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Abstract: Glioblastoma (GBM) is the most aggressive brain tumor, with high mortality. Timosaponin
AIII (TIA), a steroidal saponin isolated from the medicinal plant Anemarrhena asphodeloides Bge., has
been shown to possess anticancer properties in various cancer types. However, the effect of TIA on
GBM is unknown. In this study, we reveal that TIA not only inhibited U87MG in vitro cell growth
but also in vivo tumor development. Moreover, we found that the cause of TIA-induced cell growth
suppression was apoptosis. When seeking to uncover antitumor mechanisms of TIA, we found that
TIA diminished the expression of cGMP-specific phosphodiesterase 5(PDE5) while elevating the
levels of guanylate cyclases (sGCβ), cellular cGMP, and phosphorylation of VASPser239. Following
the knockdown of PDE5, PDE5 inhibitor tadalafil and cGMP analog 8-Bro-cGMP both inhibited cell
growth and inactivated β-catenin; we reason that TIA elicited an antitumor effect by suppressing
PDE5, leading to the activation of the cGMP signaling pathway, which, in turn, impeded β-catenin
expression. As β-catenin is key for cell growth and survival in GBM, this study suggests that TIA
elicits its anti-tumorigenic effect by interfering with β-catenin function through the activation of a
PDE5/cGMP functional axis.

Keywords: timosaponin AIII; glioblastoma; PDE5; cGMP pathway; β-catenin pathway

1. Introduction

Glioblastoma (GBM) is one of the deadliest malignant tumors in the central nervous
system (CNS) [1]. The current treatments for GBM include surgical resection, radiotherapy,
and chemotherapy with temozolomide. However, the benefit of these therapies to the
survival of GBM patients is limited [2].

Cyclic 3′, 5′-GMP (cGMP) is a critical second messenger of cyclic nucleotides in cells.
cGMP activates protein kinase G (PKG), and subsequent signaling pathways regulate
a broad spectrum of physiological and pathological processes. The cGMP pathway has
emerged as a therapeutic target in various cancers [3–6]. Based on the GBM-related miRNA–
mRNA regulatory network, downregulated genes were found to be significantly enriched
in the cGMP–PKG signaling pathway and calcium signaling pathway [7]. Given the tumor-
suppressive role of the global miRNA system [8,9], we reason that the cGMP–PKG signaling
pathway may be involved in negative regulation of GBM progression/development.

The intracellular level of cGMP is determined by a dynamic balance between sol-
uble guanylate cyclase (sGC)-mediated synthesis and cyclic nucleotide phosphodiester
(PDEs)-led hydrolysis. Restoring sGC with an active sGC mutant (sGCα1β1(Cys105))
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suppressed glioblastoma cell growth and increased the survival time in nude mice bearing
a glioblastoma xenograft [10], which is consistent with the notion that the cGMP–PKG
signaling pathway negatively regulates GBM progression/development.

Among cGMP-specific PDEs, phosphodiesterase 5 (PDE5) is expressed abnormally in
a variety of cancers [11–13]. PDE5 inhibition reduces cancer stem cells’ maintenance via
induction of PKA signaling [14], cancer cell growth, and tumor immunity through acti-
vating cGMP/PKG signaling to block Wnt/β-catenin transcription [15]. PDE5 inhibitors,
which are safe drugs to treat erectile dysfunction, have shown benefits for cancer treat-
ment [16,17]. For example, PDE5 inhibitor sildenafil inhibits colorectal cancer growth
in vitro and in vivo [18], and administration of PDE5 inhibitors is reported to reduce the
risk of colorectal cancer [19]. Moreover, PDE5 inhibitors increase the therapeutic efficacy
of monoclonal antibodies to deter by effectively increasing blood–brain tumor barrier
(BTB) permeability [20]. In addition, PDE5 inhibitor reversed BET inhibitor resistance in
MYC/Ras-driven hepatocellular carcinoma [21] and sensitized docetaxel chemotherapy in
prostate cancer cells [22]. These studies demonstrate that a persistent suppression of PDE5
may suppress steps critical for tumor progression, including tumor cell survival, stemness,
and drug resistance. Therefore, identifying PDE5 inhibitors from natural medicinal plants
for the development of anticancer drugs is of a great interest.

