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Abstract: The framework of 1,3,4-oxadiazine is crucial for numerous bioactive molecules, but only
a limited number of synthetic methods have been reported for its production. In 2015, Wang’s
group developed a 4-(dimethylamino)pyridine (DMAP)-catalyzed [2 + 4] cycloaddition of allenoates
with N-acyldiazenes, which provided an atom-efficient route for 1,3,4-oxadiazines. However, the
practicality of this method was limited by the instability of N-acyldiazenes as starting materials.
Building upon our ongoing research about the aerobic oxidation of hydrazides and their synthetic
applications, we hypothesized that aerobic oxidative cycloadditions using acylhydrazides instead of
N-acyldiazenes may provide a more practical synthetic route for 1,3,4-oxadiazines. In this manuscript,
we describe a one-pot synthetic protocol for 1,3,4-oxadiazines from acylhydrazides and allenoates.
The developed one-pot protocol consists of aerobic oxidations of acylhydrazides into N-acyldiazenes
using NaNO2 and HNO3, followed by the DMAP-catalyzed cycloaddition of allenoate with the
generated N-acyldiazenes. A variety of 1,3,4-oxadiazines were produced in good to high yields. In
addition, the practicality of the developed method was demonstrated by a gram-scale synthesis of
1,3,4-oxadiazine.

Keywords: 1,3,4-oxadiazines; acylhydrazides; allenoates; aerobic oxidation; green synthesis

1. Introduction

Azo compounds are one of the most versatile organic molecules in organic synthesis [1–5].
Azo compounds such as diethyl azodicarboxylate (DEAD) play a crucial role to facilitate
the stereoselective conversion of alcohols in the Mitsunobu reaction [6–10]. In addition, the
azo compounds can be employed as oxidants in dehydrogenations [11–16] as well as cross
dehydrogenative couplings [17–22]. It was also found that azo compounds can serve as a
directing group for C-H activation [23].

Among various azo compounds, N-acyldiazenes have recently emerged as attractive
participants in cycloadditions for the construction of biologically important N-heterocycles [24].
A variety of synthetic methods for pyrazolidinones [25], 1,3,4-oxadiazin-6-ones [26–30],
Blatter radicals [31], 1,3,4-oxadiazines [32,33], 1,3,4-oxadiazoles [34], isatin derivatives [35],
3-spiropyrazole-2-oxindoles [36], and dihydrobenzo[e]indoles [37] have been developed
through cycloadditions between the N-acyldiazenes and corresponding partners.

In 2015, Wang’s group developed an atom-efficient synthetic route for 1,3,4-oxadiazines
using a [2 + 4] cycloaddition of allenoates with N-acyldiazenes catalyzed by 4-(dimethylamino)
pyridine (DMAP) (Scheme 1a) [38]. Subsequently, Li and coworkers reported that the
asymmetric synthesis of 1,3,4-oxadiazines from allenoates and N-acyldiazenes was achieved
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by chiral DMAP analogs as catalysts (70–87% enantiomeric excess) [39]. While these
methods are promising for the synthesis of biologically important 1,3,4-oxadiazines, the
use of less-stable N-acyldiazenes as starting materials requires laborious preparation and
careful storage. Therefore, the development of simpler and more practical protocols for
1,3,4-oxadiazines using stable precursors of azo compounds is highly desirable.
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cycloaddition of allenoates with N-acyldiazenes. (b) Our developed one-pot synthesis of 1,3,4-
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Our group has investigated the aerobic oxidations of acylhydrazides to
N-acyldiazenes [40–42] and their synthetic applications in organic transformations [43,44].
Building upon our studies in this research area, we envisioned that aerobic oxidative
cycloaddition using acylhydrazides instead of N-acyldiazenes may provide more practi-
cal and green synthetic routes to 1,3,4-oxadiazines [45–49]. Because the acylhydrazides
are relatively more stable than N-acyldiazenes, and only water is produced during the
aerobic oxidations of the acylhydrazides, the laborious preparations and purifications of
less-stable N-acyldiazenes are not required in our envisaged strategy. Herein, we report
a one-pot route to 1,3,4-oxadiazines through the aerobic oxidation of acylhydrazides and
the DMAP-catalyzed cycloaddition of the in situ generated N-acyldiazenes with allenoates
(Scheme 1b).

