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Abstract: Luminescent polymer nanomaterials not only have the characteristics of various types of
luminescent functional materials and a wide range of applications, but also have the characteristics
of good biocompatibility and easy functionalization of polymer nanomaterials. They are widely used
in biomedical fields such as bioimaging, biosensing, and drug delivery. Designing and constructing
new controllable synthesis methods for multifunctional fluorescent polymer nanomaterials with
good water solubility and excellent biocompatibility is of great significance. Exploring efficient
functionalization methods for luminescent materials is still one of the core issues in the design
and development of new fluorescent materials. With this in mind, this review first introduces the
structures, properties, and synthetic methods regarding fluorescent polymeric nanomaterials. Then,
the functionalization strategies of fluorescent polymer nanomaterials are summarized. In addition,
the research progress of multifunctional fluorescent polymer nanomaterials for bioimaging is also
discussed. Finally, the synthesis, development, and application fields of fluorescent polymeric
nanomaterials, as well as the challenges and opportunities of structure–property correlations, are
comprehensively summarized and the corresponding perspectives are well illustrated.

Keywords: light-emitting polymer nanomaterials; rare earth polymers; semiconducting polymers;
organic fluorescent small molecule cell imaging; biomedical imaging

1. Introduction

Bioluminescent imaging is a visual imaging method that detects the intrinsic fluores-
cence of organisms, or the intensity of fluorescence luminescence after fluorescent materials
mark organisms. Compared with traditional medical diagnostic imaging methods, it has
the characteristics of fast imaging speed, high resolution, and applying no radiation dam-
age to organisms. Applications can range from micron-sized cells to large-sized living
organisms [1–3]. After years of research and development, commercial bioluminescence
imaging systems are now widely used in the biomedical field, including laser scanning
confocal microscopes, two-photon laser scanning microscopy imaging systems, and in vivo
fluorescence imaging techniques. In combination with traditional biological imaging tech-
niques such as magnetic resonance imaging (MRI), ultrasonic imaging (US), and computed
tomography (CT), etc., the functions are complementary, and more accurate and effective
biological imaging can be achieved, providing a reliable imaging method for the early
diagnosis of cancer [4–6].

At present, fluorescent imaging materials mainly include inorganic fluorescent func-
tional materials (quantum dots, rare earth luminescent materials, noble metal nanomateri-
als, etc.) and organic fluorescent functional materials (organic small molecule fluorescent
materials and semiconducting polymers) [7–9]. Among them, quantum dots have good
fluorescence quantum efficiency and photostability, but cannot avoid the biological toxicity
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of heavy metals [10,11]. Organic small molecule fluorescent dyes are the most widely used
class of fluorescent materials. However, due to the disadvantages of poor stability, easy
photobleaching, small Stokes shift and short fluorescence lifetime, its application range is
greatly limited [12]. Rare earth luminescent materials, compared with other fluorescent
polymer materials, have a narrow emission band (10–20 nm) and a large Stokes shift. The
emission lifetime from microseconds to milliseconds can be achieved, which greatly re-
duces the interference of the self-luminous background of biological tissues. However,
the material itself has poor biocompatibility, and it is prone to fluorescence aggregation
quenching or quenching by water in a physiological environment [13,14]. Semiconduct-
ing polymers also have many excellent characteristics, for example, good photostability
and photothermal performance, easy functional modification of the surface of the mate-
rial, and good biocompatibility. However, the molecular weight is not easy to control
during the preparation process, and the metabolic mechanism in the human body is still
unclear [15,16].

Fluorescent polymer nanomaterials are prepared by physically doping or chemically
bonding amphiphilic block polymers and fluorescent functional materials [17,18]. The
composite material has the characteristics of good optical stability and wide application
range of functional fluorescent materials. Additionally, it is also possible to select polymer
monomers with different functions; while retaining the good water solubility and excellent
biocompatibility of polymer nanomaterials, the controllable synthesis of properties such
as size, morphology, stability, and surface properties can be achieved [19,20]. The comple-
mentary advantages of the two provide new ideas for expanding the application range of
fluorescent functional materials in the field of biomedicine and have attracted the extensive
attention of scientific researchers [21–23].

In summary, this paper discusses the functionalization strategy of fluorescent polymers
and the preparation methods for fluorescent polymer nanomaterials. It also systematically
introduces the research and development status and application prospects of fluorescent
polymer nanomaterials based on rare earth luminescent materials, semiconducting poly-
mers, and small organic molecules from recent years. It is emphasized that the design
and application of fluorescent polymer nanomaterials should be functionalized from the
perspective of synthesis and optimization according to need. Finally, the development
direction and challenges of polymer nanomaterials in the fields of optics and medical
tumors are prospected.

2. Fluorescent Polymer Functionalization Strategy

Ideal bioluminescent imaging probes, in addition to high fluorescence efficiency and
stable luminescent properties, also need to have good monodispersity in aqueous systems.
They have low toxicity to biological organisms and active groups on the surface to facilitate
the connection of targeting molecules, achieving the effect of targeted imaging [24–26].
However, quantum dots of inorganic functional fluorescent materials, rare earth lumines-
cent materials and noble metal nanoclusters, and semiconducting polymers of organic
fluorescent functional materials and organic small molecule fluorescent materials have
poor compatibility, poor degradability and long-term biological toxicity in vivo, and other
defects. These problems severely limit their application in the biological field [27,28].

Fluorescent polymer nanomaterials are prepared by combining amphiphilic polymers
and fluorescent functional materials using physical doping or covalent linkage. They
not only have the characteristics of good optical stability and wide application range
of fluorescent functional materials but can also be polymerized by selecting different
functional monomers [29,30]. While retaining the good water solubility and excellent
biocompatibility of polymer nanomaterials, the controllable synthesis of properties such
as size, shape, stability, and surface properties can be achieved. As shown in Figure 1, the
currently commonly used strategies for functional modification of fluorescent polymers
mainly include physical encapsulation and covalent linkage [31–33].
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Figure 1. Schematic diagram of the preparation of fluorescent polymer nanoparticles: (a) physical 
encapsulation; (b) covalent attachment [31]. Copyright (2021), with permission from Royal Society 
of Chemistry. 
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functional materials are directly embedded in polymer nanoparticles using physical en-
capsulation to prepare fluorescent polymer nanoparticles. The nanoparticles belong to a 
typical core–shell structure, in which the hydrophilic polymer acts as a protective layer in 
the shell, and the hydrophobic fluorescent material acts as a fluorescent chromophore in 
the core. It not only retains the luminescent properties of fluorescent materials, but also 
improves the stability and biocompatibility of hydrophobic fluorescent materials in water 
systems [34–36]. Yu et al. [37] designed and synthesized a semiconducting polymer PDFT 
based on diketopyrrolopyrrole (DPP). As shown in Figure 2, the amphiphilic dis-
tearoylphosphatidylethanolamine-polyethylene glycol (DSPE-mPEG) was used for phys-
ical encapsulation. Self-assembled into an NIR-II fluorescent nanoprobe PDFT1032 with a 
particle size of 68 nm, the maximum emission wavelength is 1032 nm, and it has excellent 
photostability, excellent biocompatibility, and extremely low in vivo toxicity. It presents 
high-resolution, real-time imaging in tumor diagnosis and vascular thrombosis treatment 
and, more importantly, realizes precise fluorescence imaging “navigation” for in situ tu-
mor surgery and sentinel lymph node biopsy. 