Rhizoma Anemarrhenae, the dried root of Anemarrhena asphodeloides Bge. (A.A.),
which belongs to the family Liliaceae, has been widely used in China for centuries [23]. The
chemical constituents of A.A. include steroidal saponins, flavones, xanthone C-glycosides,
cyclic peptides, alkaloids, fatty acids, polyphenols, lignans, and polysaccharides. Nu-
merous steroidal saponins have been found to exhibit diverse biological properties. In
particular, timosaponin AIII (TIA, CAS no: 41059-79-4), a steroidal saponin with a sugar
chain at the C3 position, presents a broad spectrum of biological activities including anti-
inflammatory, anti-platelet and antithrombotic, anti-learning and memory deficits, and
anticancer activities [24]. However, it is unknown whether TIA can suppress glioblastoma
cell growth.

In the present study, we show that TIA inhibited in vitro cell growth and in vivo
xenograft development of U87MG cells. We present evidence that TIA elicits its tumorigenic
effect by inactivating β-catenin via a PDE5/cGMP axis.

2. Results
2.1. TIA Inhibited In Vitro Cell Growth and In Vivo Tumor Development of U87MG Cells

To determine the effect of TIA on glioblastoma cell growth, we treated U87MG cells
with varying concentrations of TIA for 72 h. MTT assay showed that TIA dose-dependently
inhibited U87MG cell growth (Figure 1A). To evaluate the effect of TIA on glioblastoma
tumor development, we implanted U87MG cells in nude mice. After tumors reached sizes
of approximately 200 mm3, at 2 weeks after implantation of cells, mice received daily TIA
(1 mg/kg, I.P.) or a vehicle for two weeks. Compared to the vehicle group, treatment
with TIA led to a 48% reduction in tumor weight (Figure 1B). Further immunohistochem-
istry staining revealed 40% less Ki67 staining in tumors excised from TIA-treated mice
(Figure 1C).

To understand the cause of TIA-elicited growth inhibition, we first analyzed the effect
of TIA on the cell cycle progression of U87MG cells. Flow cytometry showed that TIA
increased the percentage of the sub-G1 population (Figure 1D) while moderately decreasing
the G0/1 cell population, indicating the occurrence of apoptosis. Subsequent annexin V/PI
double-staining-based flow cytometry showed a dramatic increase in the early apoptotic
cell population (Q3) in TIA-treated cells compared to the control (Figure 1E). These results
suggested that TIA inhibited glioblastoma cell growth by inducing apoptosis.
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Figure 1. TIA suppresses U87MG cell growth by inducing apoptosis. (A) MTT assay to analyze the
effect of TIA on U87 MG cell growth. (B) Effect of TIA on tumor weight. (C) IHC staining of Ki67 on
tumors derived from mice treated with vehicle and TIA. (D) Effect of TIA on cell cycle progression
of U87 MG cells. (E) Effect of TIA on apoptosis in U87MG cells. Data are the mean ± S.E.M. (n = 3).
* p < 0.05 vs. controls; ** p < 0.01 vs. controls. C: control group of cells; 1.25–10: treatment of cells
with 1.25–10 µM TIA; M: vehicle group of U87MG-bearing mice; TIA: oral administration of TIA
(1 mg/kg/d, I.P., 14 days) to U87MG-bearing mice.
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2.2. TIA Downregulated the Abundance of β-Catenin, Cyclin D1, Bcl-2, and PDE5 in
U87MG Cells