2. Results

We initially examined the direct aerobic oxidative cyclization of N′-phenylbenzohydrazide
(1a) and benzyl allenoate (2a) using the CuCl/DMAP system (Table 1, entry 1) [40]. We
presumed that the used DMAP facilitates not only the aerobic oxidation of acylhydrazide
to N-acyldiazene but also cyclization between the generated azo compound and allenoate;
however, only 14% of 1,3,4-oxadiazine 3a was produced. The use of the NOx catalytic
system (NaNO2 and HNO3) with DMAP showed a promising result [41] compared to
other catalytic systems such as Fe(Pc) and Mn(Pc) (Table 1, entries 2–4) [44,50]. Despite
implementing several optimizations in the direct aerobic oxidative cyclization approach,
however, there was no notable improvement in the yield of 3a.
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Table 1. Direct aerobic oxidative cyclization of N′-phenylbenzohydrazide (1a) and benzyl allenoate
(2a) a.
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Next, we tested the feasibility of a one-pot synthesis of 3a from 1a and 2a (Table 2). Full
conversions of 1a to benzoyl-2-phenyldiazene 4a were observed in the aerobic oxidations
catalyzed by the previously reported catalytic systems such as CuCl/DMAP, Fe(Pc), and
Mn(Pc) in 2 h; however, the following DAMP-catalyzed cycloadditions between 2a and
the generated 4a were less reactive (entries 1–3). We assumed that the remaining metal
catalysts probably hampered the desired DMAP-catalyzed cycloaddition. Interestingly, it
was found that the one-pot sequential protocol consisting of aerobic oxidation using the
NOx catalytic system followed by DMAP-catalyzed cycloaddition produced the desired 3a
with a good yield (entry 4). This result indicated that the used NaNO2/HNO3 reagents
and the byproducts formed during aerobic oxidation are compatible with the second step,
DMAP-catalyzed cyclization of the generated 4a and 2a. With the NOx catalytic system,
other bases and solvents were screened. The use of pyridine as a base showed an inferior
result to DMAP (entry 5), and no reaction was observed when 1,8-diazabicyclo [5.4.0]
undec-7-ene (DBU) was employed as a base (entry 6). Various solvents, such as CH3CN,
CH2Cl2, and 1,4-dioxane, were tested as reaction media, but they resulted in lower yields
compared to toluene (entries 7–9). The one-pot synthesis in an eco-friendly solvent such as
EtOH was sluggish (entry 10). We aimed to minimize the amounts of DAMP and 2a and
determined that the use of 30 mol % of DMAP and 1.2 equivalents of 2a was sufficient to
facilitate the developed one-pot 1,3,4-oxadiazine synthesis (entry 11).

The optimized one-pot reaction conditions were then tested with various acylhy-
drazides to gain insight into the substrate scope, and the results are described in Figure 1A.
First, the reactivities of acylhydrazides bearing the para-substituted phenyl group at the
R1 position were studied. Electron-rich acylhydrazides or halogen-substituted acylhy-
drazides produced the corresponding 1,3,4-oxadiazines in good to high yields (3b–3e).
The present one-pot protocol was successful in preparing 4-nitro phenyl substituted 1,3,4-
oxadiazine 3f, which was not accessible using the previous method [38], albeit in a low
yield. Both meta-substituted phenyl hydrazides and di-substituted phenyl hydrazides
were successfully employed for the synthesis of 1,3,4-oxadiazines (3g–3j). However, several
problematic substrates were observed in the developed one-pot protocol. For example,
aliphatic acylhydrazides such as N′-propybenzohydrazide, N′-isopropylbenzohydrazide,
and N′-tert-butylbenzohydrazide did not produce the desired 1,3,4-oxadiazine in spite of
the full conversion to the corresponding N-acyldiazenes (3k) [51]. Non-substituted ben-
zoyl hydrazide was also tested, but the desired 1,3,4-oxadiazines could not be accessible,
presumably due to decomposition of the unstable azo intermediate (3l).
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Table 2. Optimization of the one-pot synthesis of 1,3,4-oxadiazine (3a) from N′-phenylbenzohydrazide
(1a) and benzyl allenoate (2a) a.
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Following that, the substrate scope of the R2 position was investigated. In general,
various para- or meta-substituted benzoyl hydrazides smoothly underwent the developed
one-pot protocol regardless of the electronic environments (3m–3s). The 1,3,4-oxadiazine
with a naphthalene moiety was synthesized with 75% yield through the developed one-pot
protocol (3t). It is noteworthy that the synthesis of 1,3,4-oxadiazines with aliphatic groups
at the R2 position could be synthesized by the present one-pot method, producing 3u
with 26% yield and 3v with 48% yield. Other multi-substituted 1,3,4-oxadiazines could be
prepared with good to high yields (3w and 3x).