Figure 1. Schematic diagram of the preparation of fluorescent polymer nanoparticles: (a) physical
encapsulation; (b) covalent attachment [31]. Copyright (2021), with permission from Royal Society
of Chemistry.

2.1. Physical Package

Physical encapsulation is the most commonly used method at present. Fluorescent
functional materials are directly embedded in polymer nanoparticles using physical en-
capsulation to prepare fluorescent polymer nanoparticles. The nanoparticles belong to a
typical core–shell structure, in which the hydrophilic polymer acts as a protective layer
in the shell, and the hydrophobic fluorescent material acts as a fluorescent chromophore
in the core. It not only retains the luminescent properties of fluorescent materials, but
also improves the stability and biocompatibility of hydrophobic fluorescent materials in
water systems [34–36]. Yu et al. [37] designed and synthesized a semiconducting poly-
mer PDFT based on diketopyrrolopyrrole (DPP). As shown in Figure 2, the amphiphilic
distearoylphosphatidylethanolamine-polyethylene glycol (DSPE-mPEG) was used for phys-
ical encapsulation. Self-assembled into an NIR-II fluorescent nanoprobe PDFT1032 with a
particle size of 68 nm, the maximum emission wavelength is 1032 nm, and it has excellent
photostability, excellent biocompatibility, and extremely low in vivo toxicity. It presents
high-resolution, real-time imaging in tumor diagnosis and vascular thrombosis treatment
and, more importantly, realizes precise fluorescence imaging “navigation” for in situ tumor
surgery and sentinel lymph node biopsy.

If the fluorescent material has hydrophobic properties, the preparation method of
physical encapsulation can be used, which has good universality. However, due to the
absence of chemical bonds between the polymer and the fluorescent-emitting group, there
are situations where the fluorescent material leaks from the fluorescent polymer com-
posite system or the aggregation and quenching of the local fluorescent material occurs,
resulting in a decrease in luminescent performance [38,39]. Therefore, how to improve the
preparation of fluorescent polymer nanoparticles with stable luminescence using physical
encapsulation is still a research hotspot.
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Figure 2. Schematic of DPP-based semiconducting polymer PDFT nanoscale self-assembly and im-
aging. (a) The vascular mapping and the hemodynamic status of the tumor and the femoral artery 
were determined. The white dashed circle contours the location of the tumor. ((b) and (c)) The 
branch of the femoral artery that supports the tumor and the vascular network of the tumor (exhib-
ited as a claw shape) were clearly identified. (d) A vessel clamp was used to block the blood flow 
(red arrow) and the signal of the vascular network vanished. (e) After 5 minutes, the clamp was 
removed and the blood flow of the tumor was still devoid because a temporary thrombus was 
formed (blue arrowhead). (f) Magnification of (c). The vascular network of the tumor was clearly 
identified (white arrowheads). (g) Magnification of (d). (h) The major artery was surgically incised 
(blue arrowhead). (i) NIR-II imaging exhibited the absence of the residual tumor fluorescence and 
normal circulation (femoral artery) was successfully maintained. Inset is the histological analysis of 
the osteosarcoma. Scale bar: 8 mm. (j) Schematic drawing of a PDFT1032 nanoparticle composed of 
semiconducting polymer DFT and a hydrophilic DSPE-mPEG shell. (k) Absorbance and fluores-
cence spectrum of PDFT1032 showing an absorption peak at 809 nm and a fluorescence peak at 1032 
nm with an 808 nm excitation laser [37]. Copyright (2018), with permission from Royal Society of 
Chemistry. 
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Figure 2. Schematic of DPP-based semiconducting polymer PDFT nanoscale self-assembly and
imaging. (a) The vascular mapping and the hemodynamic status of the tumor and the femoral artery
were determined. The white dashed circle contours the location of the tumor. (b,c) The branch of the
femoral artery that supports the tumor and the vascular network of the tumor (exhibited as a claw
shape) were clearly identified. (d) A vessel clamp was used to block the blood flow (red arrow) and
the signal of the vascular network vanished. (e) After 5 min, the clamp was removed and the blood
flow of the tumor was still devoid because a temporary thrombus was formed (blue arrowhead).
(f) Magnification of (c). The vascular network of the tumor was clearly identified (white arrowheads).
(g) Magnification of (d). (h) The major artery was surgically incised (blue arrowhead). (i) NIR-II
imaging exhibited the absence of the residual tumor fluorescence and normal circulation (femoral
artery) was successfully maintained. Inset is the histological analysis of the osteosarcoma. Scale bar:
8 mm. (j) Schematic drawing of a PDFT1032 nanoparticle composed of semiconducting polymer
DFT and a hydrophilic DSPE-mPEG shell. (k) Absorbance and fluorescence spectrum of PDFT1032
showing an absorption peak at 809 nm and a fluorescence peak at 1032 nm with an 808 nm excitation
laser [37]. Copyright (2018), with permission from Royal Society of Chemistry.
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2.2. Covalent Linkage

There are two ways to prepare covalently linked fluorescent polymer nanomateri-
als [31,40]: one is to first copolymerize polymer monomers into polymer chains, and then
use covalently linked methods. The fluorescent-emitting group is attached to the polymer
chain, and then prepared into nanoparticles. As shown in Figure 3a, it is referred to as
“aggregate first and then join”. The nanoparticles prepared in this way have good stability,
and the desired multifunctional nanoparticles can be customized by selecting different
polymer nanoparticles. However, this preparation method requires functional group match-
ing between empty polymer nanoparticles and fluorescent groups, and its universality
is slightly worse than physical packaging. In addition, fluorescent group materials are
also prone to fluorescence quenching on the surface of nanoparticles [41,42]. The second
approach is to prepare fluorescent groups and polymer monomers into fluorescent polymer
monomers, then copolymerize and self-assemble them into fluorescent polymer nanomate-
rials, as shown in Figure 3b, referred to as “connection first and then polymerization”. The
distribution of light-emitting groups in the fluorescent nanoparticles prepared using this
method is relatively more uniform, and the optical stability is good. However, there is also
the problem that the size of fluorescent polymer nanoparticles is not easy to control due to
the steric hindrance of the luminescent group [43,44].
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In summary, although the method of physical packaging is used to prepare fluorescent
polymer nanomaterials, the distribution of fluorescent materials in nanomaterials is uneven
and leaks easily. However, it is still the most commonly used method at present. In
order to solve the above problems, designing and synthesizing new fluorescent polymer
nanomaterials by means of covalent linkage is still one of the hotspots of scientific research.

3. Preparation Method of Fluorescent Polymer Nanomaterials
3.1. Active/Controllable Synthesis of Amphiphilic Block Polymers

From the preparation strategy of fluorescent polymer nanomaterials in the previous
section, it can be seen that the controllable synthesis of amphiphilic block polymers directly
determines the monodispersity, morphology, and size of bioluminescent probes in aqueous
solution. At present, the most commonly used living/controllable polymerization meth-
ods mainly include atom transfer radical polymerization (ATRP) [45,46] and reversible
addition–fragmentation chain transfer polymerization (RAFT) [47]. Below, we focus on the
introduction of these two technologies, as shown in Table 1.
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Table 1. Comparison of different preparation strategies for fluorescent polymer materials.