Apoptosis in glioblastoma has been reported to be closely associated with the abun-
dance of β-catenin, cyclin D1 (a known β-catenin-regulated gene), and Bcl-2 [25]. To
investigate if this is the case for TIA-induced apoptosis in U87MG cells, we treated cells
with TIA with two different concentrations, 5 and 10 µM. Western blotting with the respec-
tive antibodies showed that TIA decreased the amounts of β-catenin, cyclin D1, and Bcl-2
in a concentration-dependent manner (Figure 2A).
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Figure 2. TIA is likely to downregulate the abundance of Bcl-2, β-catenin, and cyclin D1 through
the suppression of PDE5. (A) Effects of TIA on the levels of Bcl-2, β-catenin, and cyclin D1 in U87
MG. (B,C). Effects of TIA on the mRNA (B) and protein (C) amounts of PDE5 in U87MG. Data are
the mean ± S.E.M. (n = 3). ** p < 0.01 vs. controls. C: control group; 5: treatment with 5 µM TIA;
10: treatment with 10 µM TIA.

As activation of the β-catenin signaling pathway is known to be facilitated by PDE5
in various cancer types [26], we tested the potential involvement of PDE5 in this TIA-
induced event and found that TIA reduced the expression of PDE5 (Figure 2B) while it
almost completely wiped out the PDE5 protein in U87MG cells (Figure 2C). These results
raised the possibility that TIA diminished PDE5, leading to the suppression of β-catenin,
reduction in cyclin D1/Bcl-2, and subsequent apoptosis.

To test the effect of PDE5 on U87 MG cell growth, we initially introduced PDE5A
siRNA into U87MG cells. Western blotting confirmed the effectiveness of PDE5 siRNA
to silence PDE5A (Figure 3A). Compared to the control, the MTT assay showed that
knockdown of PDE5 led to a 60% reduction in cell growth (Figure 3B). Moreover, we
detected a marked reduction in the levels of β-catenin and cyclin D1 in PDE5A knockdown
cells (Figure 3C). In a parallel experiment, we treated U87MG cells with PDE5 inhibitor
tadalafil (TAL) for 24 h. MTT assay showed that TAL dose-dependently inhibited cell
growth (Figure 3D). Similarly, TAL lessened the abundance of β-catenin and cyclin D1
(Figure 3E). Collectively, these results supported the notion that TIA inhibited glioblastoma
cell growth by interfering with the PDE5–β-catenin signaling pathway.
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Figure 3. Interfering with PDE5A suppressed U87MG cell growth via the β-catenin pathway. (A,B) Ef-
fect of PDE5A siRNA on PDE5A mRNA (A) and protein (B) expression levels in U87 MG. (C–F) Effect
of PDE5A knockdown and TAL inhibitor on cell growth and expression levels of PDE5, β-catenin,
and cyclin D1 in U87 MG cells. Data are the mean ± S.E.M. (n = 3). * p < 0.05 vs. controls; ** p < 0.01
vs. controls. C: control group; 1.25–10: treatment with 1.25–10 µM TAL.

2.3. Activation of the cGMP Pathway Inhibits U87MG Cell Growth by Interfering with β-Catenin

The nature of PDE5 as a cGMP decomposer prompted us to investigate the effect of
the cGMP signaling pathway on U87MG growth. We treated U87MG cells with varying
concentrations of 8-Bro-cGMP or sGC stimulator riociguat (RIO). MTT assay showed that
both RIO (50 µM) and 8-Bro-cGMP (1000 µM) dramatically decreased the growth of U87MG
cells (Figure 4A). Moreover, both RIO and 8-Bro-cGMP reduced the levels of β-catenin and
cyclin D1 (Figure 4B).

Activation of protein kinase G, the effector of cGMP, induces apoptosis in colon cancer
cells by blocking β-catenin expression [27,28]. To ensure that PDE5 inhibitor TAL, sGC
stimulator RIO, and 8-Bro-cGMP exert their role through PKG, we assessed their effect on
the status of serine239-phosphorylated VASP, a known site phosphorylated by PKG upon
the elevation of cGMP. Western blotting showed that all three were able to increase the level
of serine239-phosphorylated VASP in U87MG cells (Figure 5A,B), confirming the activation
of the cGMP pathway in U87MG cells by TAL, RIO, or 8-Bro-cGMP. Subsequently, we
pre-treated U87MG cells with KT 5823, a selective PKG inhibitor, followed by the addition
of TAL. While KT5823 alone did little to impact cell growth, it essentially abolished growth
inhibition elicited by TAL (Figure 5C). Parallel qPCR and Western blotting showed that
KT5823 prevented TAL from decreasing the levels of both β-catenin mRNA and protein
(Figure 5D,E). Together, these results suggest that activation of the cGMP pathway leads to
cell growth suppression, partially by downregulating β-catenin abundance in U87MG.