The substrate scope of the γ-substituted allenoates was also investigated (Figure 1B) [52].
In addition to the benzyl substituent at γ-position, other aliphatic substituents such as
methyl, ethyl, and isobutyl were successfully employed, and the corresponding 1,3,4-
oxadiazines were produced with good yields (3y–3aa). The one-pot cyclization using
the allenoate-bearing phenyl group at the γ-position had a poor yield in spite of the full
conversion of allenoate (3ab). It was revealed that the present one-pot protocol was not
significantly influenced by the ester group of allenoate (3ac and 3ad).

In order to showcase the practicality and efficiency of the present one-pot protocol, we
carried out a gram-scale reaction using 1a (1.1 g, 5.0 mmol) and 2a (1.2 g, 6.0 mmol) under
slightly modified conditions (Scheme 2). The desired 1,3,4-oxadiazine 3a was obtained with
72% yield (1.4 g, 3.6 mmol) without a significant decrease in reactivity. The previous reports
only achieved small-scale (0.2 mmol) synthesis of 1,3,4-oxadiazines, possibly because of the
challenging isolation and purification of N-acyldiazenes. Therefore, our developed one-pot
method for 1,3,4-oxadiazine from acylhydrazides offers a practical and efficient approach
for the synthesis of 1,3,4-oxadiazines on a larger scale.
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The proposed mechanism of the developed one-pot synthesis 1,3,4-oxadiazines is
depicted in Figure 2. Initially, the allenoate 2 was activated by DMAP and zwitterionic
intermediate A was generated. The conjugate addition of the generated A to N-acyldiazene
4, which was produced by the NOx-catalyzed aerobic oxidation of acylhydrazide 1, pro-
vided intermediate B. Then, intramolecular 1,4-addition followed by elimination yielded
the desired 1,3,4-oxadiazine 3 and DMAP catalyst.
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3. Materials and Methods
3.1. General Information

All commercially available compounds and solvents were purchased and used as
received, unless otherwise noted. Analytical thin-layer chromatography (TLC) was per-
formed on precoated silica gel 60 F254 plates. TLC visualization was achieved by the use
of UV light (254 nm) and treatment with phosphomolybdic acid, p-anisaldehyde, KMnO4,
or Vanillin stain followed by heating. Flash chromatography was performed using silica
gel (particle size 40−63 µm, 230−400 mesh). 1H and 13C NMR spectra were recorded
using 300 MHz NMR (300 MHz for 1H, 75 MHz for 13C) or 400 MHz NMR (400 MHz
for 1H, 101 MHz for 13C). Chemical shift values are given in parts per million relative to
internal TMS (0.00 ppm for 1H) or CDCl3 (77.06 ppm for 13C). The following abbreviations
were used to describe peak splitting patterns when appropriate: br = broad, s = singlet,
d = doublet, t = triplet, q = quartet, p = pentet, m = multiplet, dd = double of doublet,
dt = double of triplet, td = triple of doublet, tt = triple of triplet. Coupling constants, J, were
reported in hertz unit (Hz). High-resolution mass spectra were obtained from the Korea
Basic Science Institute (Daegu) by using the EI method and magnetic sector mass analyzer.
Melting points were determined on a digital melting point apparatus, and temperatures
were uncorrected.

3.2. Preparation of Acylhydrazides and Allenoates
3.2.1. Preparation of Acylhydrazides (1a–1j, 1l–1u, and 1w–1x) [49]

To a 50 mL round-bottom flask equipped with a magnetic stir bar, hydrazine hy-
drochloride (5.0 mmol) and CH2Cl2 (5.0 mL) were added. The solution was cooled to 0 ◦C,
and pyridine (11.0 mmol, 2.2 equiv) was added. Then, acyl chloride (5.5 mmol, 1.1 equiv)
was added dropwise. The reaction mixture was stirred at room temperature for 4 h. The
mixture was diluted with CH2Cl2 and washed with 1.0 M HCl aqueous solution three
times; then, the combined organic layer was dried over MgSO4, filtered, and concentrated
on a rotary evaporator. Recrystallization with EtOH yielded the desired acylhydrazide.