Synthesis Technology Advantages Disadvantages

Living/controllable
synthesis of

amphiphilic block
polymers

ATRP
The reaction temperature is mild, the

operation is simple, and it is easy
to industrialize.

The intermediate process is
completely uncontrolled; the amount
of transition metal complex is large;

the aging of the polymer.

RAFT

It has a wide range of applications,
good polymerization ability, and the

molecular weight of the obtained
polymer is uniform.

Few applicable monomers, limited
scope of molecular design, expensive.

Physical package

Nanoprecipitation

Simple operation, fast, high
reproducibility, good dispersion of

colloidal nanoparticles and
easy functionalization.

There are fewer types of polymers,
and the process of particle growth is

not easy to control.

Microemulsion
method

Narrow particle size distribution,
controllable, good stability.

Surfactants are difficult to remove
and have large particle sizes.

Self-assembly method

It is very convenient to prepare various
exotic three-dimensional structures; it is

also possible to prepare porous
materials that inherit the original

morphology and structure

Unstable under physiological
conditions.

Covalent linkage

PISA

The process is simple, the price
adjustment is gentle, and

nano-medicine can be prepared in
one step.

The operation is complicated, the
reaction takes a long time, and the

concentration of the prepared
nanoparticles is low (≤1 mg/mL),

which makes it impossible to achieve
large-scale mass production.

Precipitation
polymerization

The particle size of the polymer is
uniform and clean, the viscosity of the
polymerization system is low, and no
surfactant and stabilizer are needed.

Low microsphere yield and high
solvent toxicity.

3.1.1. ATRP

Matyjaszewski et al. [48] and Sawamoto et al. [49] successively proposed the method
of atom transfer radical polymerization (ATRP). The low-valence metal complex Mt

n takes
an electron from the initiator organic halide R-X to form R free radicals to initiate monomer
aggregation. The formation of chain free radicals P can also take the halogen atom X from
the high-valence metal halide Mt

n+1-X passivation to P-X, and reduce the high-valence
metal halide to Mt

n. The reversible transfer equilibrium reaction between the free radical
active seeds and the halide dormant seeds of the polymer chains enables effective control of
the reactions. Compared with the traditional free radical polymerization, the ATRP method
has a wide range of adaptability, can control the molecular weight distribution (PDI) of the
polymer between 1.05 and 1.5, and has a mild reaction temperature, simple operation, and
is easy to industrialize [50–52]. However, when applied to the synthesis of bioluminescent
probes, copper-based catalysts have high biotoxicity, and finding other catalysts to replace
copper-based catalysts is still a hotspot in ATRP research [53].

3.1.2. RAFT

Compared with the ATRP reaction, the reversible addition–fragmentation chain trans-
fer polymerization (RAFT) reaction system does not involve the participation of copper-
based and other biologically toxic transition metals. Additionally, the source of free radicals
is basically from the decomposition of organic initiators. For example, azobisisobutyroni-
trile (AIBN) or dibenzoyl peroxide (BPO) are more suitable for the controlled synthesis of
amphiphilic block polymers for biological use [54,55].

The RAFT method was proposed by Rizzardo [56]. The first is initiation (initiation),
where the initiator generates free radicals I, then monomers M are initiated to polymerize



Molecules 2023, 28, 3819 7 of 31

with each other to generate extended chain free radicals Pn. The second step is the chain
transfer reaction (chain transfer); the extended chain free radical Pn reacts with the dithioester
chain transfer agent (1) to form an unstable intermediate (2). The groups on both sides of
the intermediate can be broken to form a temporarily inactive thioester dormant (3) and
a new free radical R·. The third step is to reinitiate the polymerization between the new
free radical R· and the monomer to form Pm· (re-initiation). The fourth step is the process
of chain equilibrium (chain equilibration), and the macromolecular chain transfer agent
(macro-CTA) plays a controlling role. The free radical concentration is low throughout the
reaction. Therefore, the molecular weight distribution of the polymer is relatively uniform.
The final termination reaction (termination) generally quenches the reaction directly at low
temperature, and the product is a mainly macromolecular chain transfer [57,58].

The RAFT mechanism is applicable to a wide range of monomers. The reaction
temperature is 60–70 ◦C, and it has good polymerization ability for monomers such as
acrylic acid (AA), methacrylic acid (MAA), and methyl methacrylate (MMA). The resulting
polymers are of uniform molecular weight (PDI typically below 1.3). However, this reaction
relies heavily on expensive RAFT reagents, and the development of stable, low-cost, and
easy-to-synthesize RAFT reagents that meet different systems is still one of the research
hotspots [59–61].

3.2. Preparation Method of Physically Encapsulating Fluorescent Polymer Nanoparticles

From the perspective of preparation strategy, fluorescent polymer nanoparticles wrap
luminescent materials into amphiphilic block polymers using physical doping. Nano-
precipitation, microemulsion, and self-assembly methods are commonly used, which are
similar to the preparation methods of semiconducting polymer nanomaterials, as shown in
Figure 4 [62,63].
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permission from Royal Society of Chemistry.

Nanoprecipitation is a method based on the interfacial deposition of polymers. It was
first proposed by Masuhara et al. [64] and then improved by McNeill [65] and Chiu [66]. It
is widely used in the preparation of fluorescent nanoparticles in the biological field. Firstly,
the fluorescent material and the amphiphilic block polymer material are dissolved in a
small amount of good solvent. The material is quickly dropped into a poor solvent (usually
deionized water) with vigorous stirring or ultrasound; the huge difference in solubility
of the two solvents promotes the aggregation of polymer materials to form nanoparticles,
with a particle size of about 15 nm. The process of nanoparticle formation mainly includes
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several steps: supersaturation, nucleation, coagulation growth, and formation of polymer
nanoparticles. The method is simple, fast, and highly reproducible. The nanoparticle
colloid has good dispersion and is easy to be functionalized. It is a common method for
preparing drug-loaded nanomaterials, but there are also defects such as fewer types of
suitable polymers and difficult control of the particle growth process [67].

The microemulsion method is similar to the nanoprecipitation method. The prepared
amphiphilic polymer and fluorescent material are first dissolved in a good solvent and
then mixed with a poor solvent (usually deionized water) [68]. The huge difference in
solubility is used to prepare nanoparticles, but the difference is that a certain concentration
of surfactant needs to be added. However, the final surfactant is difficult to remove from the
reaction system, which affects the application of fluorescent nanoparticles in the biological
field. Additionally, the size of the prepared nanoparticles is relatively large, between
240 and 270 nm [69–71].

The usual preparation of the self-assembly method is to dissolve fluorescent materials
and functional materials with opposite charges in an aqueous solution according to a certain
ratio. After fully stirring and mixing evenly, the functionalized polymer nanoparticles are
prepared using high-speed centrifugation and the particle size is about 100 nm. However,
the preparation of the self-assembly method also has the instability of nanoparticles in a
physiological environment, which limits its further application [72,73].

3.3. Preparation Method of Covalently Linked Fluorescent Polymer Nanoparticles

By means of covalent connection, fluorescent materials and amphiphilic block polymer
materials are connected and self-assembled into polymer nanoparticles with luminescent
properties, mainly including two types of nanoparticles: polymer micelles and nanogels.