Molecules 2023, 28, 3795 6 of 14

2.4. TIA Regulates the PDE5/cGMP Axis in U87MG Cells

The ability of TIA to downregulate the abundance of PDE5 prompted us to determine
whether TIA also affects other elements in the cGMP pathway. qPCR and Western blotting
showed that TIA dose-dependently increased the abundance of sGCβ and PKG (Figure 6A–C).
Furthermore, TIA nearly doubled the cellular cGMP concentration (Figure 6D) and in-
creased the level of serine239-phosphorylated VASP in U87 glioma cells (Figure 6E). These
results indicate that TIA inhibits cell growth by regulating multiple vital components in
the cGMP signaling pathway, including downregulation of PDE5 and upregulation of
sGCβ/PKG to elevate the cGMP level.
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Figure 4. sGC stimulator RIO and cGMP analog 8-Bro-cGMP inhibited glioblastoma cell growth.
(A) Effects of RIO and 8-Bro-cGMP on U87MG cell growth. (B) Effects of RIO and 8-Bro-cGMP on the
abundance of β-catenin and cyclin D1. Data are the mean ± S.E.M. (n = 3). * p < 0.05 vs. controls;
** p < 0.01 vs. controls. C: control group; 6.25–50: treatment with 6.25–50 µM RIO; 125–1000: treatment
with 125–1000 µM 8-bro-cGMP.
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Figure 5. Activation of the cGMP pathway induces growth inhibition in glioblastoma cells. (A) Effect
of TAL and si-PDE5 on the level of serine239-phosphorylated VASP in U87MG cells. (B) Effect of
8-Bro-cGMP and RIO on the level of serine239-phosphorylated VASP in U87MG cells. (C) Effects
of KT5823 combined with TAL or alone on U87MG cell growth. (D) Effects of KT5823 combined
with TAL or alone on mRNA expression of β-catenin. (E) Effects of KT5823 combined with TAL or
alone on protein expression of β-catenin. Data are the mean ± S.E.M. (n = 3). * p < 0.05 vs. controls;
** p < 0.01 vs. controls. # p < 0.05 vs. TAL treatment alone; ## p < 0.01 vs. TAL treatment alone. C:
control group; KT5823: treatment with KT5823; TAL-5/TAL-10: treatment with TAL at 5 or 10 µM;
KT+TAL-5/KT+TAL-10: treatment with KT5823 plus TAL at 5 or 10 µM.
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Figure 6. TIA activates the cGMP pathway in U87MG cells. (A–C) Effect of TIA on the mRNA and
protein expression levels of sGCβ and PKG in U87MG. (D) Effect of TIA on the cellular level of cGMP
in U87MG cells. (E) Effect of TIA on the phosphorylation level of vaspser239 protein in U87MG cells.
Data are the mean ± S.E.M. (n = 3). * p < 0.05 vs. controls; ** p < 0.01 vs. controls. C: control group;
5: treatment with 5 µM TIA; 10: treatment with 10 µM TIA.

3. Discussion

Active ingredients isolated from traditional medical herbs are considered promising
and potentially valuable resources for developing anticancer drugs. TIA has recently re-
ceived particular attention for its potential to be developed as an anticancer agent [29]
because TIA has been demonstrated to exert potent and diverse antitumor activities in-
cluding interfering with invasion and migration [30–34], autophagy [35–37], reversing
drug resistance [38–41], and inducing apoptosis [42–47]. However, the effect of TIA on
glioblastoma tumorigeneity remains unanswered. In this study, we presented evidence
that TIA significantly inhibited cell growth by arresting cell cycle progression and inducing
apoptosis in human glioblastoma cell U87MG. Importantly, TIA effectively deterred tumor
development in a mouse xenograft model (Figure 1).