3.2.2. Preparation of N′-(tert-butyl)benzohydrazide (1k) [51]

To a 100 mL round-bottom flask equipped with a magnetic stir bar, tert-butylhydrazine
hydrochloride (10.0 mmol), Et3N (22.0 mmol, 2.2 equiv), and CH2Cl2 (20.0 mL) were added.
The solution was cooled to 0 ◦C, and benzoyl chloride (10.0 mmol, 1.0 equiv) was added
dropwise. The reaction mixture was stirred overnight at room temperature. The mixture
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was washed with water three times; then, the combined organic layer was dried over
MgSO4, filtered, and concentrated on a rotary evaporator. Recrystallization with EtOH
yielded the desired N′-(tert-butyl)benzohydrazide.

3.2.3. Preparation of N′-phenylcyclohexanecarbohydrazide (1v)

A 100 mL flame-dried round-bottom flask, which was equipped with a magnetic stir
bar and charged with phenylhydrazine hydrochloride (12.0 mmol), was evacuated and
backfilled with nitrogen (this process was repeated three times). After CH2Cl2 (30.0 mL)
was added, the solution was cooled to 0 ◦C. To the reaction mixture, pyridine (24.0 mmol,
2.0 equiv) was added slowly, and then cyclohexanecarbonyl chloride (13.2 mmol, 1.1 equiv)
was added dropwise. The reaction mixture was stirred at room temperature for 5 h. The
mixture was diluted with CH2Cl2 and washed with 4.0 M HCl aqueous solution three times;
then, the combined organic layer was dried over MgSO4, filtered, and concentrated on a
rotary evaporator. Recrystallization with 1:4 EtOAc/Hx yielded the desired acylhydrazide.

3.2.4. Preparation of Allenoates [52]

A 100 mL round-bottom flask, which was equipped with a magnetic stir bar and
charged with triphenylphosphorane (10.0 mmol), was evacuated and backfilled with
nitrogen (this process was repeated three times). After CH2Cl2 (40 mL) and trimethylamine
(11.0 mmol, 1.1 equiv) were added, acyl chloride (11.0 mmol, 1.1 equiv) was added dropwise
at 0 ◦C. The reaction mixture was stirred at room temperature overnight. The mixture
was filtered by a short pad of silica and concentrated on a rotary evaporator. The pure
allenoates were obtained by column chromatography.

Ethyl 6-methylhepta-2,3-dienoate (for 3aa); colorless oil, EtOAc/Hx = 1:10, 1H NMR
(300 MHz, CDCl3) δ 5.61–5.52 (m, 2H), 4.20–4.12 (m, 2H), 2.07–1.99 (m, 2H), 1.74 (dt, J = 13.3,
6.7 Hz, 1H), 1.27 (t, J = 7.1 Hz, 3H), 0.96 (dd, J = 6.6, 1.6 Hz, 6H); 13C NMR (75 MHz, CDCl3)
δ 212.6, 166.2, 93.7, 87.6, 60.6, 36.8, 28.2, 22.1, 21.9, 14.2; HRMS (EI) m/z calcd. For C10H16O2
[M]+: 168.1150, found 168.1152.

Methyl hexa-2,3-dienoate (for 3ad); colorless oil, EtOAc/Hx = 1:10, 1H NMR (400 MHz,
CDCl3) δ 5.69 (q, J = 6.3 Hz, 1H), 5.62 (dt, J = 6.2, 3.4 Hz, 1H), 3.74 (s, 3H), 2.24–2.08 (m, 2H),
1.08 (t, J = 7.4 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 212.2, 166.7, 97.1, 88.5, 51.9, 20.8, 13.0;
HRMS (EI) m/z calcd. For C7H10O2 [M]+: 126.0681, found 126.0680.

3.3. General Procedure for One-Pot Synthesis of 1,3,4-Oxadiazines

One 10 mL flame-dried test tube (Tube A), which was equipped with a magnetic
stir bar and charged with acylhydrazide (0.3 mmol) and NaNO2 (0.03 mmol, 10 mol %),
was evacuated and backfilled with oxygen (this process was repeated three times). After
toluene (1.0 mL), HNO3 (0.06 mmol, 20 mol %), and additional toluene (0.5 mL) were added
in sequence, the reaction mixture was stirred for 2 h. The other 10 mL flame-dried test
tube (Tube B), which was equipped with a magnetic stir bar, was evacuated and backfilled
with nitrogen (this process was repeated three times). Allenoate (0.36 mmol, 1.2 equiv) in
toluene (0.5 mL) was added to Tube B. Then, the reaction mixture in Tube A was added to
Tube B using a syringe. By using toluene (0.5 mL), Tube A was washed, and the solution
was transferred to Tube B. After the combined mixture in Tube B was stirred at room
temperature for 0.5 h, DMAP (0.09 mmol, 30 mol %) in toluene (0.5 mL) was added. After
48 h, the reaction mixture in Tube B was diluted by adding CH2Cl2 and washed with
a saturated aqueous solution of Na2CO3. Two layers were separated, and the aqueous
layer was extracted with CH2Cl2. The combined organic layer was dried over MgSO4,
filtered, and concentrated on a rotary evaporator. The residue was purified by column
chromatography to yield 1,3,4-oxadiazines.
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3.4. Characterizations of the Newly Synthesized 1,3,4-Oxadiazines