3.3.1. Preparation of Polymer Micelles Using Aggregation-Induced Self-Assembly (PISA)

The traditional preparation methods of polymer micelles mainly include the solvent
induction method, dialysis method, and direct dissolution method [74,75]. Nanoparticles
with morphologies such as spherical, worm-like, and vesicular are prepared using the self-
assembly of amphiphilic block polymers with different solubility differences in different
solvents. However, the operation is complicated, the reaction takes a long time, and the
concentration of the prepared nanoparticles is low (≤1 mg/mL), which makes it impossible
to achieve large-scale mass production [76–78]. In recent years, the polymerization-induced
self-assembly (PISA) method can not only prepare micelles and assemblies with different
morphological structures (including spherical, worm-like, vesicular, etc.) in one pot, but
nanoparticles with solids content up to 50% can also be synthesized in bulk [79,80]. This
provides a new idea for the commercial application of preparing polymer nanoparticles, and
is also widely used in the fields of drug-controlled release, bioimaging, and catalysis [81,82].

Hawkett et al. [83] first used polyacrylic acid (PAA) as a water-soluble macromolecular
RAFT chain transfer agent and induced self-assembly into spherical micelles in aque-
ous solution. Subsequently, Pan et al. [84,85] utilized poly-4-vinylpyridine (P4VP) as a
macromolecular RAFT chain transfer agent for dispersion polymerization in methanol
solvent. With the chain growth of PS spheres, the morphology of the polymer gradually
changed from spherical to worm-like and vesicle-like. A schematic diagram of nanoma-
terials prepared using the aggregation-induced self-assembly method [86] is shown in
Figure 5. The water-soluble polymer chain transfer agent (macro-CTA) prepared using the
RAFT method initiates another hydrophobic polymer monomer, and the newly synthesized
diblock polymer can be dissolved in the reaction system at the early stage of the reaction.
With the continuous growth of the second hydrophobic chain, the volume of the insoluble
polymer continues to increase. When the critical micelle concentration (CMC) is reached,
it self-assembles into different morphologies. A series of theoretical studies have shown
that the morphology of block polymer self-assembly is determined by the volume ratio
P of the polymer at the hydrophobic end. When P ≤ 1/3, the diblock polymer exhibits
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spherical nanoparticles. When 1/3 < P ≤ 1/2, the diblock polymer exhibits worm-shaped
nanoparticles. When 1/2 < P ≤1, the diblock polymer exhibits a vesicle shape.
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3.3.2. Preparation of Nanogel Polymer Microspheres Using Precipitation Polymerization

Hydrogel is a kind of hydrophilic polymer material with a three-dimensional network
structure, which can absorb water several times the weight of the material and has good
biocompatibility and degradability [87]. Nanohydrogels are hydrogels with a size between
100 and 1000 nm that have the dual characteristics of hydrogels and nanomaterials. The
structure is stable under physiological conditions, and it has a high drug loading rate and a
long drug release cycle. It is a drug carrier material that has developed rapidly in recent
years [88,89].

The nanogel preparation method [90] is shown in Figure 6. The traditional preparation
methods mainly include emulsion polymerization, microemulsion polymerization and
dispersion polymerization, all of which need to add stabilizers or surfactants to stabilize
the reaction system and avoid aggregation and precipitation. However, it is difficult to
remove the stabilizer or surfactant from the reaction system after the reaction, which
affects the application of polymer microspheres in the biomedical field [91]. The method of
precipitation polymerization was first proposed by Chibante et al. [92]. The stabilizer is
replaced by a cross-linking agent, which is added to the reaction system together with the
reactive monomer, and polymer microspheres with uniform particle size and clean surface
are prepared after heating and polymerization. However, this method is only suitable for
the polymerization of hydrophobic monomers and cannot prepare polymer microspheres
for biomedicine. To expand the application of precipitation polymerization to hydrophilic
monomers, Yang et al. [93] developed a distillation precipitation method, which shortened
the precipitation polymerization time to 1–2 h. However, with the decrease in the solvent
amount in the reaction system, the late reaction was unstable and the product yield was
low. Wang et al. [94] developed the reflux precipitation polymerization method based on
the technique of distillation precipitation. A return-shaped condenser was connected to the
reaction device to ensure that the volume of the solvent in the reaction system remained
unchanged, making the polymerization of the reaction system more stable. Compared with
the traditional preparation method, the reflux precipitation polymerization method has
the characteristics of short time consumption, no need for stabilizer, clean particle surface,
simplicity of device, and less byproducts.
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4. Biotoxicity of Fluorescent Polymer Nanomaterials

Due to their unique physical and chemical properties, nanomaterials have broad
application prospects in the field of biomedicine. For example, as a drug carrier or a
bioimaging probe, the pharmacokinetics and potential toxic effects in the organism need to
be tested before practical application. In vivo toxicity studies of nanomaterials involve a
variety of exposure methods, such as intravenous, transdermal absorption, subcutaneous,
inhalation, intraperitoneal, and oral administration, and various animal models such as
mice, rats, dogs, and monkeys. After nanomaterials enter the body and interact with
biological components (proteins, cells), they are distributed to different organs of the body.
At this point, the particles maintain their original structure or degrade. The slow removal
and accumulation of materials, as well as the large number of phagocytes make the liver,
spleen, and other organs in the reticuloendothelial system the most important targets of
oxidative stress of nanomaterials. In addition, organs with high blood flow, such as lungs
and kidneys, are also affected by nanomaterials [95].

Current toxicological mechanisms of nanomaterials mainly focus on the hypothesis of
free radical oxidative damage [96]. This hypothesis holds that, under normal conditions,
the content of reactive oxygen species in the mitochondria of body cells is very low. Addi-
tionally, there are many antioxidant systems in the body, and the active oxygen free radicals
produced by normal cell metabolism are easily removed by glutathione reductase and
antioxidant enzymes. When nanoparticles enter the body, they can induce the production
of a large amount of reactive oxygen species (ROS). ROS mainly activate the inflammatory
response by activating the phosphorylation of NF-κB transcription factors and MAPKs. As
a result, the antioxidant defense system in the mitochondria is destroyed, causing various
damages and further affecting the normal physiological functions of the body.
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Li et al. [97] found that nanoparticles can induce an increase in reactive oxygen species
in RAW264.7 cells, leading to cell apoptosis. Shvedova et al. [98] summarized the main
mechanism of nanoparticle-induced ROS generation in cells, resulting in oxidative damage:
(1) oxidation of liposomes in mitochondria; (2) NADPH oxidation leading to cell apoptosis
and inflammatory response; (3) depletion of reduced glutathione in the body; (4) activation
of peroxidase, leading to degradation of nanoparticles. At the same time, this is precisely
the oxidative damage effect of nanoparticles exposed to the body.

