

4.4.4. Data Analysis

Commercial VOCal software (0.2.9, G.A.S. Gesellschaft für analytische Sensorsysteme
mbH, Dortmund, Germany) was used for the qualitative and quantitative analysis of the
spectrograms and data. The NIST database and IMS database built-in software systems
were used for qualitative analysis of the substances. Each of the dots represents a VOC.
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The reporter plug-in was used to directly compare the spectral differences between the
samples (3D spectral, 2D top view, and differential spectral). The topographic plot of
the fresh meat sample was selected as a reference, and the topographic plots of the other
samples were deducted from the reference. The white and red shades of the spots indicate
the degrees of accumulation and decomposition. The ordinate is the retention time of
VOCs in the GC separation, the abscissa is the relative drift time of the VOCs in the IMS
separation compared to the reaction ion peak, and the red vertical line at abscissa 1.0 is
the RIP (normalized). The VOCs of the different samples were compared visually and
quantitatively using Gallery Plot: Fingerprint comparison. Dynamic PCA was performed
using the Dynamic PCA plug-in, which was used for cluster analysis of the samples and
rapid determination of the unknown samples. Nearest-neighbor fingerprint analysis was
used to discover the nearest neighbors by calculating the Euclidean distances between two
samples and retrieving the minimum distance, which was used to evaluate the strength of
compounds in the region and make a rapid comparison of the samples.

5. Conclusions

In order to develop a method for rapidly detecting goat meat freshness, this study used
GC-IMS technology to determine the volatile components in goat meat at different periods
of storage combined with physical and chemical experiments to assess TVB-N contents
and total numbers of bacteria to determine fingerprints for fresh meat, sub-fresh meat,
and spoiled meat. The results of our fingerprint analysis showed that the dimethylamine,
trimethylamine, acetic acid, and other characteristic volatile component peak regions of
sub-fresh meat and spoiled meat were significantly different from those of fresh meat. These
can be used as characteristic fingerprint regions for identifying spoiled meat. Dynamic
principal component analysis and nearest-neighbor Euclidean distances can be used to
analyze the differences between different grades of meat, which can be used to quickly
determine the freshness of goat meat.
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