(Z)-Ethyl 2-(5-benzyl-4-(4-methoxyphenyl)-2-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)
acetate (3b); yellow oil, EtOAc/Hx = 1:10, 1H NMR (400 MHz, CDCl3) δ 8.11 (d, J = 6.9 Hz,
2H), 7.45 (d, J = 6.4 Hz, 3H), 7.29–7.14 (m, 8H), 6.92 (d, J = 8.8 Hz, 2H), 4.72 (s, 1H), 4.59 (dd,
J = 9.2, 4.6 Hz, 1H), 4.25–4.15 (m, 2H), 3.82 (s, 3H), 2.98–2.84 (m, 2H), 1.30 (t, J = 7.1 Hz, 3H);
13C NMR (75 MHz, CDCl3) δ 164.5, 154.6, 153.3, 141.8, 138.8, 136.5, 130.1, 129.8, 129.5, 128.7,
128.5, 127.0, 125.6, 116.1, 114.7, 98.0, 60.1, 57.4, 55.7, 33.5, 14.3; HRMS (EI) m/z calcd. For
C27H26N2O4 [M]+: 442.1893, found 442.1895.

(Z)-Ethyl 2-(5-benzyl-4-(4-nitrophenyl)-2-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate
(3f); yellow oil, EtOAc/Hx = 1:10, 1H NMR (400 MHz, CDCl3) δ 8.06–7.96 (m, 4H), 7.49 (d,
J = 7.0 Hz, 3H), 7.20–7.04 (m, 7H), 6.65 (dd, J = 8.2, 5.8 Hz, 1H), 5.73 (s, 1H), 4.22–4.14 (m,
2H), 3.10–2.99 (m, 2H), 1.29 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 166.2, 158.3,
149.6, 144.2, 140.0, 135.2, 130.9, 129.9, 129.1, 128.6, 128.5, 127.3, 125.8, 125.5, 112.3, 99.0, 60.6,
50.6, 35.2, 14.3; HRMS (EI) m/z calcd. For C26H23N3O5 [M]+: 457.1638, found 457.1635.

(Z)-Ethyl 2-(5-benzyl-2-phenyl-4-(m-tolyl)-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3g);
yellow solid, EtOAc/Hx = 1:10, mp 102–103 ◦C, 1H NMR (400 MHz, CDCl3) δ 8.18–8.04
(m, 2H), 7.48–7.43 (m, 3H), 7.30–7.25 (m, 2H), 7.24–7.17 (m, 3H), 7.15 (s, 1H), 7.10 (s, 1H),
7.03 (dd, J = 8.2, 2.2 Hz, 1H), 6.82–6.76 (m, 1H), 4.75 (s, 1H), 4.67 (dd, J = 9.4, 4.8 Hz, 1H),
4.35–4.14 (m, 2H), 3.11–2.84 (m, 2H), 2.37 (s, 3H), 1.41–1.23 (m, 3H); 13C NMR (75 MHz,
CDCl3) δ 164.5, 153.0, 144.6, 141.8, 139.3, 136.4, 130.1, 129.9, 129.5, 129.2, 128.7, 128.5,
127.1, 125.7, 121.9, 115.0, 111.2, 98.2, 60.1, 56.3, 34.0, 21.9, 14.4; HRMS (EI) m/z calcd. For
C27H26N2O3 [M]+: 426.1943, found 426.1941.