In addition to ROS, reactive nitrogen species (RNS) may also be involved in the free
radical oxidative damage effect of nanoparticles. Recent studies have proved that RNS
play a role in the inflammatory damage caused by nanoparticles. Lanone and Boczkowski
suggested that the main molecular mechanism of in vivo toxicity of nanomaterials is
the induction of free radicals leading to oxidative damage [99]. Free radicals can not
only cause damage to biological components by oxidizing lipids, proteins, and DNA,
but also induce and enhance inflammation by upregulating redox-sensitive transcription
factors (such as NF-kB) and inflammation-related kinases [100,101]. The composition
of some materials, such as iron, cadmium, chromium, and other atoms also affects the
toxicity in vivo. In addition, surface modification of nanoparticles can alter their interaction
with cell membranes, resulting in their altered cellular uptake, thereby affecting their
toxicological effects on targeted cells. The application and toxicity of different fluorescent
nanomaterials in biological systems are shown in Table 2.

Table 2. Biotoxicity and biological system applications of different fluorescent nanomaterials.

Fluorescent
Nanomaterial Type

Intrinsic Material
Toxicity Materials Biological System

Carbon dots Low C-dots, PEG stabilized Mice
Carbon nanotubes Low–medium Many types of CNTs Various in vitro/in vivo

Dendrimers High Various dendrimer types Various in vitro/in vivo
Doped graphene QDs Medium N-doped graphene quantum dots Red blood cells

Fluorescent beads
Medium (polymer) Polystyrene nanoparticles Endothelial cells

Low (silica) Silica nanoparticles Epithelial cells and fibroblasts
Fluorescent proteins Medium Red fluorescent protein HeLa cells

Graphene oxide Medium
Graphene oxide Various in vitro/in vivo
Graphene oxide Red blood cells

Organic dyes Medium Various organic fluorophores Various in vitro/in vivo

Metal clusters Medium
MPA or GSH stabilized Au clusters Colonic epithelial cells

GSH and BSA stabilized
Au25 clusters Mice

Nanodiamonds Low
Detonation nanodiamond Various in vitro/in vivo

Various diamond types Human liver cancer and HeLa cells
in vitro

Detonation nanodiamond Human embryonic kidney cells and
Xenopus laevis embryos

P-dots Medium
Quinoxaline based polymer,

STV conjugated Zebrafish embryo

Polybutylcyanoacrylate HeLa and human embryonic kidney
cells/rats

Quantum dots High

CdSe–ZnS; PEG, BSA or
polymer stabilized Rats

CdTe Mice
Several types Various in vitro/in vivo
Several types Various in vitro/in vivo

Rare earth nanoparticles Medium-high

UCNPs, NaYF4:Yb,Tm, polyacrylic
acid coated Mice

UCNPs, NaYF4:Yb,Tm HeLa cells, caenorhabditis elegans

DCNPs, Gd2O2S:Tb3+
Human peripheral blood

mononuclear cells, human-derived
macrophages, HeLa cells
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Because of the small size effect of nanomaterials and the complexity of biological
systems, the effects caused by the processing of nanomaterials in biological systems are
unpredictable. The interaction between biological components (proteins and cells) and
nanostructured materials may cause unique biodistribution and metabolic reactions, mak-
ing it difficult to predict the metabolism and safety of nanomaterials in biological systems.
As evidenced by the above literature review, fluorescent materials have been widely used
in biomedical fields such as bioimaging, biosensors, and drug delivery because of their
excellent luminescent properties and photoconversion properties. However, due to their
particularity, their biological safety cannot be predicted. Therefore, they may cause certain
harm to organisms during use, which greatly limits the application of fluorescent nanoma-
terials. Therefore, it is urgent to find fluorescent nanomaterials with good biocompatibility.

5. Application of Fluorescent Polymer Nanomaterials in Bioimaging

In order to meet the needs of different biological applications, many different types
of fluorescent polymer nanomaterials have been developed. This paper focuses on the
research direction and focuses on the introduction of polymer nanomaterials based on
rare earth luminescent materials, semiconducting polymers, and organic, small molecule
luminescent materials [7–9]. The use of nano-fluorescent probes can quickly, accurately,
and selectively label and study target molecules on cells. Labels were obtained according
to their excitation wavelengths at different emission wavelengths, as shown in Table 3.

Table 3. Common fluorescence excitation and emission wavelengths.

Fluorescent
Substance

Excitation Wavelength Emission Wavelength
EX nm EX (sub) EM nm

Alexa Fluor 532 532 554
Cy3 550 570

DsRed 557 579
EtBr 300 518 605
FITC 490 525

Gel Green 250 500 530
GFP 488 507

mCherry 580 610
SYBR Gold 495 540

SYBR Green I 498 522
SYPRO Red 550 300 630

SYPRO Ruby 280 450 620
TagRFP 555 583
Gel Red 270 510 600

5.1. Polymer Nanomaterials Based on Rare Earth Luminescent Materials

Rare earth elements include lanthanides with atomic numbers 57–71 in the periodic
table of chemical elements and scandium (Sc, 21) and yttrium (Y, 39) with similar chem-
ical properties, a total of 17 elements [102]. The electron configuration of lanthanides
is [Xe]4f0–145d0–16s2, and each element has a 4f electron shell. Compared with other lu-
minescent materials, it has narrow emission band (10–20 nm), high luminous efficiency,
large Stokes shift, and long emission lifetime (range µs-ms) features [103]. At present, rare
earth luminescent materials used in biological imaging mainly include rare earth organic
complexes and rare earth upconversion materials.

5.1.1. Rare Earth Organic Complexes

Rare earth organic complexes are due to the small molar absorptivity of lanthanide
trivalent ions and the prohibition of ff transitions in the electron shell [104,105]. As a
result, very little energy is directly absorbed by the 4f energy level of lanthanide elements,
and organic ligands are required to act as antennas to absorb excitation energy, thereby
sensitizing rare earth ions to emit light. This process is called “antenna” (Figure 7a) [106].
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As shown in Figure 7b, the main process of energy transfer of rare earth complexes is
as follows: (1) After the rare earth complex absorbs energy, electrons transition from the
ground state (S0) to the excited state (S1). (2) The energy of the excited state (S1) transfers
energy to the lowest excited triplet state (T1) through intersystem crossing (ISC). (3) When
the lowest excited triplet state (T1) matches the lowest excited state energy level (5DJ) of
rare earth ions, energy transfer occurs between T1 and 5DJ. Eventually, the rare earth ions
return to the ground state (7DJ) in the form of radiation, thereby emitting the characteristic
fluorescence of rare earth ions [103,107,108].
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According to the structure of the ligands, it can be divided into β-diketone ligands,
carboxylic acid ligands and macrocyclic ligands such as crown ethers [109]. There are
coordination elements such as O, N, and S on the ligand, and a stable six-membered ring
structure is formed after coordination with rare earth. It can directly absorb laser energy
and effectively transfer energy to rare earth ions through the structure of the six-membered
ring, and then emit the characteristic fluorescence of rare earth ions. The coordination abil-
ity of the coordinating atoms is O > N > S. When rare earth complexes are used in biological
imaging, water molecules easily replace the coordination bonds of organic ligands [110].
The high-frequency O–H bonds of water increase the nonradiative decay of excited states
of rare earth ions, which in turn affects the luminescent properties of rare earths [111].
When rare earth organic complexes are used as fluorescent probes, they are usually physi-
cally wrapped with biocompatible silica or polyethylene glycol to form a core–shell struc-
ture, which improves the chemical stability of the material and avoids the interference of
water molecules.