Previous studies have linked multiple signaling pathways to TIA-led growth inhibition.
For instance, TIA was proposed to interfere with mTOR function and induce ER stress in
breast and prostate cancer cells [42]. It was reported to trigger mitochondria-mediated and
caspase-dependent apoptosis in liver cancer cells [43]. In human melanoma cells, TIA was
noted to activate c-Jun N-terminal protein kinase (JNK) and the extracellular-signal-related
kinase (ERK) signaling pathway, leading to the production of NO [37]. Moreover, TIA was
shown to intercept the PI3K/Akt and STAT3 pathways in pancreatic cancer cells [44,45],
diminish ERK1/2 activity in lung cancer cells [46], and activate the ATM/Chk2 and p38
MAPK pathways in breast cancer [47]. In this study, we provided evidence that TIA
potently stimulated the cGMP–PKG signaling pathway in GBM cells. We speculate that
TIA may target diverse signaling pathways depending on the cell types.

A previous bioinformatics study proposed that the cGMP–PKG signaling pathway may
negatively contribute to GBM progression [7]. Our study showed that knockdown of PDE5,
treatment with PDE5 inhibitor tadalafil, activation of sGC by RIO, and directly increasing
the intracellular cGMP concentration all hampered U87MG cell growth (Figures 3–5). We
believe that our study provides the first experimental data supporting the role of the
cGMP–PKG signaling pathway in GBM cell growth and tumor development.

A possible mechanism underlying the antitumor role of the cGMP pathway is the
functional connection between the cGMP and β-catenin signaling pathways. Activated
cGMP signaling blocks β-catenin transcription, leading to cancer cell death [14,16]. PKG
activation has also been shown to interfere with the β-catenin signaling pathway by
suppressing the nuclear translocation of β-catenin, reducing β-catenin expression, and
decreasing the transcriptional activity of β-catenin [27,28]. These previous observations are
consistent with our data, which revealed that blocking PDE5 function (either using PDE5
inhibitor TAL or PDE5A siRNA) and 8-Bro-cGMP not only reduced the level of β-catenin
and but also its target gene cyclin D1 in U87MG (Figures 3–5). In addition, our findings
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suggest that activation of the cGMP–PKG signaling pathway may represent an effective
strategy to suppress the oncogenic activity of β-catenin and tumor development in GBM.

In conclusion, this study demonstrates that TIA can effectively inhibit GBM cell growth
and tumor development. Mechanically, TIA exerts its action by downregulating cGMP-
specific PDE5 and upregulating sGC, leading to the accumulation of intercellular cGMP
and subsequent activation of the PKG signaling pathway (Figure 6). Activation of PKG
further blocked β-catenin function, resulting in the obstruction of GBM cell growth and
tumor development (Figure 7).
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4. Materials and Methods
4.1. Reagents