(Z)-Ethyl 2-(5-benzyl-4-(3-bromophenyl)-2-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate
(3h); yellow oil, EtOAc/Hx = 1:10, 1H NMR (400 MHz, CDCl3) δ 8.12 (d, J = 4.2 Hz, 2H),
7.47 (s, 3H), 7.43 (s, 1H), 7.28 (s, 2H), 7.23 (d, J = 7.4 Hz, 1H), 7.16 (d, J = 7.3 Hz, 3H),
7.10–7.04 (m, 2H), 4.83 (s, 1H), 4.68–4.63 (m, 1H), 4.22 (d, J = 6.4 Hz, 2H), 3.01–2.89 (m, 2H),
1.31 (t, J = 7.1 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 164.3, 152.6, 145.7, 142.4, 135.8, 130.5,
130.2, 129.6, 129.5, 128.7, 128.5, 127.3, 125.8, 123.5, 123.4, 117.1, 112.0, 98.6, 60.2, 55.9, 34.3,
14.3; HRMS (EI) m/z calcd. For C26H23BrN2O3 [M]+: 490.0892, found 490.0895.

(Z)-Ethyl 2-(5-benzyl-2-(4-nitrophenyl)-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate
(3q); orange solid, EtOAc/Hx =1:10, mp 75–76 ◦C, 1H NMR (400 MHz, CDCl3) δ 8.31–8.19
(m, 4H), 7.43–7.34 (m, 2H), 7.34–7.24 (m, 4H), 7.23–7.13 (m, 3H), 7.03 (t, J = 7.2 Hz, 1H), 4.88
(s, 1H), 4.77 (dd, J = 9.1, 4.7 Hz, 1H), 4.27–4.17 (m, 2H), 3.07–2.89 (m, 2H), 1.31 (t, J = 7.1 Hz,
3H); 13C NMR (101 MHz, CDCl3) δ 164.2, 152.1, 148.2, 143.8, 139.7, 135.9, 135.7, 129.5, 129.5,
128.7, 127.3, 126.1, 123.8, 121.8, 114.2, 99.0, 60.3, 56.0, 34.7, 14.3; HRMS (EI) m/z calcd. For
C26H23N3O5 [M]+: 457.1638, found 457.1639.

(Z)-Ethyl 2-(5-benzyl-4-phenyl-2-(m-tolyl)-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3r);
yellow oil, EtOAc/Hx = 1:10, 1H NMR (300 MHz, CDCl3) δ 7.94 (d, J = 7.5 Hz, 2H), 7.39–7.32
(m, 3H), 7.31–7.20 (m, 6H), 7.20–7.14 (m, 2H), 7.00–6.91 (m, 1H), 4.74 (s, 1H), 4.68 (dd, J = 9.5,
4.9 Hz, 1H), 4.20 (dd, J = 7.1, 5.6 Hz, 2H), 3.01–2.84 (m, 2H), 2.45 (s, 3H), 1.31 (t, J = 7.1 Hz,
3H); 13C NMR (75 MHz, CDCl3) δ 164.6, 153.0, 144.6, 142.2, 138.2, 136.4, 130.9, 130.0, 129.5,
129.4, 128.8, 128.5, 127.2, 126.2, 123.1, 121.0, 114.2, 98.4, 60.2, 56.3, 33.9, 21.6, 14.4; HRMS (EI)
m/z calcd. For C27H26N2O3 [M]+: 426.1943, found 426.1939.

(Z)-Ethyl 2-(5-benzyl-2-(3-chlorophenyl)-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate
(3s); yellow oil, EtOAc/Hx = 1:10, 1H NMR (300 MHz, CDCl3) δ 8.07 (q, J = 1.3 Hz, 1H),
7.99 (dd, J = 5.5, 1.8 Hz, 1H), 7.42–7.33 (m, 4H), 7.32–7.21 (m, 5H), 7.18–7.13 (m, 2H), 6.99
(d, J = 7.2 Hz, 1H), 4.78 (s, 1H), 4.71 (dd, J = 9.3, 4.8 Hz, 1H), 4.21 (dd, J = 7.1, 5.0 Hz, 2H),
3.02–2.84 (m, 2H), 1.32 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 164.4, 152.4, 144.2,
140.6, 136.1, 134.6, 131.8, 129.8, 129.8, 129.5, 129.4, 128.7, 127.2, 125.6, 123.8, 121.3, 114.1,
98.8, 60.3, 56.2, 34.1, 14.4; HRMS (EI) m/z calcd. For C26H23ClN2O3 [M]+: 446.1397, found
446.1400.
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(Z)-Ethyl 2-(5-benzyl-2-(naphthalen-2-yl)-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate
(3t); yellow solid, EtOAc/Hx = 1:10, mp 66–67 ◦C, 1H NMR (400 MHz, CDCl3) δ 8.61
(s, 1H), 8.25 (d, J = 8.6 Hz, 1H), 8.05–7.98 (m, 1H), 7.96–7.85 (m, 2H), 7.63–7.52 (m, 2H),
7.46–7.18 (m, 9H), 7.02 (t, J = 6.8 Hz, 1H), 4.82 (s, 1H), 4.76 (dd, J = 9.3, 4.6 Hz, 1H), 4.28 (dd,
J = 12.4, 6.9 Hz, 2H), 3.07–2.94 (m, 2H), 1.39 (t, J = 7.1 Hz, 3H); 13C NMR (75 MHz, CDCl3)
δ 164.6, 152.9, 144.5, 142.1, 136.3, 134.1, 133.1, 129.5, 129.4, 128.8, 128.7, 128.2, 127.8, 127.4,
127.2, 126.9, 126.5, 125.4, 123.0, 121.1, 114.1, 98.5, 60.2, 56.3, 34.1, 14.5; HRMS (EI) calcd, for
C30H26N2O3 [M]+: 462.1943, found: 462.1947.