Dos Santos et al. used the polymer PMMA-COOH to physically wrap the rare
earth complex Eu(TTA)3phen, and the preparation’s schematic diagram is shown in
Figure 8. By adjusting the concentration of the precursor, rare earth polymer nanoparticles
of 10 nm, 20 nm, and 30 nm were prepared. The fluorescence quantum efficiency exceeded
20%, and the brightness of a single particle was as high as 4.0 × 107 M−1 cm−1. A lower
laser intensity of 0.24 W/cm2 can be used to image single particles, and time-resolved
imaging microscopy can be used to dynamically observe the progress of nanoparticles
into cells [112]. However, the polymer physically wraps the rare earth complex material,
and there is also uneven distribution of the fluorescent material. Aggregation quenching
is prone to occur, which affects the luminescent properties of fluorescent probes, and the
related preparation methods still need further research [113–115].
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imaging [112]. Copyright (2019), with permission from American Chemical Society.

In order to solve the problem of uneven distribution of fluorescent materials in polymer
nanosystems, Xu et al. [116,117] modified hydroxyl and amino groups on Eu(TTA)3phen,
respectively. As shown in Figures 9a and 10, two complexes, [Eu(TTA)3phen]-OH and
(Eu(TTA)3phen]-NH2, were prepared. They then reacted with hydrophilic polymers
PEG2000 and GluEG NCA through covalent connection to generate [Eu(TTA)3phen]-
PEG2000 and [Eu(TTA)3phen]-GluEG, respectively, and self-assembled into water-soluble
nanoparticles. They emi the 614 nm characteristic peak of Eu(III) ion in aqueous solution,
and can be successfully taken up by L929 cells and HeLa cells, and emit strong red light (as
shown in Figures 9b and 10).
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5.1.2. Rare Earth-Doped Upconversion Luminescent Materials

Rare earth-doped upconversion materials are doped with trivalent lanthanide ions into
a suitable dielectric matrix lattice. The lanthanide ions act as the luminescent center, and the
ground state electrons of the sensitized ions are first excited to the excited state under the
irradiation of the excitation light of a suitable wavelength. Then, the energy is transferred
to the luminescent center, and the luminescent center is excited to an excited state. Finally,
the excited state electrons return to the ground state and emit near-infrared fluorescence.
Therefore, sensitizing ions are required to have a larger absorption cross-section at NIR-I or
NIR-II. For example, the luminescent central ions with NIR-I emission include Nd3+, Yb3+,
and Er3+, and the luminescent central ions with NIR-II emission include Nd3+, Ho3+, Pr3+,
Tm3+, and Er3+ (as shown in Figure 11) [118]. Rare-earth-doped upconversion materials
have the advantages of low toxicity, narrow-band emission, long emission lifetime, no
photobleaching, and no scintillation. They have broad application prospects in the fields of
bioimaging, such as in analytical sensors, PDT, and optical imaging [119].
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Rare earth-doped upconversion luminescent materials are generally hydrophobic.
Generally, water-soluble bioluminescent probes are prepared by modifying the surface
function of materials with SiO2 that has better biocompatibility, water-soluble polymers
(PEG, PAA, PEI, etc.), and polyols. Tao et al. [120] used the block polymer PEO-b-PCL to
wrap NIR-I emitting rare earth nanocrystalline materials NaYF4:Yb/Ho(DiR) and NIR-II-
emitting NaCeF4:Er/Yb(LNPs). And luciferase (LUS) and red fluorescent protein (RFP)
were doped into the polymer to prepare a multifunctional nanomaterial that can simultane-
ously generate NIR-I and NIR-II fluorescence spectra (as shown in Figure 12a–c). Then, the
nanomaterials were injected intraperitoneally into mice with ovarian cancer, and fluores-
cence signals of two spectra could be found in the ovarian LUS+/RFP+-responsive cancer
cell OVCAR-8 (Figure 12d).
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Figure 12. (a) Schematic diagram of nanoparticles, in which the yellow block represents the block
polymer PEO-b-PCL, the red point represents the NIR-I quantum dot DiR, and the blue block repre-
sents the NIR-II quantum dot LNPs; (b) the nanoparticle TEM image; (c) fluorescence spectrum of
multifunctional nanomaterials; (d) imaging of multifunctional nanoparticles in mice [120]. Copyright
(2017), with permission from Elsevier.

5.2. Polymer Nanomaterials Based on Semiconducting Polymers

Semiconductor polymers (SPs) are a class of polymer materials whose main chain
is composed of π–π-conjugated structures [121,122]. Due to the excellent optoelectronic
properties and good processing properties of semiconductors, they were first applied
in the field of organic optoelectronics. At present, semiconducting polymer materials
commonly used in the biomedical field are divided into polyfluorene (PF), polythiophene
(PT), poly(phenylene ethylene, PPE) and poly(p-phenylene vinylene, PPV) according to
the structure of the main chain. Their derivatives [123,124] and structure are shown in
Figure 13.
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From the perspective of the main chain structure of the semiconducting polymer, it
is a typical rigid structure and hydrophobic, and aggregation occurs in aqueous solution,
resulting in fluorescence quenching. At present, the commonly used method is to directly
physically encapsulate semiconducting polymer materials in amphiphilic block polymers
to prepare water-soluble polymer fluorescent nanoparticles (SPNs). Not only can this effec-
tively solve the problem of monodispersion of semiconducting polymers in water, but the
surface can also be easily functionalized. They have been widely used in the fields of tumor
diagnosis [126–128] and antibacterials [129–131]. Among them [15], polyethylene glycol
(PEG) is widely used to modify semiconducting polymers because of its characteristics of
increasing drug solubility, reducing body immunity, and prolonging the residence time of
drugs in the body [132].

In order to improve the fluorescence quantum efficiency of semiconducting polymers,
Fan et al. used low-energy-band ester-based semiconducting polymers to skillfully control
intramolecular charge transfer (ICT) to increase the intensity of NIR-II fluorescence [133].
As shown in Figure 14, as the thiophene group chain lengthened (TT-T to TT-3T), the
ICT gradually weakened, and the corresponding NIR-II fluorescence emission gradually
increased. TT-3T CPs (51–70 nm) were prepared by physically wrapping TT-3T with
amphiphilic block polymer F127. They emit NIR-II light (1050 nm) in aqueous solution
with a fluorescence quantum efficiency of 1.75%. Moreover, in vivo cell tracking, vascular
system imaging, and lymphatic drainage mapping all had good imaging effects and high
NIR-II spatial resolution.
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In order to further study the NIR-II real-time imaging application of semiconducting
polymers in vivo, Hong et al. [134] designed and synthesized a NIR-II semiconducting
polymer pDA (Figure 15a). After being physically encapsulated with the amphiphilic
block polymer DSPE-MPEG (5kDa), pDA-PEG nanoparticles with a particle size of 2.9 nm
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were prepared (as shown in Figure 15b,c). The fluorescence emission wavelength is about
1000 nm (Figure 15d), the fluorescence quantum efficiency is about 1.7%, and it has been
successfully applied to real-time imaging of vascular diseases.
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Some semiconducting polymers are prone to the aggregation-caused quenching (ACQ)
phenomenon after they are prepared into nanoparticles using physical encapsulation
of amphiphilic block polymers [135,136]. Zhang et al. [137] used phenothiazine, which
has typical AIE characteristics, as the electron donor. As shown in Figure 16a, different
groups were introduced into the side chains to compare the effect of weakening ACQ. The
study found that the emission wavelength of P3c modified with 9,10-diphenylanthracene
(9,10-diphenylanthracene) was larger than that of P3a modified with hexane, and the
emission intensity was high. Then the polymers P3a and P3c were physically encapsulated
using the amphiphilic block polymer PS-PEG to prepare P3a NPs and P3c NPs, which were
injected into mice. As shown in Figure 16b,c, the mice in the P3c NPs group glowed red,
while the mice in the P3a NPs group did not. Additionally, because P3c NPs have strong
NIR-II luminescent properties, the skull and cerebral blood vessels of mice can be clearly
observed when performing imaging in mice.