Timosaponin AIII (TIA) was purchased from Tauto Biotech Co. (41059-79-4, with purity
>98% by HPLC, Shanghai, China); U87MG was obtained from the American Tissue Culture
Collection (Manassas, VI, USA); DMEM and FBS were obtained from HyClone (Auckland,
New Zealand); MTT and DMSO were obtained from Sigma (St. Louis, MO, USA); a
high-capacity cDNA reverse transcription kit, RNAIMAX transfect reagent, and TRIzol
reagent were purchased from Thermo Fisher Scientific Company (Waltham, MA, USA);
RealMasterMix (SYBR Green), protease inhibitor cocktail, and PhosSTOP were obtained
from Roche (Basel, Switzerland); a protein marker was purchased from Promega (Madison,
WI, USA); nitrocellulose membrane was obtained from GE Whatman (GE Healthcare
Bio-Sciences, Pittsburgh, PA, USA); β-actin, β-catenin, PKG1, T-VASP, and p-VASPser239
antibodies were purchased from Cell Signaling Technology (Danvers, MA, USA); PDE5A,
sGCβ, cyclin D1 antibodies, goat anti-mouse IgG H&L, goat anti-rabbit IgG H&L, and 8-Bro-
cGMP were purchased from Abcam (Cambridge, MA, USA). An ECL chemiluminescence
kit was purchased from Millipore (Burlington, MA, USA); the Bcl-2 antibody, BCA protein
assay kit, RIPA protein lysate, and cell cycle analysis kit were obtained from Beyotime
Institute of Biotechnology (Haimen, China); the FITC/annexin V apoptosis detection
kit was provided by BD Biosciences (San Jose, CA, USA); riociguat was acquired from
(Meilune, Dalian, China), the cGMP EIA kit was obtained from Cayman (Ann Arbor, MI,
USA); tadalafil was acquired from Santa Cruz (Dallas, TX, USA); the siRNA negative
control and siRNA-PDE5A were synthesized by GenePharm (Shanghai, China), with 5′-
GGAAGAAACAAGAGAGCUAdTdT-3′ as the sequence of the latter; and all PCR primers
were synthesized by Bioengineering Co., Ltd. (Shanghai, China).
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4.2. Cell Culture and Transfection

U87MG cells were maintained in DMEM medium supplemented with 10% FBS at 37 ◦C
in a humidified 5% CO2 atmosphere. After a stable 2–3 passages, cells in the logarithmic
growth phase were used for experiments.

The siRNAs were transfected into cells using RNAIMAX (Invitrogen, Waltham, MA,
USA) as instructed by the manufacturer. The cells were subjected to gene and protein
evaluations after 72 h of treatments.

4.3. Cell Proliferation Assay

The U87MG cell suspension was adjusted to a density of 5 × 104/mL and seeded in
100 µL of each well in a 96-well plate overnight, followed by treatment with TIA (1.25–10 µM),
TAL (0.125–2 µM), 8-Bro-cGMP (125–1000 µM), or RIO (6.25–50 µM) for 24 h. MTT solution
was added to each well for 4 h, and the cell number in each well was determined by
measuring the absorbance of DMSO-solubilized crystals at 490 nm using a microplate
reader. Cell growth inhibition was calculated using the formula of (OD-treated group mean
− OD blank control group mean)/(OD control group mean − OD blank control group
mean) × 100%.

4.4. Cell Cycle and Apoptosis Analyses

Cell cycle analysis was performed using FACS analysis with propidium iodide (PI)
staining. U87MG cells were starved in a serum-free medium for 18 h and then treated
with various concentrations of TIA for 6 h. Cells were washed and then fixed with 70%
ethanol at 4 ◦C for 24 h. Fixed cells were washed and then incubated for 30 min with
RNase (µg/mL) and PI (µg/mL), followed by flow cytometry. Cell cycle distribution was
analyzed with 10,000 collected cells using CellQuest acquisition and the Flowjo analysis
program (v10.6.2). Apoptosis was analyzed using an FITC/annexin V apoptosis detection
kit according to the manufacturer’s protocol, and approximately 10,000 gated events were
analyzed for each treatment.