(Z)-Ethyl 2-(5-benzyl-2-cyclohexyl-4-phenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3v);
yellow oil, EtOAc/Hx = 1:10, 1H NMR (300 MHz, CDCl3) δ 7.33–7.26 (m, 3H), 7.26–7.21
(m, 2H), 7.19–7.11 (m, 4H), 6.91 (d, J = 7.2 Hz, 1H), 4.61 (s, 1H), 4.54 (dd, J = 9.3, 5.0 Hz,
1H), 4.25–4.11 (m, 2H), 2.90–2.74 (m, 2H), 2.60–2.44 (m, 1H), 2.14–2.05 (m, 2H), 1.85 (d,
J = 10.6 Hz, 2H), 1.67 (dd, J = 27.1, 13.4 Hz, 3H), 1.41–1.29 (m, 3H), 1.28–1.24 (m, 3H); 13C
NMR (75 MHz, CDCl3) δ 164.4, 153.8, 149.1, 144.9, 136.4, 129.5, 129.3, 128.6, 127.0, 120.4,
113.9, 97.6, 59.9, 56.1, 40.7, 32.8, 29.7, 25.9, 25.7, 14.3; HRMS (EI) m/z calcd. For C26H30N2O3
[M]+: 418.2256, found 418.2254.

(Z)-Ethyl 2-(5-benzyl-2-(4-bromophenyl)-4-(m-tolyl)-4H-1,3,4-oxadiazin-6(5H)-ylidene)
acetate (3w); yellow solid, EtOAc/Hx = 1:10, mp 95–96 ◦C, 1H NMR (400 MHz, CDCl3) δ
8.06–7.89 (m, 2H), 7.64–7.52 (m, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.23 (d, J = 7.8 Hz, 2H), 7.16 (d,
J = 7.3 Hz, 2H), 7.09 (s, 1H), 7.04 (d, J = 8.3 Hz, 1H), 6.80 (d, J = 7.4 Hz, 1H), 4.78 (s, 1H),
4.69 (dd, J = 9.5, 4.7 Hz, 1H), 4.31–4.11 (m, 2H), 3.01–2.85 (m, 2H), 2.39 (s, 3H), 1.29 (dd,
J = 7.9, 6.3 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 164.4, 152.8, 144.3, 141.0, 139.3, 136.2,
131.6, 129.5, 129.2, 129.0, 128.8, 128.7, 127.2, 124.2, 122.1, 115.0, 111.2, 98.4, 60.1, 56.2, 34.2,
21.9, 14.3; HRMS (EI) m/z calcd. For C27H25BrN2O3 [M]+: 504.1049, found 504.1050.

(Z)-Ethyl 2-(5-isobutyl-2,4-diphenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3aa); yellow
oil, EtOAc/Hx = 1:10, 1H NMR (300 MHz, CDCl3) δ 8.14–8.05 (m, 2H), 7.47–7.39 (m, 3H),
7.37–7.31 (m, 2H), 7.29–7.23 (m, 2H), 6.95 (tt, J = 7.2, 1.2 Hz, 1H), 5.20 (s, 1H), 4.61 (dd,
J = 10.9, 3.9 Hz, 1H), 4.30–4.22 (m, 2H), 1.74–1.62 (m, 2H), 1.35 (t, J = 7.1 Hz, 4H), 1.04 (d,
J = 6.4 Hz, 3H), 0.90 (d, J = 6.5 Hz, 3H); 13C NMR (75 MHz, CDCl3) δ 164.7, 154.0, 144.6,
141.4, 130.0, 129.8, 129.3, 128.4, 125.6, 120.8, 113.8, 97.5, 60.2, 52.2, 35.1, 24.7, 23.5, 21.4, 14.4;
HRMS (EI) m/z calcd. For C23H26N2O3 [M]+: 378.1943, found 378.1945.