Fluorescence brightness is determined using the absorption cross-section and the
fluorescence quantum efficiency. Fluorescence quantum efficiency refers to the ratio of
the number of emitted photons to the number of absorbed photons, which is one of the
important parameters for evaluating the performance of fluorescent probes. The emission
wavelength range of polymer quantum dot PFBT is comparable to that of Qdot 565, a com-
monly used fluorescent probe, inorganic semiconductor quantum dot, and IgG-Alexa 488,
which contains approximately six dye molecules per IgG antibody. Therefore, the photo-
physical properties of the three are summarized and compared (see Table 4).
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Table 4. Several photophysical properties of PFBT Pdots, IgG-Alexa 488, and Qdot 565 [138].

Probes Size PFBT ~10 nm IgG-Alexa 488 ~1 nm Qdot 565 ~15 nm

Abs/FL λmax (nm) 460/540 496/519 UV/565
ε (M−1cm−1) λ = 488 nm 1.0 × 107 5.3 × 104 2.9 × 105

Quantum yield (%) 30 90 30~50
Fluorescence lifetime (ns) 0.6 4.2 ~20

It can be seen from Table 1 that, when the three nanoparticles are excited by a laser
with a wavelength of 488 nm, the single-particle luminescence brightness of PFBT quantum
dots with a size of about 10 nm is about 30 times higher than that of IgG-Alexa 488 and
Qdot 565. At a wavelength of 488 nm, the absorption cross-section of PFBT quantum dots is
approximately half of its own peak absorption cross-section. The luminescence brightness
of the three fluorescent probes was compared in parallel using single-particle imaging
experiments [139]. Experiments have found that when the probe is excited by a laser with
a wavelength of 488 nm, when the excitation power is low, a single PFBT nanoparticle with
high luminescence brightness close to the diffraction limit can be observed. Under the
same conditions, the luminescence of IgG-Alexa 488 and Qdot 565 probes was found to
be very weak. The camera used in the experiment barely captured the fluorescent signal.
After counting the fluorescence intensity distribution of thousands of nanoparticles, it was
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found that the luminescence brightness of PFBT nanoparticles was about 30 times higher
than that of IgG-Alexa 488 and Qdot 565 probes. These experimental data are consistent
with the results based on the comparison of photophysical parameters.

5.3. Polymer Nanomaterials Based on Organic Fluorescent Small Molecules

The luminescence intensity of fluorescent probes determines the signal-to-noise ratio
and imaging depth of the probes. If polymer nanoparticles with higher brightness are
to be prepared, more fluorescent materials need to be encapsulated into the polymer
nanoparticles. However, in most fluorescent probe materials, as the concentration increases,
the fluorescence aggregation-induced quenching (ACQ) phenomenon occurs [140,141].
Tang et al. [142] first proposed the aggregation-induced emission (AIE) phenomenon, and
AIE materials are an effective way of solving the above problems. Qi et al. [143] designed
and synthesized the AIE compound TQ-BPN, and prepared TQ-BPN nanoparticles with
a particle size of 33 nm after physical wrapping with the amphiphilic block polymer
Pluronic F-127 (as shown in Figure 17a). The fluorescent quantum effect was as high as
13.9%. Although the maximum emission wavelength was in the NIR-I region (808 nm),
there was still a fluorescence quantum efficiency of 2.8% in the NIR-II region (Figure 17b).
Additionally, when TQ-BPN nanoparticles were used as fluorescent probes to perform
fluorescence imaging on a mouse’s brain, it was found that the imaging spatial resolution
reached 2.6 µm and the penetration depth reached 150 µm. More importantly, as shown in
Figure 17c, clearly identifiable fluorescent signals can be seen at various stages of tumor
growth, which can be applied to early diagnosis of cancer. According to the mechanism of
aggregation-induced luminescence, more and more AIE molecules have been designed and
synthesized by researchers. Typical AIE small molecules include hydrocarbon molecules
(1–3 molecules) and heterocyclic small molecules (4–9 molecules) (see Figure 18).
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Figure 18. Typical AIE small molecules and their structures. 1. Tetraphenylethene (TPE); 2. Triphenylamine
(TPA); 3. Phenothiazine (PTZ); 4. Benzothiazole (BTH); 5. 2-(2′-Hydroxyphenyl)benzoxazole (HBO);
6. 2-(4′-Biphenylyl)-5-(4′′-tert-butylphenyl)-1,3,4-oxadiazole (BBD); 7. 1,2,3,4,5-pentaphenylsilole
(PPS); 8. 1,2-bis(4′-phenylvinyl)benzene (DPVBi); 9. 1,4-bis(2,2-diphenylvinyl)benzene (DPVBi-Ph).

In order to further improve the fluorescence efficiency of fluorescent probes in NIR-II,
Sheng et al. [144] designed and synthesized a new AIE material, TB-1, containing a DA
structure. TB-1 dots with a particle size of 32 nm were prepared after physical encapsulation
using DSPE-PEG2000, and the schematic diagram of the preparation is shown in Figure 19a.
The maximum emission wavelength of the nanomaterial exceeded 1000 nm in the aqueous
dispersion system, and the fluorescence efficiency was as high as 6.2%. The blood vessels
in the brain of the mouse could be clearly seen without opening the mouse’s cranium. In
addition, the targeting group c-RGD was further modified to the surface of nanoparticles
using a Michael addition reaction, prepared into TB1-RGD dots, and then injected into
mice, respectively. From the comparison of Figure 19b,c, it can be seen that the TB1-RGD
dot group modified with the targeting group has obvious imaging in the tumor part of the
mouse at 24 h. The corresponding TB-1 dots with unmodified targeting groups had no
obvious imaging effect.