4.5. qRT-PCR

U87MG cells were cultured overnight and then replaced by fresh serum-free DMEM
culture medium. TIA (5/10 µM) was added to the treatment groups, which then con-
tinued to cultivate for 4 h, before 1 mL TRIzol was added to each group in accordance
with the TRIzol instructions for the extraction step. The reaction conditions were: 25 ◦C
× 10 min, 37 ◦C × 120 min, and 85 ◦C × 5 min. The products were stored at 4 ◦C, ac-
cording to the instruction of the high-capacity reverse transcription kit. qRT-PCR was
performed by synthesizing template cDNAs in a 20 µL reaction system according to the
RealMasterMix (SYBR Green) protocol. The primers were as follows: GUCY1B3 forward 5′-
GGAAATTGCTGGCCAGGTTCAAGT-3′; reverse 5′-TTCTCCTGTGGTTTCTGTTCGGCT-3′;
PDE5A forward 5′-GAAGCATGGCTGGACGATCA-3′; reverse 5′-AGGGGCACTGTTATC
TGCAC-3′; PKG1α forward 5′-GGCTGTCAGAGAAGGAGGAAG-3′; reverse 5′-GGAAGG
ACCTGTACGTCTGC-3′; PKG1β forward 5′-GCACCTTGCGGATTTACAG-3′; reverse 5′-
TTCTGGATCTCGTCCTTCTG-3′; β-actin forward 5′-CTCCTCCTGAGCGCAAGTACTC-3′;
reverse 5′-CGGACTCGTCATACTCCTGCT-3′. The conditions were as follows: 95 ◦C ×
10 min, 50 ◦C × 2 min, 95 ◦C × 15 s, and 60 ◦C × 1 min (40 cycles). Three replicates were
conducted for each sample. The relative content of the TIA treatment group was calculated
using 2−∆∆Ct.

4.6. Western Blotting Analysis

The cells were divided into different groups with particular treatments. After washing
with iced PBS, the cells were harvested by adding phosphatase inhibitor, protease inhibitor,
and RIPA buffer on ice, and then centrifuged at 4 ◦C to 12,000× g rpm for 15 min. The
protein concentrations of the clarified supernatants were determined by a BCA protein
assay kit. Then, 30 µg protein was resolved on 10% SDS-PAGE and transferred to PVDF
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membranes. These membranes were blocked with 5% nonfat dry milk for 1 h and incu-
bated in primary antibodies against β-actin, Bcl-2, β-catenin, cyclin D1, PDE5A, PKG1,
sGCβ, T-VASP, and p-VASPser239 in 5% BSA solution, and then incubated overnight at
4 ◦C. Following several washes, the membranes were incubated with the corresponding
secondary antibody. Next, the membranes were washed with TBST for 5 min × 6 times.
After that, the blots were developed using an ECL kit.

4.7. cGMP Analysis

To determine the concentration of cGMP in U87MG cells and the effect of timosaponin
AIII on the concentration, cells were plated at a density of 1 × 106 cells per 100 mm plate
and were treated with TIA or the vehicle control. After 45 min of treatment, we aspirated
the medium from the plate and added 150 µL of 0.1 M HCL per plate. We decanted the
supernatant after centrifuging 1000 g for 10 min. The cGMP in supernatants was quantified
by a colorimetric competitive cGMP EIA kit. The assay was carried out according to the
manufacturer’s specifications.

4.8. Animals and Xenograft Studies

Male BALB/C athymic nude mice (six-week-old, with an initial body weight of 20–22 g)
were purchased from SLAC Laboratory Animal Co., Ltd. (Shanghai, China) and housed under
sterile conditions with controlled temperature (22 ◦C), humidity, and a 12 h light/dark cycle.

The mice were inoculated with 2 × 106 cells/100 µL into the flank. Tumor dimensions
were measured twice a week, and the volume was calculated as length × width2 × 0.52.
When tumors reached ~200 mm3, mice were treated with TIA (1 mg/kg/d, I.P.) for 14 days,
and then the mice were sacrificed.

4.9. Immunohistochemistry

Tumors were excised in 4 mm sections, fixed with formalin, and selected samples were
embedded with paraffin. Slides were stained with antibodies against ki67 (at dilutions
of 1:100) and then, after washing, stained with secondary antibody. Finally, the stained
sections were analyzed under a microscope at a magnification of ×400.

4.10. Statistics

Student’s t-test or ANOVA was used where appropriate. p-values < 0.05 were consid-
ered significant. Experiments were performed with a minimum of three replicates.

5. Conclusions

In summary, we conclude that TIA inhibited U87MG cell proliferation and induced
apoptosis by suppressing the expression of PDE5, increasing the amount of sGCβ, restoring
intracellular cGMP levels, and activating PKG, the essential downstream proteins of cGMP.
The activation of the cGMP pathway suppressed U87MG cell growth via its ability to block
the β-catenin pathway.
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