(Z)-Ethyl 2-(2,4,5-triphenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3ab); yellow oil,
EtOAc/Hx = 1:10, 1H NMR (300 MHz, CDCl3) δ 8.10–8.01 (m, 2H), 7.42–7.37 (m, 3H),
7.34–7.22 (m, 9H), 7.00–6.89 (m, 1H), 5.71 (s, 1H), 5.52 (s, 1H), 4.26 (q, J = 7.1 Hz, 2H), 1.35 (t,
J = 7.2 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 164.7, 153.9, 144.9, 141.5, 134.6, 130.0, 129.8,
129.3, 129.1, 128.5, 128.4, 126.8, 125.6, 121.0, 113.9, 98.2, 60.4, 57.0, 14.4; HRMS (EI) m/z
calcd. For C25H22N2O3 [M]+: 398.1630, found 398.1634.

(Z)-Benzyl 2-(5-benzyl-2,4-diphenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3ac); yellow
oil, EtOAc/Hx =1:10, 1H NMR (300 MHz, CDCl3) δ 8.04–7.98 (m, 2H), 7.44–7.31 (m, 10H),
7.29–7.19 (m, 5H), 7.18–7.13 (m, 2H), 6.96 (tt, J = 7.1, 1.3 Hz, 1H), 5.23–5.11 (m, 2H), 4.80 (s,
1H), 4.70 (dd, J = 9.5, 4.9 Hz, 1H), 3.03–2.81 (m, 2H); 13C NMR (75 MHz, CDCl3) δ 164.2,
153.4, 144.5, 141.9, 136.2, 136.0, 129.8, 129.5, 129.4, 128.7, 128.6, 128.4, 128.3, 128.2, 127.1,
125.7, 121.0, 114.1, 98.0, 66.1, 56.2, 33.9.; HRMS (EI) m/z calcd. For C31H26N2O3 [M]+:
474.1943, found 474.1944.

(Z)-Methyl 2-(5-ethyl-2,4-diphenyl-4H-1,3,4-oxadiazin-6(5H)-ylidene)acetate (3ad); yellow
oil, EtOAc/Hx = 1:10, 1H NMR (300 MHz, CDCl3) δ 8.10–7.99 (m, 2H), 7.47–7.23 (m, 7H),
6.94 (tt, J = 7.0, 1.3 Hz, 1H), 5.20 (s, 1H), 4.43 (dd, J = 8.0, 6.6 Hz, 1H), 3.79 (s, 3H), 1.83–1.65
(m, 2H), 0.99 (t, J = 7.5 Hz, 3H); δ 13C NMR (75 MHz, CDCl3) δ 165.0, 154.1, 144.7, 141.4,
130.0, 129.7, 129.3, 128.4, 125.6, 120.7, 113.9, 97.2, 55.4, 51.4, 20.4, 10.7; HRMS (EI) m/z calcd.
For C20H20N2O3 [M]+: 336.1474, found 336.1471.
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3.5. 1H and 13C NMR Spectra

For the 1H and 13C NMR spectra, see Supplementary Materials.

4. Conclusions

In conclusion, we have developed a practical and green one-pot synthesis of 1,3,4-
oxadiazines from acylhydrazides. The newly developed one-pot protocol consists of aerobic
oxidations of acylhydrazides into N-acyldiazenes using a NOx catalytic system, followed
by the DMAP-catalyzed cycloaddition of allenoate with the generated N-acyldiazenes. The
present method was able to utilize various acylhydrazides to generate 1,3,4-oxadiazines
with good to high yields. Interestingly, the electron-deficient phenyl-substituted 1,3,4-
oxadiazines, which could not be synthesized by the previous method using N-acyldiazene,
were able to be synthesized by the present one-pot method. However, aliphatic acylhy-
drazides displayed limited substrate scope. The practicality of the one-pot synthesis of
1,3,4-oxadiazines from acylhydrazides was demonstrated by the gram-scale experiment,
which was not achieved by the previous synthesis of 1,3,4-oxadiazines from N-acyldiazenes.
The synthesis of other heterocycles using N-acyldiazenes or acylhydrazides is underway in
our laboratory.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules28093815/s1, Preparation of acylhydrazides and al-
lenoates, detailed optimizations, experimental procedures, spectroscopic data, and copies of 1H and
13C NMR spectra.
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