Although the AIE material is wrapped in the polymer model using physical wrap-
ping, the monodispersity and biocompatibility of the water system of the AIE material
improve. However, there are also nanomaterials prepared using physical encapsulation in
different batches, showing different particle sizes and encapsulation effects. To prepare AIE
nanomaterials with good uniformity, Li et al. [145] alkynylated the AIE material TTB-OH.
As shown in Figure 20a, amphiphilic polymers were prepared using amino-alkyne click
polymerization with the amino-modified hydrophilic PEG polymer PEG-NH2, which then
self-assembled into SA-TTB NPs. At the same time, as a comparison, as shown in Figure 20b,
NDP-TTB NPs were prepared by directly encapsulating TTB-OH with the amphiphilic
block polymer DSPE-PEG2000. From the TEM comparison images of nanoparticles in
Figure 20c III, it can be seen that the two SA-TTB NPs prepared using the self-assembly
method are more uniform in particle size and better in monodispersity than the NDP-TTB
NPs prepared using the physical encapsulation method. By dispersing the three kinds
of nanoparticles into the water system, it was measured that their maximum emission
wavelengths were all around 1050 nm, with little difference. However, the fluorescence
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efficiency of SA-TTB NPs in the water system was as high as 10.3%, which is much higher
than that of physically encapsulated NDP-TTB NPs. Additionally, a resolution of 38 µm
and a penetration depth of 1 cm can be achieved in mice.
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In addition, based on the typical donor–acceptor–donor (D–A–D) structure, benzo-
bisthiadiazole (BBTD) derivatives are representative organic small molecules [146,147].
With good biocompatibility, low biotoxicity, easy functionalization, and excellent metabolic
ability, they show potential application prospects in the field of tumor imaging and treat-
ment. However, BBTD-like derivatives are inherently hydrophobic and have no tumor-
targeting ability. Polyethylene glycol (PEG) is often used for functional modification to
prepare fluorescent polymer nanoprobes. Targeting groups are then attached to the surface
of nanomaterials, so as to achieve partial targeted imaging of tumors and rapid metabolic
clearance from organs such as the kidney or liver [148–150]. Dai et al. first used BBTD as the
acceptor and triphenylamine (TPA) as the donor to prepare the compound CH1055 with a
typical D–A–D structure. CH1055-PEG was prepared after modification with polyethylene
glycol (PEG), and its maximum emission wavelength in water was 1055 nm. Experiments
have shown that the imaging effect on mouse blood vessels and lymph is better than
that of the commercial dye indocyanine green ICG, and about 90% of the material can
be metabolically cleared from the kidney within 24 h [151]. In recent years, based on the
compound CH1055, it has become possible to prepare a series of CH1055 derivatives by
using different group modifications, such as the water-soluble CH-4T [152] prepared using
sulfonation modification. With the help of follicle-stimulating hormone (FSH) modification,
it is prepared into FSH-CH [153] and so on.

6. Summary and Outlook

Early diagnosis and treatment of cancer can greatly reduce its incidence and mortality.
As a noninvasive and visualized diagnosis and treatment method, bioluminescence imaging
technology, combined with traditional imaging technology, provides reliable imaging
means for the early diagnosis of cancer. This article systematically introduces the research
and development status and application prospects of fluorescent polymer nanomaterials
based on rare earth luminescent materials, semiconducting polymers, and small organic
molecules from recent years. Various types of luminescent probes have been developed for
tumor diagnosis. However, due to the hydrophobic nature of the luminescent probe itself,
when it is further functionalized, most of the luminescent materials are encapsulated inside
the polymer nanoparticles using physical packaging. The method is simple to operate
and has good universality. However, there are also defects, for example, the luminescent
material leaks easily from the nanoparticles, the particle size of the nanomaterials prepared
in different batches is not uniform, and the encapsulation rate of the materials is different.
Therefore, searching for efficient functionalization methods for luminescent materials is
still one of the core issues in the design and development of new luminescent materials.

In the decades since the development of polymeric nanomaterials in the field of optics,
researchers have conducted a lot of work on synthesis control and material selection. While
making breakthroughs, there is still demand for both high-performance and multifunctional
materials. This also poses a higher challenge to the application of fluorescent polymer
nanomaterials and biological fields. This is mainly reflected in the following aspects:

(a) Fluorescent materials should be combined with current scientific theories and tech-
nologies. With advancements in science and technology, optical materials, as a tra-
ditional research field, can be further developed in the direction of diversification,
high technology, and high performance when combined with advanced theory and
technology. Thus, new subject areas are created [154,155].

(b) Quantification of the structure–property relationship of multifunctional fluorescent
polymer nanomaterials: Just as researchers have studied the “wetting” and “dewet-
ting” of polymer-grafted core–shell particles in the matrix [156,157], essentially, the
quantification of the effect of this structure on light transparency has developed from
simple conclusions to a formalized theory. This method can be continued and ex-
panded upon for other properties, forming quantitative structure–effect relationships
for various properties.
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(c) The trade-off between key properties in the design of optical materials: The discussion
in this article maintains a relatively consistent train of thought with most of the work.
That is, starting from the material with a certain performance, the study on the impact
of the structure on the improvement of this single performance, while ignoring the
impact on other performances, or even the actual application environment. This
is not conducive to the multifunctionalization of optical materials. Starting from
key structural factors such as particle size, grafting, and loading in the structure of
hybrid materials, the synergistic effects of a certain change in structure on various
properties can be discussed to form an application-oriented material performance
trade-off strategy.

(d) Attention paid to the development of new optical functional materials: In addition to
paying attention to the development of new photofunctional inorganic materials or
polymer materials, we also need to pay attention to the development of new hybrid
material systems. Carbonized polymer dots (CPDs) are a new type of nanofunctional
elementary material that represent a new system of polymer nanohybridization [158,159].
In recent years, the advantages of this material have been reflected in its luminescent
properties, and its synthesis process is considered to be a crosslinking carbonization
process involving small molecules or polymer precursors. After several years of
exploration, a family of CPDs with various luminescent properties such as full-color
luminescence and narrow half-peak width emission has been obtained. Recently,
Yang et al. further designed and applied this material to a material with both light
transmission and mechanical properties, realizing the application of CPDs in the
field of transparent optical films [160]. In addition, CPDs have also demonstrated
their contributions in multiple fields such as imaging, sensing, and energy [161].
Their advantages such as low toxicity, environmental friendliness, and structural
designability [162] lead us to believe that the introduction of new material systems
such as CPDs will provide more excellent performance and broader application
prospects for multifunctional fluorescent polymer nanomaterials.

(e) In order to promote the further application of fluorescent polymer nanomaterials in
biomedicine, future research work can be optimized and expanded in the following
aspects. At present, most light-emitting polymers have low light-emitting perfor-
mance in NIR-II. The development of NIR-II light-emitting polymer materials with
higher luminous intensity or photothermal efficiency using DA structure adjustment
combined with theoretical calculations is still one of the important research directions
for the future. Efficient enrichment of luminescent nanofunctional materials in tumor
sites is another key to improving the efficiency of tumor diagnosis and treatment. Us-
ing rational molecular design, targeting groups can be effectively bonded to polymer
chains to prepare light-emitting polymers with targeting functions, which is of great
significance for the precise diagnosis and treatment of tumor sites. A single treatment
for tumors is gradually being replaced by multimodal treatment. The therapeutic
effect on tumors can be improved by constructing a multifunctional nanodiagnosis
and treatment platform with properties such as chemotherapy, photodynamic therapy,
or photothermal therapy.

(f) Internal/external stimuli-responsive fluorescent polymer nanoparticles that can be
used in theranostics and sensing applications cannot be ignored either [163]. In
particular, they respond to internal stimuli, including redox, pH, and enzymes, and
external stimuli, including temperature, light, and magnetic fields, for drug delivery
and sensing applications [164,165]. In terms of generating stimulus-responsive signals,
these signals allow for amplification and easy detection of biologically relevant events.
More detailed modeling of the photophysical properties of existing materials and
their properties will provide decisive input for designing better performing NPs.
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